Mercurial > lcfOS
diff cos/bochsrc.txt @ 9:92ace1ca50a8
64 bits kernel without interrupts but with printf in C
author | windel |
---|---|
date | Sun, 13 Nov 2011 12:47:47 +0100 |
parents | |
children | fcdae30b2782 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cos/bochsrc.txt Sun Nov 13 12:47:47 2011 +0100 @@ -0,0 +1,949 @@ +# You may now use double quotes around pathnames, in case +# your pathname includes spaces. + +#======================================================================= +# CONFIG_INTERFACE +# +# The configuration interface is a series of menus or dialog boxes that +# allows you to change all the settings that control Bochs's behavior. +# Depending on the platform there are up to 3 choices of configuration +# interface: a text mode version called "textconfig" and two graphical versions +# called "win32config" and "wx". The text mode version uses stdin/stdout and +# is always compiled in, unless Bochs is compiled for wx only. The choice +# "win32config" is only available on win32 and it is the default there. +# The choice "wx" is only available when you use "--with-wx" on the configure +# command. If you do not write a config_interface line, Bochs will +# choose a default for you. +# +# NOTE: if you use the "wx" configuration interface, you must also use +# the "wx" display library. +#======================================================================= +#config_interface: textconfig +#config_interface: win32config +#config_interface: wx + +#======================================================================= +# DISPLAY_LIBRARY +# +# The display library is the code that displays the Bochs VGA screen. Bochs +# has a selection of about 10 different display library implementations for +# different platforms. If you run configure with multiple --with-* options, +# the display_library command lets you choose which one you want to run with. +# If you do not write a display_library line, Bochs will choose a default for +# you. +# +# The choices are: +# x use X windows interface, cross platform +# win32 use native win32 libraries +# carbon use Carbon library (for MacOS X) +# beos use native BeOS libraries +# macintosh use MacOS pre-10 +# amigaos use native AmigaOS libraries +# sdl use SDL library, cross platform +# svga use SVGALIB library for Linux, allows graphics without X11 +# term text only, uses curses/ncurses library, cross platform +# rfb provides an interface to AT&T's VNC viewer, cross platform +# wx use wxWidgets library, cross platform +# nogui no display at all +# +# NOTE: if you use the "wx" configuration interface, you must also use +# the "wx" display library. +# +# Specific options: +# Some display libraries now support specific option to control their +# behaviour. See the examples below for currently supported options. +#======================================================================= +#display_library: amigaos +#display_library: beos +#display_library: carbon +#display_library: macintosh +#display_library: nogui +#display_library: rfb, options="timeout=60" # time to wait for client +#display_library: sdl, options="fullscreen" # startup in fullscreen mode +#display_library: term +#display_library: win32, options="legacyF12" # use F12 to toggle mouse +#display_library: win32, options="gui_debug" # use Win32 debugger gui +#display_library: wx +#display_library: x, options="hideIPS" # disable IPS output in status bar +#display_library: x, options="gui_debug" # use GTK debugger gui + +#======================================================================= +# ROMIMAGE: +# The ROM BIOS controls what the PC does when it first powers on. +# Normally, you can use a precompiled BIOS in the source or binary +# distribution called BIOS-bochs-latest. The ROM BIOS is usually loaded +# starting at address 0xf0000, and it is exactly 64k long. Another option +# is 128k BIOS which is loaded at address 0xe0000. +# You can also use the environment variable $BXSHARE to specify the +# location of the BIOS. +# The usage of external large BIOS images (up to 512k) at memory top is +# now supported, but we still recommend to use the BIOS distributed with +# Bochs. The start address optional, since it can be calculated from image size. +#======================================================================= +romimage: file=$BXSHARE/BIOS-bochs-latest +#romimage: file=bios/seabios-0.5.1.bin +#romimage: file=mybios.bin, address=0xfff80000 # 512k at memory top + +#======================================================================= +# CPU: +# This defines cpu-related parameters inside Bochs: +# +# COUNT: +# Set the number of processors:cores per processor:threads per core +# when Bochs is compiled for SMP emulation. +# Bochs currently supports up to 8 threads running simultaniosly. +# If Bochs is compiled without SMP support, it won't accept values +# different from 1. +# +# QUANTUM: +# Maximum amount of instructions allowed to execute by processor before +# returning control to another cpu. This option exists only in Bochs +# binary compiled with SMP support. +# +# RESET_ON_TRIPLE_FAULT: +# Reset the CPU when triple fault occur (highly recommended) rather than +# PANIC. Remember that if you trying to continue after triple fault the +# simulation will be completely bogus ! +# +# MSRS: +# Define path to user CPU Model Specific Registers (MSRs) specification. +# See example in msrs.def. +# +# IGNORE_BAD_MSRS: +# Ignore MSR references that Bochs does not understand; print a warning +# message instead of generating #GP exception. This option is enabled +# by default but will not be avaiable if configurable MSRs are enabled. +# +# IPS: +# Emulated Instructions Per Second. This is the number of IPS that bochs +# is capable of running on your machine. You can recompile Bochs with +# --enable-show-ips option enabled, to find your host's capability. +# Measured IPS value will then be logged into your log file or shown +# in the status bar (if supported by the gui). +# +# IPS is used to calibrate many time-dependent events within the bochs +# simulation. For example, changing IPS affects the frequency of VGA +# updates, the duration of time before a key starts to autorepeat, and +# the measurement of BogoMips and other benchmarks. +# +# Examples: +# +# Bochs Machine/Compiler Mips +# ____________________________________________________________________ +# 2.3.7 3.2Ghz Intel Core 2 Q9770 with WinXP/g++ 3.4 50 to 55 Mips +# 2.3.7 2.6Ghz Intel Core 2 Duo with WinXP/g++ 3.4 38 to 43 Mips +# 2.2.6 2.6Ghz Intel Core 2 Duo with WinXP/g++ 3.4 21 to 25 Mips +# 2.2.6 2.1Ghz Athlon XP with Linux 2.6/g++ 3.4 12 to 15 Mips +# 2.0.1 1.6Ghz Intel P4 with Win2000/g++ 3.3 5 to 7 Mips +#======================================================================= +cpu: count=1, ips=500000, reset_on_triple_fault=1, ignore_bad_msrs=1, msrs="msrs.def" + +#======================================================================= +# CPUID: +# +# This defines features and functionality supported by Bochs emulated CPU: +# +# MMX: +# Select MMX instruction set support. +# This option exists only if Bochs compiled with BX_CPU_LEVEL >= 5. +# +# SEP: +# Select SYSENTER/SYSEXIT instruction set support. +# This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6. +# +# SSE: +# Select SSE instruction set support. +# Any of NONE/SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 could be selected. +# This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6. +# +# XAPIC: +# Select XAPIC extensions support. +# This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6. +# +# AES: +# Select AES instruction set support. +# This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6. +# +# MOVBE: +# Select MOVBE Intel(R) Atom instruction support. +# This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6. +# +# XSAVE: +# Select XSAVE extensions support. +# This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6. +# +# 1G_PAGES: +# Enable 1G page size support in long mode. +# This option exists only if Bochs compiled with x86-64 support. +# +# MWAIT_IS_NOP: +# When this option is enabled MWAIT will not put the CPU into a sleep state. +# This option exists only if Bochs compiled with --enable-monitor-mwait. +# +# VENDOR_STRING: +# Set the CPUID vendor string returned by CPUID(0x0). This should be a +# twelve-character ASCII string. +# +# BRAND_STRING: +# Set the CPUID vendor string returned by CPUID(0x80000002 .. 0x80000004). +# This should be at most a forty-eight-character ASCII string. +# +# CPUID_LIMIT_WINNT: +# Determine whether to limit maximum CPUID function to 3. This mode is +# required to workaround WinNT installation and boot issues. +#======================================================================= +cpuid: mmx=1, sep=1, sse=sse4_2, xapic=1, aes=1, movbe=1, xsave=1, cpuid_limit_winnt=0 + +#======================================================================= +# MEMORY +# Set the amount of physical memory you want to emulate. +# +# GUEST: +# Set amount of guest physical memory to emulate. The default is 32MB, +# the maximum amount limited only by physical address space limitations. +# +# HOST: +# Set amount of host memory you want to allocate for guest RAM emulation. +# It is possible to allocate less memory than you want to emulate in guest +# system. This will fake guest to see the non-existing memory. Once guest +# system touches new memory block it will be dynamically taken from the +# memory pool. You will be warned (by FATAL PANIC) in case guest already +# used all allocated host memory and wants more. +# +#======================================================================= +memory: guest=128, host=256 +megs: 48 + +#======================================================================= +# OPTROMIMAGE[1-4]: +# You may now load up to 4 optional ROM images. Be sure to use a +# read-only area, typically between C8000 and EFFFF. These optional +# ROM images should not overwrite the rombios (located at +# F0000-FFFFF) and the videobios (located at C0000-C7FFF). +# Those ROM images will be initialized by the bios if they contain +# the right signature (0x55AA) and a valid checksum. +# It can also be a convenient way to upload some arbitrary code/data +# in the simulation, that can be retrieved by the boot loader +#======================================================================= +#optromimage1: file=optionalrom.bin, address=0xd0000 +#optromimage2: file=optionalrom.bin, address=0xd1000 +#optromimage3: file=optionalrom.bin, address=0xd2000 +#optromimage4: file=optionalrom.bin, address=0xd3000 + +#optramimage1: file=/path/file1.img, address=0x0010000 +#optramimage2: file=/path/file2.img, address=0x0020000 +#optramimage3: file=/path/file3.img, address=0x0030000 +#optramimage4: file=/path/file4.img, address=0x0040000 + +#======================================================================= +# VGAROMIMAGE +# You now need to load a VGA ROM BIOS into C0000. +#======================================================================= +#vgaromimage: file=bios/VGABIOS-elpin-2.40 +vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest +#vgaromimage: file=bios/VGABIOS-lgpl-latest-cirrus + +#======================================================================= +# VGA: +# Here you can specify the display extension to be used. With the value +# 'none' you can use standard VGA with no extension. Other supported +# values are 'vbe' for Bochs VBE and 'cirrus' for Cirrus SVGA support. +#======================================================================= +#vga: extension=cirrus +vga: extension=vbe + +#======================================================================= +# FLOPPYA: +# Point this to pathname of floppy image file or device +# This should be of a bootable floppy(image/device) if you're +# booting from 'a' (or 'floppy'). +# +# You can set the initial status of the media to 'ejected' or 'inserted'. +# floppya: 2_88=path, status=ejected (2.88M 3.5" media) +# floppya: 1_44=path, status=inserted (1.44M 3.5" media) +# floppya: 1_2=path, status=ejected (1.2M 5.25" media) +# floppya: 720k=path, status=inserted (720K 3.5" media) +# floppya: 360k=path, status=inserted (360K 5.25" media) +# floppya: 320k=path, status=inserted (320K 5.25" media) +# floppya: 180k=path, status=inserted (180K 5.25" media) +# floppya: 160k=path, status=inserted (160K 5.25" media) +# floppya: image=path, status=inserted (guess media type from image size) +# floppya: type=1_44 (1.44M 3.5" floppy drive, no media) +# +# The path should be the name of a disk image file. On Unix, you can use a raw +# device name such as /dev/fd0 on Linux. On win32 platforms, use drive letters +# such as a: or b: as the path. The parameter 'image' works with image files +# only. In that case the size must match one of the supported types. +# The parameter 'type' can be used to enable the floppy drive without media +# and status specified. Usually the drive type is set up based on the media type. +#======================================================================= +#floppya: 1_44=/dev/fd0, status=inserted +floppya: image=bootdisk.img, status=inserted +#floppya: 1_44=/dev/fd0H1440, status=inserted +#floppya: 1_2=../1_2, status=inserted +#floppya: 1_44=a:, status=inserted +#floppya: 1_44=a.img, status=inserted +#floppya: 1_44=/dev/rfd0a, status=inserted + +#======================================================================= +# FLOPPYB: +# See FLOPPYA above for syntax +#======================================================================= +#floppyb: 1_44=b:, status=inserted +#floppyb: 1_44=b.img, status=inserted + +#======================================================================= +# ATA0, ATA1, ATA2, ATA3 +# ATA controller for hard disks and cdroms +# +# ata[0-3]: enabled=[0|1], ioaddr1=addr, ioaddr2=addr, irq=number +# +# These options enables up to 4 ata channels. For each channel +# the two base io addresses and the irq must be specified. +# +# ata0 and ata1 are enabled by default with the values shown below +# +# Examples: +# ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14 +# ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15 +# ata2: enabled=1, ioaddr1=0x1e8, ioaddr2=0x3e0, irq=11 +# ata3: enabled=1, ioaddr1=0x168, ioaddr2=0x360, irq=9 +#======================================================================= +ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14 +ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15 +ata2: enabled=0, ioaddr1=0x1e8, ioaddr2=0x3e0, irq=11 +ata3: enabled=0, ioaddr1=0x168, ioaddr2=0x360, irq=9 + +#======================================================================= +# ATA[0-3]-MASTER, ATA[0-3]-SLAVE +# +# This defines the type and characteristics of all attached ata devices: +# type= type of attached device [disk|cdrom] +# mode= only valid for disks [flat|concat|external|dll|sparse|vmware3] +# mode= only valid for disks [undoable|growing|volatile] +# path= path of the image +# cylinders= only valid for disks +# heads= only valid for disks +# spt= only valid for disks +# status= only valid for cdroms [inserted|ejected] +# biosdetect= type of biosdetection [none|auto], only for disks on ata0 [cmos] +# translation=type of translation of the bios, only for disks [none|lba|large|rechs|auto] +# model= string returned by identify device command +# journal= optional filename of the redolog for undoable and volatile disks +# +# Point this at a hard disk image file, cdrom iso file, or physical cdrom +# device. To create a hard disk image, try running bximage. It will help you +# choose the size and then suggest a line that works with it. +# +# In UNIX it may be possible to use a raw device as a Bochs hard disk, +# but WE DON'T RECOMMEND IT. In Windows there is no easy way. +# +# In windows, the drive letter + colon notation should be used for cdroms. +# Depending on versions of windows and drivers, you may only be able to +# access the "first" cdrom in the system. On MacOSX, use path="drive" +# to access the physical drive. +# +# The path is mandatory for hard disks. Disk geometry autodetection works with +# images created by bximage if CHS is set to 0/0/0 (cylinders are calculated +# using heads=16 and spt=63). For other hard disk images and modes the +# cylinders, heads, and spt are mandatory. In all cases the disk size reported +# from the image must be exactly C*H*S*512. +# +# Default values are: +# mode=flat, biosdetect=auto, translation=auto, model="Generic 1234" +# +# The biosdetect option has currently no effect on the bios +# +# Examples: +# ata0-master: type=disk, mode=flat, path=10M.sample, cylinders=306, heads=4, spt=17 +# ata0-slave: type=disk, mode=flat, path=20M.sample, cylinders=615, heads=4, spt=17 +# ata1-master: type=disk, mode=flat, path=30M.sample, cylinders=615, heads=6, spt=17 +# ata1-slave: type=disk, mode=flat, path=46M.sample, cylinders=940, heads=6, spt=17 +# ata2-master: type=disk, mode=flat, path=62M.sample, cylinders=940, heads=8, spt=17 +# ata2-slave: type=disk, mode=flat, path=112M.sample, cylinders=900, heads=15, spt=17 +# ata3-master: type=disk, mode=flat, path=483M.sample, cylinders=1024, heads=15, spt=63 +# ata3-slave: type=cdrom, path=iso.sample, status=inserted +#======================================================================= +#ata0-master: type=disk, mode=flat, path="30M.sample" +#ata0-master: type=disk, mode=flat, path="30M.sample", cylinders=615, heads=6, spt=17 +#ata0-master: type=disk, mode=flat, path="c.img", cylinders=0 # autodetect +#ata0-slave: type=cdrom, path=D:, status=inserted +#ata0-slave: type=cdrom, path=/dev/cdrom, status=inserted +#ata0-slave: type=cdrom, path="drive", status=inserted +#ata0-slave: type=cdrom, path=/dev/rcd0d, status=inserted + +#======================================================================= +# BOOT: +# This defines the boot sequence. Now you can specify up to 3 boot drives, +# which can be 'floppy', 'disk', 'cdrom' or 'network' (boot ROM). +# Legacy 'a' and 'c' are also supported. +# Examples: +# boot: floppy +# boot: cdrom, disk +# boot: network, disk +# boot: cdrom, floppy, disk +#======================================================================= +boot: floppy +#boot: disk + +#======================================================================= +# CLOCK: +# This defines the parameters of the clock inside Bochs: +# +# SYNC: +# This defines the method how to synchronize the Bochs internal time +# with realtime. With the value 'none' the Bochs time relies on the IPS +# value and no host time synchronization is used. The 'slowdown' method +# sacrifices performance to preserve reproducibility while allowing host +# time correlation. The 'realtime' method sacrifices reproducibility to +# preserve performance and host-time correlation. +# It is possible to enable both synchronization methods. +# +# TIME0: +# Specifies the start (boot) time of the virtual machine. Use a time +# value as returned by the time(2) system call. If no time0 value is +# set or if time0 equal to 1 (special case) or if time0 equal 'local', +# the simulation will be started at the current local host time. +# If time0 equal to 2 (special case) or if time0 equal 'utc', +# the simulation will be started at the current utc time. +# +# Syntax: +# clock: sync=[none|slowdown|realtime|both], time0=[timeValue|local|utc] +# +# Example: +# clock: sync=none, time0=local # Now (localtime) +# clock: sync=slowdown, time0=315529200 # Tue Jan 1 00:00:00 1980 +# clock: sync=none, time0=631148400 # Mon Jan 1 00:00:00 1990 +# clock: sync=realtime, time0=938581955 # Wed Sep 29 07:12:35 1999 +# clock: sync=realtime, time0=946681200 # Sat Jan 1 00:00:00 2000 +# clock: sync=none, time0=1 # Now (localtime) +# clock: sync=none, time0=utc # Now (utc/gmt) +# +# Default value are sync=none, time0=local +#======================================================================= +#clock: sync=none, time0=local + + +#======================================================================= +# FLOPPY_BOOTSIG_CHECK: disabled=[0|1] +# Enables or disables the 0xaa55 signature check on boot floppies +# Defaults to disabled=0 +# Examples: +# floppy_bootsig_check: disabled=0 +# floppy_bootsig_check: disabled=1 +#======================================================================= +floppy_bootsig_check: disabled=0 + +#======================================================================= +# LOG: +# Give the path of the log file you'd like Bochs debug and misc. verbiage +# to be written to. If you don't use this option or set the filename to +# '-' the output is written to the console. If you really don't want it, +# make it "/dev/null" (Unix) or "nul" (win32). :^( +# +# Examples: +# log: ./bochs.out +# log: /dev/tty +#======================================================================= +#log: /dev/null +#log: bochsout.txt + +#======================================================================= +# LOGPREFIX: +# This handles the format of the string prepended to each log line. +# You may use those special tokens : +# %t : 11 decimal digits timer tick +# %i : 8 hexadecimal digits of cpu current eip (ignored in SMP configuration) +# %e : 1 character event type ('i'nfo, 'd'ebug, 'p'anic, 'e'rror) +# %d : 5 characters string of the device, between brackets +# +# Default : %t%e%d +# Examples: +# logprefix: %t-%e-@%i-%d +# logprefix: %i%e%d +#======================================================================= +#logprefix: %t%e%d + +#======================================================================= +# LOG CONTROLS +# +# Bochs now has four severity levels for event logging. +# panic: cannot proceed. If you choose to continue after a panic, +# don't be surprised if you get strange behavior or crashes. +# error: something went wrong, but it is probably safe to continue the +# simulation. +# info: interesting or useful messages. +# debug: messages useful only when debugging the code. This may +# spit out thousands per second. +# +# For events of each level, you can choose to crash, report, or ignore. +# TODO: allow choice based on the facility: e.g. crash on panics from +# everything except the cdrom, and only report those. +# +# If you are experiencing many panics, it can be helpful to change +# the panic action to report instead of fatal. However, be aware +# that anything executed after a panic is uncharted territory and can +# cause bochs to become unstable. The panic is a "graceful exit," so +# if you disable it you may get a spectacular disaster instead. +#======================================================================= +panic: action=ask +error: action=report +info: action=report +debug: action=ignore +#pass: action=fatal + +#======================================================================= +# DEBUGGER_LOG: +# Give the path of the log file you'd like Bochs to log debugger output. +# If you really don't want it, make it /dev/null or '-'. :^( +# +# Examples: +# debugger_log: ./debugger.out +#======================================================================= +#debugger_log: /dev/null +#debugger_log: debugger.out +debugger_log: - + +#======================================================================= +# COM1, COM2, COM3, COM4: +# This defines a serial port (UART type 16550A). In the 'term' you can specify +# a device to use as com1. This can be a real serial line, or a pty. To use +# a pty (under X/Unix), create two windows (xterms, usually). One of them will +# run bochs, and the other will act as com1. Find out the tty the com1 +# window using the `tty' command, and use that as the `dev' parameter. +# Then do `sleep 1000000' in the com1 window to keep the shell from +# messing with things, and run bochs in the other window. Serial I/O to +# com1 (port 0x3f8) will all go to the other window. +# In socket* and pipe* (win32 only) modes Bochs becomes either socket/named pipe +# client or server. In client mode it connects to an already running server (if +# connection fails Bochs treats com port as not connected). In server mode it +# opens socket/named pipe and waits until a client application connects to it +# before starting simulation. This mode is useful for remote debugging (e.g. +# with gdb's "target remote host:port" command or windbg's command line option +# -k com:pipe,port=\\.\pipe\pipename). Note: 'socket' is a shorthand for +# 'socket-client' and 'pipe' for 'pipe-client'. Socket modes use simple TCP +# communication, pipe modes use duplex byte mode pipes. +# Other serial modes are 'null' (no input/output), 'file' (output to a file +# specified as the 'dev' parameter), 'raw' (use the real serial port - under +# construction for win32), 'mouse' (standard serial mouse - requires +# mouse option setting 'type=serial', 'type=serial_wheel' or 'type=serial_msys'). +# +# Examples: +# com1: enabled=1, mode=null +# com1: enabled=1, mode=mouse +# com2: enabled=1, mode=file, dev=serial.out +# com3: enabled=1, mode=raw, dev=com1 +# com3: enabled=1, mode=socket-client, dev=localhost:8888 +# com3: enabled=1, mode=socket-server, dev=localhost:8888 +# com4: enabled=1, mode=pipe-client, dev=\\.\pipe\mypipe +# com4: enabled=1, mode=pipe-server, dev=\\.\pipe\mypipe +#======================================================================= +#com1: enabled=1, mode=term, dev=/dev/ttyp9 + + +#======================================================================= +# PARPORT1, PARPORT2: +# This defines a parallel (printer) port. When turned on and an output file is +# defined the emulated printer port sends characters printed by the guest OS +# into the output file. On some platforms a device filename can be used to +# send the data to the real parallel port (e.g. "/dev/lp0" on Linux, "lpt1" on +# win32 platforms). +# +# Examples: +# parport1: enabled=1, file="parport.out" +# parport2: enabled=1, file="/dev/lp0" +# parport1: enabled=0 +#======================================================================= +#parport1: enabled=1, file="parport.out" + +#======================================================================= +# SB16: +# This defines the SB16 sound emulation. It can have several of the +# following properties. +# All properties are in the format sb16: property=value +# midi: The filename is where the midi data is sent. This can be a +# device or just a file if you want to record the midi data. +# midimode: +# 0=no data +# 1=output to device (system dependent. midi denotes the device driver) +# 2=SMF file output, including headers +# 3=output the midi data stream to the file (no midi headers and no +# delta times, just command and data bytes) +# wave: This is the device/file where wave output is stored +# wavemode: +# 0=no data +# 1=output to device (system dependent. wave denotes the device driver) +# 2=VOC file output, incl. headers +# 3=output the raw wave stream to the file +# log: The file to write the sb16 emulator messages to. +# loglevel: +# 0=no log +# 1=resource changes, midi program and bank changes +# 2=severe errors +# 3=all errors +# 4=all errors plus all port accesses +# 5=all errors and port accesses plus a lot of extra info +# dmatimer: +# microseconds per second for a DMA cycle. Make it smaller to fix +# non-continuous sound. 750000 is usually a good value. This needs a +# reasonably correct setting for the IPS parameter of the CPU option. +# +# Examples for output devices: +# sb16: midimode=1, midi="", wavemode=1, wave="" # win32 +# sb16: midimode=1, midi=alsa:128:0, wavemode=1, wave=alsa # Linux with ALSA +#======================================================================= +#sb16: midimode=1, midi=/dev/midi00, wavemode=1, wave=/dev/dsp, loglevel=2, log=sb16.log, dmatimer=600000 + +#======================================================================= +# VGA_UPDATE_INTERVAL: +# Video memory is scanned for updates and screen updated every so many +# virtual seconds. The default is 50000, about 20Hz. Keep in mind that +# you must tweak the 'cpu: ips=N' directive to be as close to the number +# of emulated instructions-per-second your workstation can do, for this +# to be accurate. +# +# Examples: +# vga_update_interval: 250000 +#======================================================================= +vga_update_interval: 300000 + +# using for Winstone '98 tests +#vga_update_interval: 100000 + +#======================================================================= +# KEYBOARD_SERIAL_DELAY: +# Approximate time in microseconds that it takes one character to +# be transfered from the keyboard to controller over the serial path. +# Examples: +# keyboard_serial_delay: 200 +#======================================================================= +keyboard_serial_delay: 250 + +#======================================================================= +# KEYBOARD_PASTE_DELAY: +# Approximate time in microseconds between attempts to paste +# characters to the keyboard controller. This leaves time for the +# guest os to deal with the flow of characters. The ideal setting +# depends on how your operating system processes characters. The +# default of 100000 usec (.1 seconds) was chosen because it works +# consistently in Windows. +# +# If your OS is losing characters during a paste, increase the paste +# delay until it stops losing characters. +# +# Examples: +# keyboard_paste_delay: 100000 +#======================================================================= +keyboard_paste_delay: 100000 + +#======================================================================= +# MOUSE: +# The Bochs gui creates mouse "events" unless the 'enabled' option is +# set to 0. The hardware emulation itself is not disabled by this. +# Unless you have a particular reason for enabling the mouse by default, +# it is recommended that you leave it off. You can also toggle the mouse +# usage at runtime (control key + middle mouse button on X11, SDL, +# wxWidgets and Win32). +# With the mouse type option you can select the type of mouse to emulate. +# The default value is 'ps2'. The other choices are 'imps2' (wheel mouse +# on PS/2), 'serial', 'serial_wheel' and 'serial_msys' (one com port requires +# setting 'mode=mouse'). To connect a mouse to an USB port, see the 'usb_uhci' +# or 'usb_ohci' option (requires PCI and USB support). +# +# Examples: +# mouse: enabled=1 +# mouse: enabled=1, type=imps2 +# mouse: enabled=1, type=serial +# mouse: enabled=0 +#======================================================================= +mouse: enabled=0 + +#======================================================================= +# private_colormap: Request that the GUI create and use it's own +# non-shared colormap. This colormap will be used +# when in the bochs window. If not enabled, a +# shared colormap scheme may be used. Not implemented +# on all GUI's. +# +# Examples: +# private_colormap: enabled=1 +# private_colormap: enabled=0 +#======================================================================= +private_colormap: enabled=0 + +#======================================================================= +# fullscreen: ONLY IMPLEMENTED ON AMIGA +# Request that Bochs occupy the entire screen instead of a +# window. +# +# Examples: +# fullscreen: enabled=0 +# fullscreen: enabled=1 +#======================================================================= +#fullscreen: enabled=0 +#screenmode: name="sample" + +#======================================================================= +# ne2k: NE2000 compatible ethernet adapter +# +# Examples: +# ne2k: ioaddr=IOADDR, irq=IRQ, mac=MACADDR, ethmod=MODULE, ethdev=DEVICE, script=SCRIPT +# +# ioaddr, irq: You probably won't need to change ioaddr and irq, unless there +# are IRQ conflicts. These arguments are ignored when assign the ne2k to a +# PCI slot. +# +# mac: The MAC address MUST NOT match the address of any machine on the net. +# Also, the first byte must be an even number (bit 0 set means a multicast +# address), and you cannot use ff:ff:ff:ff:ff:ff because that's the broadcast +# address. For the ethertap module, you must use fe:fd:00:00:00:01. There may +# be other restrictions too. To be safe, just use the b0:c4... address. +# +# ethdev: The ethdev value is the name of the network interface on your host +# platform. On UNIX machines, you can get the name by running ifconfig. On +# Windows machines, you must run niclist to get the name of the ethdev. +# Niclist source code is in misc/niclist.c and it is included in Windows +# binary releases. +# +# script: The script value is optional, and is the name of a script that +# is executed after bochs initialize the network interface. You can use +# this script to configure this network interface, or enable masquerading. +# This is mainly useful for the tun/tap devices that only exist during +# Bochs execution. The network interface name is supplied to the script +# as first parameter +# +# If you don't want to make connections to any physical networks, +# you can use the following 'ethmod's to simulate a virtual network. +# null: All packets are discarded, but logged to a few files. +# arpback: ARP is simulated. Disabled by default. +# vde: Virtual Distributed Ethernet +# vnet: ARP, ICMP-echo(ping), DHCP and read/write TFTP are simulated. +# The virtual host uses 192.168.10.1. +# DHCP assigns 192.168.10.2 to the guest. +# TFTP uses the ethdev value for the root directory and doesn't +# overwrite files. +# +#======================================================================= +# ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=fbsd, ethdev=en0 #macosx +# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=fbsd, ethdev=xl0 +# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=linux, ethdev=eth0 +# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=win32, ethdev=MYCARD +# ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=tap, ethdev=tap0 +# ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=tuntap, ethdev=/dev/net/tun0, script=./tunconfig +# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=null, ethdev=eth0 +# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=vde, ethdev="/tmp/vde.ctl" +# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=vnet, ethdev="c:/temp" + +#======================================================================= +# pnic: Bochs/Etherboot pseudo-NIC +# +# Example: +# pnic: enabled=1, mac=MACADDR, ethmod=MODULE, ethdev=DEVICE, script=SCRIPT +# +# The pseudo-NIC accepts the same syntax (for mac, ethmod, ethdev, script) and +# supports the same networking modules as the NE2000 adapter. In addition to +# this, it must be assigned to a PCI slot. +#======================================================================= +#pnic: enabled=1, mac=b0:c4:20:00:00:00, ethmod=vnet + +#======================================================================= +# KEYBOARD_MAPPING: +# This enables a remap of a physical localized keyboard to a +# virtualized us keyboard, as the PC architecture expects. +# If enabled, the keymap file must be specified. +# +# Examples: +# keyboard_mapping: enabled=1, map=gui/keymaps/x11-pc-de.map +#======================================================================= +keyboard_mapping: enabled=0, map= + +#======================================================================= +# KEYBOARD_TYPE: +# Type of keyboard return by a "identify keyboard" command to the +# keyboard controler. It must be one of "xt", "at" or "mf". +# Defaults to "mf". It should be ok for almost everybody. A known +# exception is french macs, that do have a "at"-like keyboard. +# +# Examples: +# keyboard_type: mf +#======================================================================= +#keyboard_type: mf + +#======================================================================= +# USER_SHORTCUT: +# This defines the keyboard shortcut to be sent when you press the "user" +# button in the headerbar. The shortcut string is a combination of maximum +# 3 key names (listed below) separated with a '-' character. +# Valid key names: +# "alt", "bksl", "bksp", "ctrl", "del", "down", "end", "enter", "esc", +# "f1", ... "f12", "home", "ins", "left", "menu", "minus", "pgdwn", "pgup", +# "plus", "right", "shift", "space", "tab", "up", "win", "print" and "power". +# +# Example: +# user_shortcut: keys=ctrl-alt-del +#======================================================================= +#user_shortcut: keys=ctrl-alt-del + +#======================================================================= +# I440FXSUPPORT: +# This option controls the presence of the i440FX PCI chipset. You can +# also specify the devices connected to PCI slots. Up to 5 slots are +# available now. These devices are currently supported: ne2k, pcivga, +# pcidev, pcipnic and usb_ohci. If Bochs is compiled with Cirrus SVGA +# support you'll have the additional choice 'cirrus'. +# +# Example: +# i440fxsupport: enabled=1, slot1=pcivga, slot2=ne2k +#======================================================================= +i440fxsupport: enabled=1 + +#======================================================================= +# USB_UHCI: +# This option controls the presence of the USB root hub which is a part +# of the i440FX PCI chipset. With the portX option you can connect devices +# to the hub (currently supported: 'mouse', 'tablet', 'keypad', 'disk', 'cdrom' +# 'hub' and 'printer'). +# +# If you connect the mouse or tablet to one of the ports, Bochs forwards the +# mouse movement data to the USB device instead of the selected mouse type. +# When connecting the keypad to one of the ports, Bochs forwards the input of +# the numeric keypad to the USB device instead of the PS/2 keyboard. +# +# To connect a flat image as an USB hardisk you can use the 'disk' device with +# the path to the image separated with a colon (see below). To emulate an USB +# cdrom you can use the 'cdrom' device name and the path to an ISO image or raw +# device name also separated with a colon. +# +# The device name 'hub' connects an external hub with max. 8 ports (default: 4) +# to the root hub. To specify the number of ports you have to add the value +# separated with a colon. Connecting devices to the external hub ports is only +# available in the runtime configuration. +# +# The device 'printer' emulates the HP Deskjet 920C printer. The PCL data is +# sent to a file specified in bochsrc.txt. The current code appends the PCL +# code to the file if the file already existed. It would probably be nice to +# overwrite the file instead, asking user first. +#======================================================================= +#usb_uhci: enabled=1 +#usb_uhci: enabled=1, port1=mouse, port2=disk:usbdisk.img +#usb_uhci: enabled=1, port1=hub:7, port2=cdrom:image.iso + +#======================================================================= +# USB_OHCI: +# This option controls the presence of the USB OHCI host controller with a +# 2-port hub. The portX option accepts the same device types with the same +# syntax as the UHCI controller (see above). The OHCI HC must be assigned to +# a PCI slot. +#======================================================================= +#usb_ohci: enabled=1 +#usb_ohci: enabled=1, port1=printer:usbprinter.bin + +#======================================================================= +# CMOSIMAGE: +# This defines image file that can be loaded into the CMOS RAM at startup. +# The rtc_init parameter controls whether initialize the RTC with values stored +# in the image. By default the time0 argument given to the clock option is used. +# With 'rtc_init=image' the image is the source for the initial time. +# +# Example: +# cmosimage: file=cmos.img, rtc_init=image +#======================================================================= +#cmosimage: file=cmos.img, rtc_init=time0 + +#======================================================================= +# MAGIC_BREAK: +# This enables the "magic breakpoint" feature when using the debugger. +# The useless cpu instruction XCHG BX, BX causes Bochs to enter the +# debugger mode. This might be useful for software development. +# +# Example: +# magic_break: enabled=1 +#======================================================================= +#magic_break: enabled=1 + +#======================================================================= +# PORT_E9_HACK: +# The 0xE9 port doesn't exists in normal ISA architecture. However, we +# define a convention here, to display on the console of the system running +# Bochs anything that is written to it. The idea is to provide debug output +# very early when writing BIOS or OS code for example, without having to +# bother with setting up a serial port or etc. Reading from port 0xE9 will +# will return 0xe9 to let you know if the feature is available. +# Leave this 0 unless you have a reason to use it. +# +# Example: +# port_e9_hack: enabled=1 +#======================================================================= +#port_e9_hack: enabled=1 + +#======================================================================= +# DEBUG_SYMBOLS: +# This loads symbols from the specified file for use in Bochs' internal +# debugger. Symbols are loaded into global context. This is equivalent to +# issuing ldsym debugger command at start up. +# +# Example: +# debug_symbols: file="kernel.sym" +# debug_symbols: file="kernel.sym", offset=0x80000000 +#======================================================================= +#debug_symbols: file="kernel.sym" + +#======================================================================= +# other stuff +#======================================================================= +#load32bitOSImage: os=nullkernel, path=../kernel.img, iolog=../vga_io.log +#load32bitOSImage: os=linux, path=../linux.img, iolog=../vga_io.log, initrd=../initrd.img +#text_snapshot_check: enabled=1 +#print_timestamps: enabled=1 + +#------------------------- +# PCI host device mapping +#------------------------- +#pcidev: vendor=0x1234, device=0x5678 + +#======================================================================= +# GDBSTUB: +# Enable GDB stub. See user documentation for details. +# Default value is enabled=0. +#======================================================================= +#gdbstub: enabled=0, port=1234, text_base=0, data_base=0, bss_base=0 + +#======================================================================= +# PLUGIN_CTRL: +# Controls the presence of optional plugins without a separate option. +# By default all existing plugins are enabled. These plugins are currently +# supported: 'acpi', 'biosdev', 'extfpuirq', 'gameport', 'iodebug', +# 'pci_ide', 'speaker' and 'unmapped'. +#======================================================================= +#plugin_ctrl: biosdev=0, speaker=0 + +#======================================================================= +# USER_PLUGIN: +# Load user-defined plugin. This option is available only if Bochs is +# compiled with plugin support. Maximum 8 different plugins are supported. +# See the example in the Bochs sources how to write a plugin device. +#======================================================================= +#user_plugin: name=testdev + +#======================================================================= +# for Macintosh, use the style of pathnames in the following +# examples. +# +# vgaromimage: :bios:VGABIOS-elpin-2.40 +# romimage: file=:bios:BIOS-bochs-latest, address=0xf0000 +# floppya: 1_44=[fd:], status=inserted +#======================================================================= + +#======================================================================= +# MEGS +# Set the number of Megabytes of physical memory you want to emulate. +# The default is 32MB, most OS's won't need more than that. +# The maximum amount of memory supported is 2048Mb. +# The 'MEGS' option is deprecated. Use 'MEMORY' option instead. +#======================================================================= +#megs: 256 +#megs: 128 +#megs: 64 +#megs: 32 +#megs: 16 +#megs: 8