Mercurial > lcfOS
diff cos/python/Objects/longobject.c @ 27:7f74363f4c82
Added some files for the python port
author | windel |
---|---|
date | Tue, 27 Dec 2011 18:59:02 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cos/python/Objects/longobject.c Tue Dec 27 18:59:02 2011 +0100 @@ -0,0 +1,4836 @@ +/* Long (arbitrary precision) integer object implementation */ + +/* XXX The functional organization of this file is terrible */ + +#include "Python.h" +#include "longintrepr.h" + + +/* convert a PyLong of size 1, 0 or -1 to an sdigit */ +#define MEDIUM_VALUE(x) (Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] : \ + (Py_SIZE(x) == 0 ? (sdigit)0 : \ + (sdigit)(x)->ob_digit[0])) +#define ABS(x) ((x) < 0 ? -(x) : (x)) + +/* If a freshly-allocated long is already shared, it must + be a small integer, so negating it must go to PyLong_FromLong */ +#define NEGATE(x) \ + do if (Py_REFCNT(x) == 1) Py_SIZE(x) = -Py_SIZE(x); \ + else { PyObject* tmp=PyLong_FromLong(-MEDIUM_VALUE(x)); \ + Py_DECREF(x); (x) = (PyLongObject*)tmp; } \ + while(0) +/* For long multiplication, use the O(N**2) school algorithm unless + * both operands contain more than KARATSUBA_CUTOFF digits (this + * being an internal Python long digit, in base BASE). + */ +#define KARATSUBA_CUTOFF 70 +#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF) + +/* For exponentiation, use the binary left-to-right algorithm + * unless the exponent contains more than FIVEARY_CUTOFF digits. + * In that case, do 5 bits at a time. The potential drawback is that + * a table of 2**5 intermediate results is computed. + */ +#define FIVEARY_CUTOFF 8 + +#undef MIN +#undef MAX +#define MAX(x, y) ((x) < (y) ? (y) : (x)) +#define MIN(x, y) ((x) > (y) ? (y) : (x)) + +#define SIGCHECK(PyTryBlock) \ + do { \ + if (PyErr_CheckSignals()) PyTryBlock \ + } while(0) + +/* Normalize (remove leading zeros from) a long int object. + Doesn't attempt to free the storage--in most cases, due to the nature + of the algorithms used, this could save at most be one word anyway. */ + +static PyLongObject * +long_normalize(register PyLongObject *v) +{ + Py_ssize_t j = ABS(Py_SIZE(v)); + Py_ssize_t i = j; + + while (i > 0 && v->ob_digit[i-1] == 0) + --i; + if (i != j) + Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; + return v; +} + +/* Allocate a new long int object with size digits. + Return NULL and set exception if we run out of memory. */ + +#define MAX_LONG_DIGITS \ + ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit)) + +PyLongObject * +_PyLong_New(Py_ssize_t size) +{ + PyLongObject *result; + /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) + + sizeof(digit)*size. Previous incarnations of this code used + sizeof(PyVarObject) instead of the offsetof, but this risks being + incorrect in the presence of padding between the PyVarObject header + and the digits. */ + if (size > (Py_ssize_t)MAX_LONG_DIGITS) { + PyErr_SetString(PyExc_OverflowError, + "too many digits in integer"); + return NULL; + } + result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) + + size*sizeof(digit)); + if (!result) { + PyErr_NoMemory(); + return NULL; + } + return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size); +} + +PyObject * +_PyLong_Copy(PyLongObject *src) +{ + PyLongObject *result; + Py_ssize_t i; + + assert(src != NULL); + i = Py_SIZE(src); + if (i < 0) + i = -(i); + if (i < 2) { + sdigit ival = src->ob_digit[0]; + if (Py_SIZE(src) < 0) + ival = -ival; + CHECK_SMALL_INT(ival); + } + result = _PyLong_New(i); + if (result != NULL) { + Py_SIZE(result) = Py_SIZE(src); + while (--i >= 0) + result->ob_digit[i] = src->ob_digit[i]; + } + return (PyObject *)result; +} + +/* Create a new long int object from a C long int */ + +PyObject * +PyLong_FromLong(long ival) +{ + PyLongObject *v; + unsigned long abs_ival; + unsigned long t; /* unsigned so >> doesn't propagate sign bit */ + int ndigits = 0; + int sign = 1; + + if (ival < 0) { + /* negate: can't write this as abs_ival = -ival since that + invokes undefined behaviour when ival is LONG_MIN */ + abs_ival = 0U-(unsigned long)ival; + sign = -1; + } + else { + abs_ival = (unsigned long)ival; + } + + /* Fast path for single-digit ints */ + if (!(abs_ival >> PyLong_SHIFT)) { + v = _PyLong_New(1); + if (v) { + Py_SIZE(v) = sign; + v->ob_digit[0] = Py_SAFE_DOWNCAST( + abs_ival, unsigned long, digit); + } + return (PyObject*)v; + } + +#if PyLong_SHIFT==15 + /* 2 digits */ + if (!(abs_ival >> 2*PyLong_SHIFT)) { + v = _PyLong_New(2); + if (v) { + Py_SIZE(v) = 2*sign; + v->ob_digit[0] = Py_SAFE_DOWNCAST( + abs_ival & PyLong_MASK, unsigned long, digit); + v->ob_digit[1] = Py_SAFE_DOWNCAST( + abs_ival >> PyLong_SHIFT, unsigned long, digit); + } + return (PyObject*)v; + } +#endif + + /* Larger numbers: loop to determine number of digits */ + t = abs_ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = ndigits*sign; + t = abs_ival; + while (t) { + *p++ = Py_SAFE_DOWNCAST( + t & PyLong_MASK, unsigned long, digit); + t >>= PyLong_SHIFT; + } + } + return (PyObject *)v; +} + +/* Create a new long int object from a C unsigned long int */ + +PyObject * +PyLong_FromUnsignedLong(unsigned long ival) +{ + PyLongObject *v; + unsigned long t; + int ndigits = 0; + + if (ival < PyLong_BASE) + return PyLong_FromLong(ival); + /* Count the number of Python digits. */ + t = (unsigned long)ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = ndigits; + while (ival) { + *p++ = (digit)(ival & PyLong_MASK); + ival >>= PyLong_SHIFT; + } + } + return (PyObject *)v; +} + +/* Create a new long int object from a C double */ + +PyObject * +PyLong_FromDouble(double dval) +{ + PyLongObject *v; + double frac; + int i, ndig, expo, neg; + neg = 0; + if (Py_IS_INFINITY(dval)) { + PyErr_SetString(PyExc_OverflowError, + "cannot convert float infinity to integer"); + return NULL; + } + if (Py_IS_NAN(dval)) { + PyErr_SetString(PyExc_ValueError, + "cannot convert float NaN to integer"); + return NULL; + } + if (dval < 0.0) { + neg = 1; + dval = -dval; + } + frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ + if (expo <= 0) + return PyLong_FromLong(0L); + ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ + v = _PyLong_New(ndig); + if (v == NULL) + return NULL; + frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); + for (i = ndig; --i >= 0; ) { + digit bits = (digit)frac; + v->ob_digit[i] = bits; + frac = frac - (double)bits; + frac = ldexp(frac, PyLong_SHIFT); + } + if (neg) + Py_SIZE(v) = -(Py_SIZE(v)); + return (PyObject *)v; +} + +/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define + * anything about what happens when a signed integer operation overflows, + * and some compilers think they're doing you a favor by being "clever" + * then. The bit pattern for the largest postive signed long is + * (unsigned long)LONG_MAX, and for the smallest negative signed long + * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN. + * However, some other compilers warn about applying unary minus to an + * unsigned operand. Hence the weird "0-". + */ +#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN) +#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN) + +/* Get a C long int from a long int object or any object that has an __int__ + method. + + On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of + the result. Otherwise *overflow is 0. + + For other errors (e.g., TypeError), return -1 and set an error condition. + In this case *overflow will be 0. +*/ + +long +PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) +{ + /* This version by Tim Peters */ + register PyLongObject *v; + unsigned long x, prev; + long res; + Py_ssize_t i; + int sign; + int do_decref = 0; /* if nb_int was called */ + + *overflow = 0; + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + + if (!PyLong_Check(vv)) { + PyNumberMethods *nb; + nb = vv->ob_type->tp_as_number; + if (nb == NULL || nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + return -1; + } + vv = (*nb->nb_int) (vv); + if (vv == NULL) + return -1; + do_decref = 1; + if (!PyLong_Check(vv)) { + Py_DECREF(vv); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return -1; + } + } + + res = -1; + v = (PyLongObject *)vv; + i = Py_SIZE(v); + + switch (i) { + case -1: + res = -(sdigit)v->ob_digit[0]; + break; + case 0: + res = 0; + break; + case 1: + res = v->ob_digit[0]; + break; + default: + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + *overflow = sign; + goto exit; + } + } + /* Haven't lost any bits, but casting to long requires extra + * care (see comment above). + */ + if (x <= (unsigned long)LONG_MAX) { + res = (long)x * sign; + } + else if (sign < 0 && x == PY_ABS_LONG_MIN) { + res = LONG_MIN; + } + else { + *overflow = sign; + /* res is already set to -1 */ + } + } + exit: + if (do_decref) { + Py_DECREF(vv); + } + return res; +} + +/* Get a C long int from a long int object or any object that has an __int__ + method. Return -1 and set an error if overflow occurs. */ + +long +PyLong_AsLong(PyObject *obj) +{ + int overflow; + long result = PyLong_AsLongAndOverflow(obj, &overflow); + if (overflow) { + /* XXX: could be cute and give a different + message for overflow == -1 */ + PyErr_SetString(PyExc_OverflowError, + "Python int too large to convert to C long"); + } + return result; +} + +/* Get a Py_ssize_t from a long int object. + Returns -1 and sets an error condition if overflow occurs. */ + +Py_ssize_t +PyLong_AsSsize_t(PyObject *vv) { + register PyLongObject *v; + size_t x, prev; + Py_ssize_t i; + int sign; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + if (!PyLong_Check(vv)) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return -1; + } + + v = (PyLongObject *)vv; + i = Py_SIZE(v); + switch (i) { + case -1: return -(sdigit)v->ob_digit[0]; + case 0: return 0; + case 1: return v->ob_digit[0]; + } + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) + goto overflow; + } + /* Haven't lost any bits, but casting to a signed type requires + * extra care (see comment above). + */ + if (x <= (size_t)PY_SSIZE_T_MAX) { + return (Py_ssize_t)x * sign; + } + else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { + return PY_SSIZE_T_MIN; + } + /* else overflow */ + + overflow: + PyErr_SetString(PyExc_OverflowError, + "Python int too large to convert to C ssize_t"); + return -1; +} + +/* Get a C unsigned long int from a long int object. + Returns -1 and sets an error condition if overflow occurs. */ + +unsigned long +PyLong_AsUnsignedLong(PyObject *vv) +{ + register PyLongObject *v; + unsigned long x, prev; + Py_ssize_t i; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return (unsigned long)-1; + } + if (!PyLong_Check(vv)) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (unsigned long)-1; + } + + v = (PyLongObject *)vv; + i = Py_SIZE(v); + x = 0; + if (i < 0) { + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to unsigned int"); + return (unsigned long) -1; + } + switch (i) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + PyErr_SetString(PyExc_OverflowError, + "python int too large to convert " + "to C unsigned long"); + return (unsigned long) -1; + } + } + return x; +} + +/* Get a C size_t from a long int object. Returns (size_t)-1 and sets + an error condition if overflow occurs. */ + +size_t +PyLong_AsSize_t(PyObject *vv) +{ + register PyLongObject *v; + size_t x, prev; + Py_ssize_t i; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return (size_t) -1; + } + if (!PyLong_Check(vv)) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (size_t)-1; + } + + v = (PyLongObject *)vv; + i = Py_SIZE(v); + x = 0; + if (i < 0) { + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to size_t"); + return (size_t) -1; + } + switch (i) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + PyErr_SetString(PyExc_OverflowError, + "Python int too large to convert to C size_t"); + return (size_t) -1; + } + } + return x; +} + +/* Get a C unsigned long int from a long int object, ignoring the high bits. + Returns -1 and sets an error condition if an error occurs. */ + +static unsigned long +_PyLong_AsUnsignedLongMask(PyObject *vv) +{ + register PyLongObject *v; + unsigned long x; + Py_ssize_t i; + int sign; + + if (vv == NULL || !PyLong_Check(vv)) { + PyErr_BadInternalCall(); + return (unsigned long) -1; + } + v = (PyLongObject *)vv; + i = Py_SIZE(v); + switch (i) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -i; + } + while (--i >= 0) { + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + } + return x * sign; +} + +unsigned long +PyLong_AsUnsignedLongMask(register PyObject *op) +{ + PyNumberMethods *nb; + PyLongObject *lo; + unsigned long val; + + if (op && PyLong_Check(op)) + return _PyLong_AsUnsignedLongMask(op); + + if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || + nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (unsigned long)-1; + } + + lo = (PyLongObject*) (*nb->nb_int) (op); + if (lo == NULL) + return (unsigned long)-1; + if (PyLong_Check(lo)) { + val = _PyLong_AsUnsignedLongMask((PyObject *)lo); + Py_DECREF(lo); + if (PyErr_Occurred()) + return (unsigned long)-1; + return val; + } + else + { + Py_DECREF(lo); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return (unsigned long)-1; + } +} + +int +_PyLong_Sign(PyObject *vv) +{ + PyLongObject *v = (PyLongObject *)vv; + + assert(v != NULL); + assert(PyLong_Check(v)); + + return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1); +} + +size_t +_PyLong_NumBits(PyObject *vv) +{ + PyLongObject *v = (PyLongObject *)vv; + size_t result = 0; + Py_ssize_t ndigits; + + assert(v != NULL); + assert(PyLong_Check(v)); + ndigits = ABS(Py_SIZE(v)); + assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); + if (ndigits > 0) { + digit msd = v->ob_digit[ndigits - 1]; + + result = (ndigits - 1) * PyLong_SHIFT; + if (result / PyLong_SHIFT != (size_t)(ndigits - 1)) + goto Overflow; + do { + ++result; + if (result == 0) + goto Overflow; + msd >>= 1; + } while (msd); + } + return result; + + Overflow: + PyErr_SetString(PyExc_OverflowError, "int has too many bits " + "to express in a platform size_t"); + return (size_t)-1; +} + +PyObject * +_PyLong_FromByteArray(const unsigned char* bytes, size_t n, + int little_endian, int is_signed) +{ + const unsigned char* pstartbyte; /* LSB of bytes */ + int incr; /* direction to move pstartbyte */ + const unsigned char* pendbyte; /* MSB of bytes */ + size_t numsignificantbytes; /* number of bytes that matter */ + Py_ssize_t ndigits; /* number of Python long digits */ + PyLongObject* v; /* result */ + Py_ssize_t idigit = 0; /* next free index in v->ob_digit */ + + if (n == 0) + return PyLong_FromLong(0L); + + if (little_endian) { + pstartbyte = bytes; + pendbyte = bytes + n - 1; + incr = 1; + } + else { + pstartbyte = bytes + n - 1; + pendbyte = bytes; + incr = -1; + } + + if (is_signed) + is_signed = *pendbyte >= 0x80; + + /* Compute numsignificantbytes. This consists of finding the most + significant byte. Leading 0 bytes are insignificant if the number + is positive, and leading 0xff bytes if negative. */ + { + size_t i; + const unsigned char* p = pendbyte; + const int pincr = -incr; /* search MSB to LSB */ + const unsigned char insignficant = is_signed ? 0xff : 0x00; + + for (i = 0; i < n; ++i, p += pincr) { + if (*p != insignficant) + break; + } + numsignificantbytes = n - i; + /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so + actually has 2 significant bytes. OTOH, 0xff0001 == + -0x00ffff, so we wouldn't *need* to bump it there; but we + do for 0xffff = -0x0001. To be safe without bothering to + check every case, bump it regardless. */ + if (is_signed && numsignificantbytes < n) + ++numsignificantbytes; + } + + /* How many Python long digits do we need? We have + 8*numsignificantbytes bits, and each Python long digit has + PyLong_SHIFT bits, so it's the ceiling of the quotient. */ + /* catch overflow before it happens */ + if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) { + PyErr_SetString(PyExc_OverflowError, + "byte array too long to convert to int"); + return NULL; + } + ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; + v = _PyLong_New(ndigits); + if (v == NULL) + return NULL; + + /* Copy the bits over. The tricky parts are computing 2's-comp on + the fly for signed numbers, and dealing with the mismatch between + 8-bit bytes and (probably) 15-bit Python digits.*/ + { + size_t i; + twodigits carry = 1; /* for 2's-comp calculation */ + twodigits accum = 0; /* sliding register */ + unsigned int accumbits = 0; /* number of bits in accum */ + const unsigned char* p = pstartbyte; + + for (i = 0; i < numsignificantbytes; ++i, p += incr) { + twodigits thisbyte = *p; + /* Compute correction for 2's comp, if needed. */ + if (is_signed) { + thisbyte = (0xff ^ thisbyte) + carry; + carry = thisbyte >> 8; + thisbyte &= 0xff; + } + /* Because we're going LSB to MSB, thisbyte is + more significant than what's already in accum, + so needs to be prepended to accum. */ + accum |= (twodigits)thisbyte << accumbits; + accumbits += 8; + if (accumbits >= PyLong_SHIFT) { + /* There's enough to fill a Python digit. */ + assert(idigit < ndigits); + v->ob_digit[idigit] = (digit)(accum & PyLong_MASK); + ++idigit; + accum >>= PyLong_SHIFT; + accumbits -= PyLong_SHIFT; + assert(accumbits < PyLong_SHIFT); + } + } + assert(accumbits < PyLong_SHIFT); + if (accumbits) { + assert(idigit < ndigits); + v->ob_digit[idigit] = (digit)accum; + ++idigit; + } + } + + Py_SIZE(v) = is_signed ? -idigit : idigit; + return (PyObject *)long_normalize(v); +} + +int +_PyLong_AsByteArray(PyLongObject* v, + unsigned char* bytes, size_t n, + int little_endian, int is_signed) +{ + Py_ssize_t i; /* index into v->ob_digit */ + Py_ssize_t ndigits; /* |v->ob_size| */ + twodigits accum; /* sliding register */ + unsigned int accumbits; /* # bits in accum */ + int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ + digit carry; /* for computing 2's-comp */ + size_t j; /* # bytes filled */ + unsigned char* p; /* pointer to next byte in bytes */ + int pincr; /* direction to move p */ + + assert(v != NULL && PyLong_Check(v)); + + if (Py_SIZE(v) < 0) { + ndigits = -(Py_SIZE(v)); + if (!is_signed) { + PyErr_SetString(PyExc_OverflowError, + "can't convert negative int to unsigned"); + return -1; + } + do_twos_comp = 1; + } + else { + ndigits = Py_SIZE(v); + do_twos_comp = 0; + } + + if (little_endian) { + p = bytes; + pincr = 1; + } + else { + p = bytes + n - 1; + pincr = -1; + } + + /* Copy over all the Python digits. + It's crucial that every Python digit except for the MSD contribute + exactly PyLong_SHIFT bits to the total, so first assert that the long is + normalized. */ + assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); + j = 0; + accum = 0; + accumbits = 0; + carry = do_twos_comp ? 1 : 0; + for (i = 0; i < ndigits; ++i) { + digit thisdigit = v->ob_digit[i]; + if (do_twos_comp) { + thisdigit = (thisdigit ^ PyLong_MASK) + carry; + carry = thisdigit >> PyLong_SHIFT; + thisdigit &= PyLong_MASK; + } + /* Because we're going LSB to MSB, thisdigit is more + significant than what's already in accum, so needs to be + prepended to accum. */ + accum |= (twodigits)thisdigit << accumbits; + + /* The most-significant digit may be (probably is) at least + partly empty. */ + if (i == ndigits - 1) { + /* Count # of sign bits -- they needn't be stored, + * although for signed conversion we need later to + * make sure at least one sign bit gets stored. */ + digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit; + while (s != 0) { + s >>= 1; + accumbits++; + } + } + else + accumbits += PyLong_SHIFT; + + /* Store as many bytes as possible. */ + while (accumbits >= 8) { + if (j >= n) + goto Overflow; + ++j; + *p = (unsigned char)(accum & 0xff); + p += pincr; + accumbits -= 8; + accum >>= 8; + } + } + + /* Store the straggler (if any). */ + assert(accumbits < 8); + assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */ + if (accumbits > 0) { + if (j >= n) + goto Overflow; + ++j; + if (do_twos_comp) { + /* Fill leading bits of the byte with sign bits + (appropriately pretending that the long had an + infinite supply of sign bits). */ + accum |= (~(twodigits)0) << accumbits; + } + *p = (unsigned char)(accum & 0xff); + p += pincr; + } + else if (j == n && n > 0 && is_signed) { + /* The main loop filled the byte array exactly, so the code + just above didn't get to ensure there's a sign bit, and the + loop below wouldn't add one either. Make sure a sign bit + exists. */ + unsigned char msb = *(p - pincr); + int sign_bit_set = msb >= 0x80; + assert(accumbits == 0); + if (sign_bit_set == do_twos_comp) + return 0; + else + goto Overflow; + } + + /* Fill remaining bytes with copies of the sign bit. */ + { + unsigned char signbyte = do_twos_comp ? 0xffU : 0U; + for ( ; j < n; ++j, p += pincr) + *p = signbyte; + } + + return 0; + + Overflow: + PyErr_SetString(PyExc_OverflowError, "int too big to convert"); + return -1; + +} + +/* Create a new long int object from a C pointer */ + +PyObject * +PyLong_FromVoidPtr(void *p) +{ +#ifndef HAVE_LONG_LONG +# error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long" +#endif +#if SIZEOF_LONG_LONG < SIZEOF_VOID_P +# error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" +#endif + /* special-case null pointer */ + if (!p) + return PyLong_FromLong(0); + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)(Py_uintptr_t)p); + +} + +/* Get a C pointer from a long int object. */ + +void * +PyLong_AsVoidPtr(PyObject *vv) +{ +#if SIZEOF_VOID_P <= SIZEOF_LONG + long x; + + if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) + x = PyLong_AsLong(vv); + else + x = PyLong_AsUnsignedLong(vv); +#else + +#ifndef HAVE_LONG_LONG +# error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long" +#endif +#if SIZEOF_LONG_LONG < SIZEOF_VOID_P +# error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" +#endif + PY_LONG_LONG x; + + if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) + x = PyLong_AsLongLong(vv); + else + x = PyLong_AsUnsignedLongLong(vv); + +#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ + + if (x == -1 && PyErr_Occurred()) + return NULL; + return (void *)x; +} + +#ifdef HAVE_LONG_LONG + +/* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later + * rewritten to use the newer PyLong_{As,From}ByteArray API. + */ + +#define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one +#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN) + +/* Create a new long int object from a C PY_LONG_LONG int. */ + +PyObject * +PyLong_FromLongLong(PY_LONG_LONG ival) +{ + PyLongObject *v; + unsigned PY_LONG_LONG abs_ival; + unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */ + int ndigits = 0; + int negative = 0; + + if (ival < 0) { + /* avoid signed overflow on negation; see comments + in PyLong_FromLong above. */ + abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1; + negative = 1; + } + else { + abs_ival = (unsigned PY_LONG_LONG)ival; + } + + /* Count the number of Python digits. + We used to pick 5 ("big enough for anything"), but that's a + waste of time and space given that 5*15 = 75 bits are rarely + needed. */ + t = abs_ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = negative ? -ndigits : ndigits; + t = abs_ival; + while (t) { + *p++ = (digit)(t & PyLong_MASK); + t >>= PyLong_SHIFT; + } + } + return (PyObject *)v; +} + +/* Create a new long int object from a C unsigned PY_LONG_LONG int. */ + +PyObject * +PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival) +{ + PyLongObject *v; + unsigned PY_LONG_LONG t; + int ndigits = 0; + + if (ival < PyLong_BASE) + return PyLong_FromLong((long)ival); + /* Count the number of Python digits. */ + t = (unsigned PY_LONG_LONG)ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = ndigits; + while (ival) { + *p++ = (digit)(ival & PyLong_MASK); + ival >>= PyLong_SHIFT; + } + } + return (PyObject *)v; +} + +/* Create a new long int object from a C Py_ssize_t. */ + +PyObject * +PyLong_FromSsize_t(Py_ssize_t ival) +{ + PyLongObject *v; + size_t abs_ival; + size_t t; /* unsigned so >> doesn't propagate sign bit */ + int ndigits = 0; + int negative = 0; + + CHECK_SMALL_INT(ival); + if (ival < 0) { + /* avoid signed overflow when ival = SIZE_T_MIN */ + abs_ival = (size_t)(-1-ival)+1; + negative = 1; + } + else { + abs_ival = (size_t)ival; + } + + /* Count the number of Python digits. */ + t = abs_ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = negative ? -ndigits : ndigits; + t = abs_ival; + while (t) { + *p++ = (digit)(t & PyLong_MASK); + t >>= PyLong_SHIFT; + } + } + return (PyObject *)v; +} + +/* Create a new long int object from a C size_t. */ + +PyObject * +PyLong_FromSize_t(size_t ival) +{ + PyLongObject *v; + size_t t; + int ndigits = 0; + + if (ival < PyLong_BASE) + return PyLong_FromLong((long)ival); + /* Count the number of Python digits. */ + t = ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = ndigits; + while (ival) { + *p++ = (digit)(ival & PyLong_MASK); + ival >>= PyLong_SHIFT; + } + } + return (PyObject *)v; +} + +/* Get a C long long int from a long int object or any object that has an + __int__ method. Return -1 and set an error if overflow occurs. */ + +PY_LONG_LONG +PyLong_AsLongLong(PyObject *vv) +{ + PyLongObject *v; + PY_LONG_LONG bytes; + int one = 1; + int res; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + if (!PyLong_Check(vv)) { + PyNumberMethods *nb; + PyObject *io; + if ((nb = vv->ob_type->tp_as_number) == NULL || + nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return -1; + } + io = (*nb->nb_int) (vv); + if (io == NULL) + return -1; + if (PyLong_Check(io)) { + bytes = PyLong_AsLongLong(io); + Py_DECREF(io); + return bytes; + } + Py_DECREF(io); + PyErr_SetString(PyExc_TypeError, "integer conversion failed"); + return -1; + } + + v = (PyLongObject*)vv; + switch(Py_SIZE(v)) { + case -1: return -(sdigit)v->ob_digit[0]; + case 0: return 0; + case 1: return v->ob_digit[0]; + } + res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, + SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); + + /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ + if (res < 0) + return (PY_LONG_LONG)-1; + else + return bytes; +} + +/* Get a C unsigned PY_LONG_LONG int from a long int object. + Return -1 and set an error if overflow occurs. */ + +unsigned PY_LONG_LONG +PyLong_AsUnsignedLongLong(PyObject *vv) +{ + PyLongObject *v; + unsigned PY_LONG_LONG bytes; + int one = 1; + int res; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return (unsigned PY_LONG_LONG)-1; + } + if (!PyLong_Check(vv)) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (unsigned PY_LONG_LONG)-1; + } + + v = (PyLongObject*)vv; + switch(Py_SIZE(v)) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + + res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, + SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); + + /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ + if (res < 0) + return (unsigned PY_LONG_LONG)res; + else + return bytes; +} + +/* Get a C unsigned long int from a long int object, ignoring the high bits. + Returns -1 and sets an error condition if an error occurs. */ + +static unsigned PY_LONG_LONG +_PyLong_AsUnsignedLongLongMask(PyObject *vv) +{ + register PyLongObject *v; + unsigned PY_LONG_LONG x; + Py_ssize_t i; + int sign; + + if (vv == NULL || !PyLong_Check(vv)) { + PyErr_BadInternalCall(); + return (unsigned long) -1; + } + v = (PyLongObject *)vv; + switch(Py_SIZE(v)) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + i = Py_SIZE(v); + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -i; + } + while (--i >= 0) { + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + } + return x * sign; +} + +unsigned PY_LONG_LONG +PyLong_AsUnsignedLongLongMask(register PyObject *op) +{ + PyNumberMethods *nb; + PyLongObject *lo; + unsigned PY_LONG_LONG val; + + if (op && PyLong_Check(op)) + return _PyLong_AsUnsignedLongLongMask(op); + + if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || + nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (unsigned PY_LONG_LONG)-1; + } + + lo = (PyLongObject*) (*nb->nb_int) (op); + if (lo == NULL) + return (unsigned PY_LONG_LONG)-1; + if (PyLong_Check(lo)) { + val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo); + Py_DECREF(lo); + if (PyErr_Occurred()) + return (unsigned PY_LONG_LONG)-1; + return val; + } + else + { + Py_DECREF(lo); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return (unsigned PY_LONG_LONG)-1; + } +} +#undef IS_LITTLE_ENDIAN + +/* Get a C long long int from a long int object or any object that has an + __int__ method. + + On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of + the result. Otherwise *overflow is 0. + + For other errors (e.g., TypeError), return -1 and set an error condition. + In this case *overflow will be 0. +*/ + +PY_LONG_LONG +PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow) +{ + /* This version by Tim Peters */ + register PyLongObject *v; + unsigned PY_LONG_LONG x, prev; + PY_LONG_LONG res; + Py_ssize_t i; + int sign; + int do_decref = 0; /* if nb_int was called */ + + *overflow = 0; + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + + if (!PyLong_Check(vv)) { + PyNumberMethods *nb; + nb = vv->ob_type->tp_as_number; + if (nb == NULL || nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + return -1; + } + vv = (*nb->nb_int) (vv); + if (vv == NULL) + return -1; + do_decref = 1; + if (!PyLong_Check(vv)) { + Py_DECREF(vv); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return -1; + } + } + + res = -1; + v = (PyLongObject *)vv; + i = Py_SIZE(v); + + switch (i) { + case -1: + res = -(sdigit)v->ob_digit[0]; + break; + case 0: + res = 0; + break; + case 1: + res = v->ob_digit[0]; + break; + default: + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) + v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + *overflow = sign; + goto exit; + } + } + /* Haven't lost any bits, but casting to long requires extra + * care (see comment above). + */ + if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) { + res = (PY_LONG_LONG)x * sign; + } + else if (sign < 0 && x == PY_ABS_LLONG_MIN) { + res = PY_LLONG_MIN; + } + else { + *overflow = sign; + /* res is already set to -1 */ + } + } + exit: + if (do_decref) { + Py_DECREF(vv); + } + return res; +} + +#endif /* HAVE_LONG_LONG */ + +#define CHECK_BINOP(v,w) \ + do { \ + if (!PyLong_Check(v) || !PyLong_Check(w)) \ + Py_RETURN_NOTIMPLEMENTED; \ + } while(0) + +/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d < + 2**k if d is nonzero, else 0. */ + +static const unsigned char BitLengthTable[32] = { + 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 +}; + +static int +bits_in_digit(digit d) +{ + int d_bits = 0; + while (d >= 32) { + d_bits += 6; + d >>= 6; + } + d_bits += (int)BitLengthTable[d]; + return d_bits; +} + +/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] + * is modified in place, by adding y to it. Carries are propagated as far as + * x[m-1], and the remaining carry (0 or 1) is returned. + */ +static digit +v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) +{ + Py_ssize_t i; + digit carry = 0; + + assert(m >= n); + for (i = 0; i < n; ++i) { + carry += x[i] + y[i]; + x[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + assert((carry & 1) == carry); + } + for (; carry && i < m; ++i) { + carry += x[i]; + x[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + assert((carry & 1) == carry); + } + return carry; +} + +/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] + * is modified in place, by subtracting y from it. Borrows are propagated as + * far as x[m-1], and the remaining borrow (0 or 1) is returned. + */ +static digit +v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) +{ + Py_ssize_t i; + digit borrow = 0; + + assert(m >= n); + for (i = 0; i < n; ++i) { + borrow = x[i] - y[i] - borrow; + x[i] = borrow & PyLong_MASK; + borrow >>= PyLong_SHIFT; + borrow &= 1; /* keep only 1 sign bit */ + } + for (; borrow && i < m; ++i) { + borrow = x[i] - borrow; + x[i] = borrow & PyLong_MASK; + borrow >>= PyLong_SHIFT; + borrow &= 1; + } + return borrow; +} + +/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put + * result in z[0:m], and return the d bits shifted out of the top. + */ +static digit +v_lshift(digit *z, digit *a, Py_ssize_t m, int d) +{ + Py_ssize_t i; + digit carry = 0; + + assert(0 <= d && d < PyLong_SHIFT); + for (i=0; i < m; i++) { + twodigits acc = (twodigits)a[i] << d | carry; + z[i] = (digit)acc & PyLong_MASK; + carry = (digit)(acc >> PyLong_SHIFT); + } + return carry; +} + +/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put + * result in z[0:m], and return the d bits shifted out of the bottom. + */ +static digit +v_rshift(digit *z, digit *a, Py_ssize_t m, int d) +{ + Py_ssize_t i; + digit carry = 0; + digit mask = ((digit)1 << d) - 1U; + + assert(0 <= d && d < PyLong_SHIFT); + for (i=m; i-- > 0;) { + twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i]; + carry = (digit)acc & mask; + z[i] = (digit)(acc >> d); + } + return carry; +} + +/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient + in pout, and returning the remainder. pin and pout point at the LSD. + It's OK for pin == pout on entry, which saves oodles of mallocs/frees in + _PyLong_Format, but that should be done with great care since longs are + immutable. */ + +static digit +inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) +{ + twodigits rem = 0; + + assert(n > 0 && n <= PyLong_MASK); + pin += size; + pout += size; + while (--size >= 0) { + digit hi; + rem = (rem << PyLong_SHIFT) | *--pin; + *--pout = hi = (digit)(rem / n); + rem -= (twodigits)hi * n; + } + return (digit)rem; +} + +/* Divide a long integer by a digit, returning both the quotient + (as function result) and the remainder (through *prem). + The sign of a is ignored; n should not be zero. */ + +static PyLongObject * +divrem1(PyLongObject *a, digit n, digit *prem) +{ + const Py_ssize_t size = ABS(Py_SIZE(a)); + PyLongObject *z; + + assert(n > 0 && n <= PyLong_MASK); + z = _PyLong_New(size); + if (z == NULL) + return NULL; + *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); + return long_normalize(z); +} + +/* Convert a long integer to a base 10 string. Returns a new non-shared + string. (Return value is non-shared so that callers can modify the + returned value if necessary.) */ + +static PyObject * +long_to_decimal_string(PyObject *aa) +{ + PyLongObject *scratch, *a; + PyObject *str; + Py_ssize_t size, strlen, size_a, i, j; + digit *pout, *pin, rem, tenpow; + unsigned char *p; + int negative; + + a = (PyLongObject *)aa; + if (a == NULL || !PyLong_Check(a)) { + PyErr_BadInternalCall(); + return NULL; + } + size_a = ABS(Py_SIZE(a)); + negative = Py_SIZE(a) < 0; + + /* quick and dirty upper bound for the number of digits + required to express a in base _PyLong_DECIMAL_BASE: + + #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) + + But log2(a) < size_a * PyLong_SHIFT, and + log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT + > 3 * _PyLong_DECIMAL_SHIFT + */ + if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) { + PyErr_SetString(PyExc_OverflowError, + "long is too large to format"); + return NULL; + } + /* the expression size_a * PyLong_SHIFT is now safe from overflow */ + size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT); + scratch = _PyLong_New(size); + if (scratch == NULL) + return NULL; + + /* convert array of base _PyLong_BASE digits in pin to an array of + base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, + Volume 2 (3rd edn), section 4.4, Method 1b). */ + pin = a->ob_digit; + pout = scratch->ob_digit; + size = 0; + for (i = size_a; --i >= 0; ) { + digit hi = pin[i]; + for (j = 0; j < size; j++) { + twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; + hi = (digit)(z / _PyLong_DECIMAL_BASE); + pout[j] = (digit)(z - (twodigits)hi * + _PyLong_DECIMAL_BASE); + } + while (hi) { + pout[size++] = hi % _PyLong_DECIMAL_BASE; + hi /= _PyLong_DECIMAL_BASE; + } + /* check for keyboard interrupt */ + SIGCHECK({ + Py_DECREF(scratch); + return NULL; + }); + } + /* pout should have at least one digit, so that the case when a = 0 + works correctly */ + if (size == 0) + pout[size++] = 0; + + /* calculate exact length of output string, and allocate */ + strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT; + tenpow = 10; + rem = pout[size-1]; + while (rem >= tenpow) { + tenpow *= 10; + strlen++; + } + str = PyUnicode_New(strlen, '9'); + if (str == NULL) { + Py_DECREF(scratch); + return NULL; + } + + /* fill the string right-to-left */ + assert(PyUnicode_KIND(str) == PyUnicode_1BYTE_KIND); + p = PyUnicode_1BYTE_DATA(str) + strlen; + *p = '\0'; + /* pout[0] through pout[size-2] contribute exactly + _PyLong_DECIMAL_SHIFT digits each */ + for (i=0; i < size - 1; i++) { + rem = pout[i]; + for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { + *--p = '0' + rem % 10; + rem /= 10; + } + } + /* pout[size-1]: always produce at least one decimal digit */ + rem = pout[i]; + do { + *--p = '0' + rem % 10; + rem /= 10; + } while (rem != 0); + + /* and sign */ + if (negative) + *--p = '-'; + + /* check we've counted correctly */ + assert(p == PyUnicode_1BYTE_DATA(str)); + Py_DECREF(scratch); + return (PyObject *)str; +} + +/* Convert a long int object to a string, using a given conversion base, + which should be one of 2, 8, 10 or 16. Return a string object. + If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'. */ + +PyObject * +_PyLong_Format(PyObject *aa, int base) +{ + register PyLongObject *a = (PyLongObject *)aa; + PyObject *v; + Py_ssize_t i, sz; + Py_ssize_t size_a; + char *p; + char sign = '\0'; + char *buffer; + int bits; + + assert(base == 2 || base == 8 || base == 10 || base == 16); + if (base == 10) + return long_to_decimal_string((PyObject *)a); + + if (a == NULL || !PyLong_Check(a)) { + PyErr_BadInternalCall(); + return NULL; + } + size_a = ABS(Py_SIZE(a)); + + /* Compute a rough upper bound for the length of the string */ + switch (base) { + case 16: + bits = 4; + break; + case 8: + bits = 3; + break; + case 2: + bits = 1; + break; + default: + assert(0); /* shouldn't ever get here */ + bits = 0; /* to silence gcc warning */ + } + /* compute length of output string: allow 2 characters for prefix and + 1 for possible '-' sign. */ + if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT / sizeof(Py_UCS4)) { + PyErr_SetString(PyExc_OverflowError, + "int is too large to format"); + return NULL; + } + /* now size_a * PyLong_SHIFT + 3 <= PY_SSIZE_T_MAX, so the RHS below + is safe from overflow */ + sz = 3 + (size_a * PyLong_SHIFT + (bits - 1)) / bits; + assert(sz >= 0); + buffer = PyMem_Malloc(sz); + if (buffer == NULL) { + PyErr_NoMemory(); + return NULL; + } + p = &buffer[sz]; + if (Py_SIZE(a) < 0) + sign = '-'; + + if (Py_SIZE(a) == 0) { + *--p = '0'; + } + else { + /* JRH: special case for power-of-2 bases */ + twodigits accum = 0; + int accumbits = 0; /* # of bits in accum */ + for (i = 0; i < size_a; ++i) { + accum |= (twodigits)a->ob_digit[i] << accumbits; + accumbits += PyLong_SHIFT; + assert(accumbits >= bits); + do { + char cdigit; + cdigit = (char)(accum & (base - 1)); + cdigit += (cdigit < 10) ? '0' : 'a'-10; + assert(p > buffer); + *--p = cdigit; + accumbits -= bits; + accum >>= bits; + } while (i < size_a-1 ? accumbits >= bits : accum > 0); + } + } + + if (base == 16) + *--p = 'x'; + else if (base == 8) + *--p = 'o'; + else /* (base == 2) */ + *--p = 'b'; + *--p = '0'; + if (sign) + *--p = sign; + v = PyUnicode_DecodeASCII(p, &buffer[sz] - p, NULL); + PyMem_Free(buffer); + return v; +} + +/* Table of digit values for 8-bit string -> integer conversion. + * '0' maps to 0, ..., '9' maps to 9. + * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35. + * All other indices map to 37. + * Note that when converting a base B string, a char c is a legitimate + * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B. + */ +unsigned char _PyLong_DigitValue[256] = { + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37, + 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, + 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, +}; + +/* *str points to the first digit in a string of base `base` digits. base + * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first + * non-digit (which may be *str!). A normalized long is returned. + * The point to this routine is that it takes time linear in the number of + * string characters. + */ +static PyLongObject * +long_from_binary_base(char **str, int base) +{ + char *p = *str; + char *start = p; + int bits_per_char; + Py_ssize_t n; + PyLongObject *z; + twodigits accum; + int bits_in_accum; + digit *pdigit; + + assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); + n = base; + for (bits_per_char = -1; n; ++bits_per_char) + n >>= 1; + /* n <- total # of bits needed, while setting p to end-of-string */ + while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base) + ++p; + *str = p; + /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */ + n = (p - start) * bits_per_char + PyLong_SHIFT - 1; + if (n / bits_per_char < p - start) { + PyErr_SetString(PyExc_ValueError, + "int string too large to convert"); + return NULL; + } + n = n / PyLong_SHIFT; + z = _PyLong_New(n); + if (z == NULL) + return NULL; + /* Read string from right, and fill in long from left; i.e., + * from least to most significant in both. + */ + accum = 0; + bits_in_accum = 0; + pdigit = z->ob_digit; + while (--p >= start) { + int k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)]; + assert(k >= 0 && k < base); + accum |= (twodigits)k << bits_in_accum; + bits_in_accum += bits_per_char; + if (bits_in_accum >= PyLong_SHIFT) { + *pdigit++ = (digit)(accum & PyLong_MASK); + assert(pdigit - z->ob_digit <= n); + accum >>= PyLong_SHIFT; + bits_in_accum -= PyLong_SHIFT; + assert(bits_in_accum < PyLong_SHIFT); + } + } + if (bits_in_accum) { + assert(bits_in_accum <= PyLong_SHIFT); + *pdigit++ = (digit)accum; + assert(pdigit - z->ob_digit <= n); + } + while (pdigit - z->ob_digit < n) + *pdigit++ = 0; + return long_normalize(z); +} + +PyObject * +PyLong_FromString(char *str, char **pend, int base) +{ + int sign = 1, error_if_nonzero = 0; + char *start, *orig_str = str; + PyLongObject *z = NULL; + PyObject *strobj; + Py_ssize_t slen; + + if ((base != 0 && base < 2) || base > 36) { + PyErr_SetString(PyExc_ValueError, + "int() arg 2 must be >= 2 and <= 36"); + return NULL; + } + while (*str != '\0' && isspace(Py_CHARMASK(*str))) + str++; + if (*str == '+') + ++str; + else if (*str == '-') { + ++str; + sign = -1; + } + if (base == 0) { + if (str[0] != '0') + base = 10; + else if (str[1] == 'x' || str[1] == 'X') + base = 16; + else if (str[1] == 'o' || str[1] == 'O') + base = 8; + else if (str[1] == 'b' || str[1] == 'B') + base = 2; + else { + /* "old" (C-style) octal literal, now invalid. + it might still be zero though */ + error_if_nonzero = 1; + base = 10; + } + } + if (str[0] == '0' && + ((base == 16 && (str[1] == 'x' || str[1] == 'X')) || + (base == 8 && (str[1] == 'o' || str[1] == 'O')) || + (base == 2 && (str[1] == 'b' || str[1] == 'B')))) + str += 2; + + start = str; + if ((base & (base - 1)) == 0) + z = long_from_binary_base(&str, base); + else { +/*** +Binary bases can be converted in time linear in the number of digits, because +Python's representation base is binary. Other bases (including decimal!) use +the simple quadratic-time algorithm below, complicated by some speed tricks. + +First some math: the largest integer that can be expressed in N base-B digits +is B**N-1. Consequently, if we have an N-digit input in base B, the worst- +case number of Python digits needed to hold it is the smallest integer n s.t. + + BASE**n-1 >= B**N-1 [or, adding 1 to both sides] + BASE**n >= B**N [taking logs to base BASE] + n >= log(B**N)/log(BASE) = N * log(B)/log(BASE) + +The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute +this quickly. A Python long with that much space is reserved near the start, +and the result is computed into it. + +The input string is actually treated as being in base base**i (i.e., i digits +are processed at a time), where two more static arrays hold: + + convwidth_base[base] = the largest integer i such that base**i <= BASE + convmultmax_base[base] = base ** convwidth_base[base] + +The first of these is the largest i such that i consecutive input digits +must fit in a single Python digit. The second is effectively the input +base we're really using. + +Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base +convmultmax_base[base], the result is "simply" + + (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1 + +where B = convmultmax_base[base]. + +Error analysis: as above, the number of Python digits `n` needed is worst- +case + + n >= N * log(B)/log(BASE) + +where `N` is the number of input digits in base `B`. This is computed via + + size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1; + +below. Two numeric concerns are how much space this can waste, and whether +the computed result can be too small. To be concrete, assume BASE = 2**15, +which is the default (and it's unlikely anyone changes that). + +Waste isn't a problem: provided the first input digit isn't 0, the difference +between the worst-case input with N digits and the smallest input with N +digits is about a factor of B, but B is small compared to BASE so at most +one allocated Python digit can remain unused on that count. If +N*log(B)/log(BASE) is mathematically an exact integer, then truncating that +and adding 1 returns a result 1 larger than necessary. However, that can't +happen: whenever B is a power of 2, long_from_binary_base() is called +instead, and it's impossible for B**i to be an integer power of 2**15 when +B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be +an exact integer when B is not a power of 2, since B**i has a prime factor +other than 2 in that case, but (2**15)**j's only prime factor is 2). + +The computed result can be too small if the true value of N*log(B)/log(BASE) +is a little bit larger than an exact integer, but due to roundoff errors (in +computing log(B), log(BASE), their quotient, and/or multiplying that by N) +yields a numeric result a little less than that integer. Unfortunately, "how +close can a transcendental function get to an integer over some range?" +questions are generally theoretically intractable. Computer analysis via +continued fractions is practical: expand log(B)/log(BASE) via continued +fractions, giving a sequence i/j of "the best" rational approximations. Then +j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that +we can get very close to being in trouble, but very rarely. For example, +76573 is a denominator in one of the continued-fraction approximations to +log(10)/log(2**15), and indeed: + + >>> log(10)/log(2**15)*76573 + 16958.000000654003 + +is very close to an integer. If we were working with IEEE single-precision, +rounding errors could kill us. Finding worst cases in IEEE double-precision +requires better-than-double-precision log() functions, and Tim didn't bother. +Instead the code checks to see whether the allocated space is enough as each +new Python digit is added, and copies the whole thing to a larger long if not. +This should happen extremely rarely, and in fact I don't have a test case +that triggers it(!). Instead the code was tested by artificially allocating +just 1 digit at the start, so that the copying code was exercised for every +digit beyond the first. +***/ + register twodigits c; /* current input character */ + Py_ssize_t size_z; + int i; + int convwidth; + twodigits convmultmax, convmult; + digit *pz, *pzstop; + char* scan; + + static double log_base_BASE[37] = {0.0e0,}; + static int convwidth_base[37] = {0,}; + static twodigits convmultmax_base[37] = {0,}; + + if (log_base_BASE[base] == 0.0) { + twodigits convmax = base; + int i = 1; + + log_base_BASE[base] = (log((double)base) / + log((double)PyLong_BASE)); + for (;;) { + twodigits next = convmax * base; + if (next > PyLong_BASE) + break; + convmax = next; + ++i; + } + convmultmax_base[base] = convmax; + assert(i > 0); + convwidth_base[base] = i; + } + + /* Find length of the string of numeric characters. */ + scan = str; + while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base) + ++scan; + + /* Create a long object that can contain the largest possible + * integer with this base and length. Note that there's no + * need to initialize z->ob_digit -- no slot is read up before + * being stored into. + */ + size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1; + /* Uncomment next line to test exceedingly rare copy code */ + /* size_z = 1; */ + assert(size_z > 0); + z = _PyLong_New(size_z); + if (z == NULL) + return NULL; + Py_SIZE(z) = 0; + + /* `convwidth` consecutive input digits are treated as a single + * digit in base `convmultmax`. + */ + convwidth = convwidth_base[base]; + convmultmax = convmultmax_base[base]; + + /* Work ;-) */ + while (str < scan) { + /* grab up to convwidth digits from the input string */ + c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; + for (i = 1; i < convwidth && str != scan; ++i, ++str) { + c = (twodigits)(c * base + + (int)_PyLong_DigitValue[Py_CHARMASK(*str)]); + assert(c < PyLong_BASE); + } + + convmult = convmultmax; + /* Calculate the shift only if we couldn't get + * convwidth digits. + */ + if (i != convwidth) { + convmult = base; + for ( ; i > 1; --i) + convmult *= base; + } + + /* Multiply z by convmult, and add c. */ + pz = z->ob_digit; + pzstop = pz + Py_SIZE(z); + for (; pz < pzstop; ++pz) { + c += (twodigits)*pz * convmult; + *pz = (digit)(c & PyLong_MASK); + c >>= PyLong_SHIFT; + } + /* carry off the current end? */ + if (c) { + assert(c < PyLong_BASE); + if (Py_SIZE(z) < size_z) { + *pz = (digit)c; + ++Py_SIZE(z); + } + else { + PyLongObject *tmp; + /* Extremely rare. Get more space. */ + assert(Py_SIZE(z) == size_z); + tmp = _PyLong_New(size_z + 1); + if (tmp == NULL) { + Py_DECREF(z); + return NULL; + } + memcpy(tmp->ob_digit, + z->ob_digit, + sizeof(digit) * size_z); + Py_DECREF(z); + z = tmp; + z->ob_digit[size_z] = (digit)c; + ++size_z; + } + } + } + } + if (z == NULL) + return NULL; + if (error_if_nonzero) { + /* reset the base to 0, else the exception message + doesn't make too much sense */ + base = 0; + if (Py_SIZE(z) != 0) + goto onError; + /* there might still be other problems, therefore base + remains zero here for the same reason */ + } + if (str == start) + goto onError; + if (sign < 0) + Py_SIZE(z) = -(Py_SIZE(z)); + while (*str && isspace(Py_CHARMASK(*str))) + str++; + if (*str != '\0') + goto onError; + if (pend) + *pend = str; + long_normalize(z); + return (PyObject *) maybe_small_long(z); + + onError: + Py_XDECREF(z); + slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; + strobj = PyUnicode_FromStringAndSize(orig_str, slen); + if (strobj == NULL) + return NULL; + PyErr_Format(PyExc_ValueError, + "invalid literal for int() with base %d: %R", + base, strobj); + Py_DECREF(strobj); + return NULL; +} + +PyObject * +PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) +{ + PyObject *v, *unicode = PyUnicode_FromUnicode(u, length); + if (unicode == NULL) + return NULL; + v = PyLong_FromUnicodeObject(unicode, base); + Py_DECREF(unicode); + return v; +} + +PyObject * +PyLong_FromUnicodeObject(PyObject *u, int base) +{ + PyObject *result; + PyObject *asciidig; + char *buffer, *end; + Py_ssize_t buflen; + + asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u); + if (asciidig == NULL) + return NULL; + buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen); + if (buffer == NULL) { + Py_DECREF(asciidig); + return NULL; + } + result = PyLong_FromString(buffer, &end, base); + if (result != NULL && end != buffer + buflen) { + PyErr_SetString(PyExc_ValueError, + "null byte in argument for int()"); + Py_DECREF(result); + result = NULL; + } + Py_DECREF(asciidig); + return result; +} + +/* forward */ +static PyLongObject *x_divrem + (PyLongObject *, PyLongObject *, PyLongObject **); +static PyObject *long_long(PyObject *v); + +/* Long division with remainder, top-level routine */ + +static int +long_divrem(PyLongObject *a, PyLongObject *b, + PyLongObject **pdiv, PyLongObject **prem) +{ + Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); + PyLongObject *z; + + if (size_b == 0) { + PyErr_SetString(PyExc_ZeroDivisionError, + "integer division or modulo by zero"); + return -1; + } + if (size_a < size_b || + (size_a == size_b && + a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { + /* |a| < |b|. */ + *pdiv = (PyLongObject*)PyLong_FromLong(0); + if (*pdiv == NULL) + return -1; + Py_INCREF(a); + *prem = (PyLongObject *) a; + return 0; + } + if (size_b == 1) { + digit rem = 0; + z = divrem1(a, b->ob_digit[0], &rem); + if (z == NULL) + return -1; + *prem = (PyLongObject *) PyLong_FromLong((long)rem); + if (*prem == NULL) { + Py_DECREF(z); + return -1; + } + } + else { + z = x_divrem(a, b, prem); + if (z == NULL) + return -1; + } + /* Set the signs. + The quotient z has the sign of a*b; + the remainder r has the sign of a, + so a = b*z + r. */ + if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) + NEGATE(z); + if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) + NEGATE(*prem); + *pdiv = maybe_small_long(z); + return 0; +} + +/* Unsigned long division with remainder -- the algorithm. The arguments v1 + and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */ + +static PyLongObject * +x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) +{ + PyLongObject *v, *w, *a; + Py_ssize_t i, k, size_v, size_w; + int d; + digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak; + twodigits vv; + sdigit zhi; + stwodigits z; + + /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd + edn.), section 4.3.1, Algorithm D], except that we don't explicitly + handle the special case when the initial estimate q for a quotient + digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and + that won't overflow a digit. */ + + /* allocate space; w will also be used to hold the final remainder */ + size_v = ABS(Py_SIZE(v1)); + size_w = ABS(Py_SIZE(w1)); + assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */ + v = _PyLong_New(size_v+1); + if (v == NULL) { + *prem = NULL; + return NULL; + } + w = _PyLong_New(size_w); + if (w == NULL) { + Py_DECREF(v); + *prem = NULL; + return NULL; + } + + /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. + shift v1 left by the same amount. Results go into w and v. */ + d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]); + carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d); + assert(carry == 0); + carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d); + if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) { + v->ob_digit[size_v] = carry; + size_v++; + } + + /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has + at most (and usually exactly) k = size_v - size_w digits. */ + k = size_v - size_w; + assert(k >= 0); + a = _PyLong_New(k); + if (a == NULL) { + Py_DECREF(w); + Py_DECREF(v); + *prem = NULL; + return NULL; + } + v0 = v->ob_digit; + w0 = w->ob_digit; + wm1 = w0[size_w-1]; + wm2 = w0[size_w-2]; + for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) { + /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving + single-digit quotient q, remainder in vk[0:size_w]. */ + + SIGCHECK({ + Py_DECREF(a); + Py_DECREF(w); + Py_DECREF(v); + *prem = NULL; + return NULL; + }); + + /* estimate quotient digit q; may overestimate by 1 (rare) */ + vtop = vk[size_w]; + assert(vtop <= wm1); + vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1]; + q = (digit)(vv / wm1); + r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */ + while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT) + | vk[size_w-2])) { + --q; + r += wm1; + if (r >= PyLong_BASE) + break; + } + assert(q <= PyLong_BASE); + + /* subtract q*w0[0:size_w] from vk[0:size_w+1] */ + zhi = 0; + for (i = 0; i < size_w; ++i) { + /* invariants: -PyLong_BASE <= -q <= zhi <= 0; + -PyLong_BASE * q <= z < PyLong_BASE */ + z = (sdigit)vk[i] + zhi - + (stwodigits)q * (stwodigits)w0[i]; + vk[i] = (digit)z & PyLong_MASK; + zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, + z, PyLong_SHIFT); + } + + /* add w back if q was too large (this branch taken rarely) */ + assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0); + if ((sdigit)vtop + zhi < 0) { + carry = 0; + for (i = 0; i < size_w; ++i) { + carry += vk[i] + w0[i]; + vk[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + --q; + } + + /* store quotient digit */ + assert(q < PyLong_BASE); + *--ak = q; + } + + /* unshift remainder; we reuse w to store the result */ + carry = v_rshift(w0, v0, size_w, d); + assert(carry==0); + Py_DECREF(v); + + *prem = long_normalize(w); + return long_normalize(a); +} + +/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <= + abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is + rounded to DBL_MANT_DIG significant bits using round-half-to-even. + If a == 0, return 0.0 and set *e = 0. If the resulting exponent + e is larger than PY_SSIZE_T_MAX, raise OverflowError and return + -1.0. */ + +/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */ +#if DBL_MANT_DIG == 53 +#define EXP2_DBL_MANT_DIG 9007199254740992.0 +#else +#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG)) +#endif + +double +_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e) +{ + Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size; + /* See below for why x_digits is always large enough. */ + digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT]; + double dx; + /* Correction term for round-half-to-even rounding. For a digit x, + "x + half_even_correction[x & 7]" gives x rounded to the nearest + multiple of 4, rounding ties to a multiple of 8. */ + static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1}; + + a_size = ABS(Py_SIZE(a)); + if (a_size == 0) { + /* Special case for 0: significand 0.0, exponent 0. */ + *e = 0; + return 0.0; + } + a_bits = bits_in_digit(a->ob_digit[a_size-1]); + /* The following is an overflow-free version of the check + "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */ + if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 && + (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 || + a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1)) + goto overflow; + a_bits = (a_size - 1) * PyLong_SHIFT + a_bits; + + /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size] + (shifting left if a_bits <= DBL_MANT_DIG + 2). + + Number of digits needed for result: write // for floor division. + Then if shifting left, we end up using + + 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT + + digits. If shifting right, we use + + a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT + + digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with + the inequalities + + m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT + m // PyLong_SHIFT - n // PyLong_SHIFT <= + 1 + (m - n - 1) // PyLong_SHIFT, + + valid for any integers m and n, we find that x_size satisfies + + x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT + + in both cases. + */ + if (a_bits <= DBL_MANT_DIG + 2) { + shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT; + shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT; + x_size = 0; + while (x_size < shift_digits) + x_digits[x_size++] = 0; + rem = v_lshift(x_digits + x_size, a->ob_digit, a_size, + (int)shift_bits); + x_size += a_size; + x_digits[x_size++] = rem; + } + else { + shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT; + shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT; + rem = v_rshift(x_digits, a->ob_digit + shift_digits, + a_size - shift_digits, (int)shift_bits); + x_size = a_size - shift_digits; + /* For correct rounding below, we need the least significant + bit of x to be 'sticky' for this shift: if any of the bits + shifted out was nonzero, we set the least significant bit + of x. */ + if (rem) + x_digits[0] |= 1; + else + while (shift_digits > 0) + if (a->ob_digit[--shift_digits]) { + x_digits[0] |= 1; + break; + } + } + assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits)); + + /* Round, and convert to double. */ + x_digits[0] += half_even_correction[x_digits[0] & 7]; + dx = x_digits[--x_size]; + while (x_size > 0) + dx = dx * PyLong_BASE + x_digits[--x_size]; + + /* Rescale; make correction if result is 1.0. */ + dx /= 4.0 * EXP2_DBL_MANT_DIG; + if (dx == 1.0) { + if (a_bits == PY_SSIZE_T_MAX) + goto overflow; + dx = 0.5; + a_bits += 1; + } + + *e = a_bits; + return Py_SIZE(a) < 0 ? -dx : dx; + + overflow: + /* exponent > PY_SSIZE_T_MAX */ + PyErr_SetString(PyExc_OverflowError, + "huge integer: number of bits overflows a Py_ssize_t"); + *e = 0; + return -1.0; +} + +/* Get a C double from a long int object. Rounds to the nearest double, + using the round-half-to-even rule in the case of a tie. */ + +double +PyLong_AsDouble(PyObject *v) +{ + Py_ssize_t exponent; + double x; + + if (v == NULL) { + PyErr_BadInternalCall(); + return -1.0; + } + if (!PyLong_Check(v)) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return -1.0; + } + x = _PyLong_Frexp((PyLongObject *)v, &exponent); + if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) { + PyErr_SetString(PyExc_OverflowError, + "long int too large to convert to float"); + return -1.0; + } + return ldexp(x, (int)exponent); +} + +/* Methods */ + +static void +long_dealloc(PyObject *v) +{ + Py_TYPE(v)->tp_free(v); +} + +static int +long_compare(PyLongObject *a, PyLongObject *b) +{ + Py_ssize_t sign; + + if (Py_SIZE(a) != Py_SIZE(b)) { + sign = Py_SIZE(a) - Py_SIZE(b); + } + else { + Py_ssize_t i = ABS(Py_SIZE(a)); + while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) + ; + if (i < 0) + sign = 0; + else { + sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i]; + if (Py_SIZE(a) < 0) + sign = -sign; + } + } + return sign < 0 ? -1 : sign > 0 ? 1 : 0; +} + +#define TEST_COND(cond) \ + ((cond) ? Py_True : Py_False) + +static PyObject * +long_richcompare(PyObject *self, PyObject *other, int op) +{ + int result; + PyObject *v; + CHECK_BINOP(self, other); + if (self == other) + result = 0; + else + result = long_compare((PyLongObject*)self, (PyLongObject*)other); + /* Convert the return value to a Boolean */ + switch (op) { + case Py_EQ: + v = TEST_COND(result == 0); + break; + case Py_NE: + v = TEST_COND(result != 0); + break; + case Py_LE: + v = TEST_COND(result <= 0); + break; + case Py_GE: + v = TEST_COND(result >= 0); + break; + case Py_LT: + v = TEST_COND(result == -1); + break; + case Py_GT: + v = TEST_COND(result == 1); + break; + default: + PyErr_BadArgument(); + return NULL; + } + Py_INCREF(v); + return v; +} + +static Py_hash_t +long_hash(PyLongObject *v) +{ + Py_uhash_t x; + Py_ssize_t i; + int sign; + + i = Py_SIZE(v); + switch(i) { + case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0]; + case 0: return 0; + case 1: return v->ob_digit[0]; + } + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + while (--i >= 0) { + /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we + want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo + _PyHASH_MODULUS. + + The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS + amounts to a rotation of the bits of x. To see this, write + + x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z + + where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top + PyLong_SHIFT bits of x (those that are shifted out of the + original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) & + _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT + bits of x, shifted up. Then since 2**_PyHASH_BITS is + congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is + congruent to y modulo _PyHASH_MODULUS. So + + x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS). + + The right-hand side is just the result of rotating the + _PyHASH_BITS bits of x left by PyLong_SHIFT places; since + not all _PyHASH_BITS bits of x are 1s, the same is true + after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is + the reduction of x*2**PyLong_SHIFT modulo + _PyHASH_MODULUS. */ + x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) | + (x >> (_PyHASH_BITS - PyLong_SHIFT)); + x += v->ob_digit[i]; + if (x >= _PyHASH_MODULUS) + x -= _PyHASH_MODULUS; + } + x = x * sign; + if (x == (Py_uhash_t)-1) + x = (Py_uhash_t)-2; + return (Py_hash_t)x; +} + + +/* Add the absolute values of two long integers. */ + +static PyLongObject * +x_add(PyLongObject *a, PyLongObject *b) +{ + Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); + PyLongObject *z; + Py_ssize_t i; + digit carry = 0; + + /* Ensure a is the larger of the two: */ + if (size_a < size_b) { + { PyLongObject *temp = a; a = b; b = temp; } + { Py_ssize_t size_temp = size_a; + size_a = size_b; + size_b = size_temp; } + } + z = _PyLong_New(size_a+1); + if (z == NULL) + return NULL; + for (i = 0; i < size_b; ++i) { + carry += a->ob_digit[i] + b->ob_digit[i]; + z->ob_digit[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + for (; i < size_a; ++i) { + carry += a->ob_digit[i]; + z->ob_digit[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + z->ob_digit[i] = carry; + return long_normalize(z); +} + +/* Subtract the absolute values of two integers. */ + +static PyLongObject * +x_sub(PyLongObject *a, PyLongObject *b) +{ + Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); + PyLongObject *z; + Py_ssize_t i; + int sign = 1; + digit borrow = 0; + + /* Ensure a is the larger of the two: */ + if (size_a < size_b) { + sign = -1; + { PyLongObject *temp = a; a = b; b = temp; } + { Py_ssize_t size_temp = size_a; + size_a = size_b; + size_b = size_temp; } + } + else if (size_a == size_b) { + /* Find highest digit where a and b differ: */ + i = size_a; + while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) + ; + if (i < 0) + return (PyLongObject *)PyLong_FromLong(0); + if (a->ob_digit[i] < b->ob_digit[i]) { + sign = -1; + { PyLongObject *temp = a; a = b; b = temp; } + } + size_a = size_b = i+1; + } + z = _PyLong_New(size_a); + if (z == NULL) + return NULL; + for (i = 0; i < size_b; ++i) { + /* The following assumes unsigned arithmetic + works module 2**N for some N>PyLong_SHIFT. */ + borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; + z->ob_digit[i] = borrow & PyLong_MASK; + borrow >>= PyLong_SHIFT; + borrow &= 1; /* Keep only one sign bit */ + } + for (; i < size_a; ++i) { + borrow = a->ob_digit[i] - borrow; + z->ob_digit[i] = borrow & PyLong_MASK; + borrow >>= PyLong_SHIFT; + borrow &= 1; /* Keep only one sign bit */ + } + assert(borrow == 0); + if (sign < 0) + NEGATE(z); + return long_normalize(z); +} + +static PyObject * +long_add(PyLongObject *a, PyLongObject *b) +{ + PyLongObject *z; + + CHECK_BINOP(a, b); + + if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { + PyObject *result = PyLong_FromLong(MEDIUM_VALUE(a) + + MEDIUM_VALUE(b)); + return result; + } + if (Py_SIZE(a) < 0) { + if (Py_SIZE(b) < 0) { + z = x_add(a, b); + if (z != NULL && Py_SIZE(z) != 0) + Py_SIZE(z) = -(Py_SIZE(z)); + } + else + z = x_sub(b, a); + } + else { + if (Py_SIZE(b) < 0) + z = x_sub(a, b); + else + z = x_add(a, b); + } + return (PyObject *)z; +} + +static PyObject * +long_sub(PyLongObject *a, PyLongObject *b) +{ + PyLongObject *z; + + CHECK_BINOP(a, b); + + if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { + PyObject* r; + r = PyLong_FromLong(MEDIUM_VALUE(a)-MEDIUM_VALUE(b)); + return r; + } + if (Py_SIZE(a) < 0) { + if (Py_SIZE(b) < 0) + z = x_sub(a, b); + else + z = x_add(a, b); + if (z != NULL && Py_SIZE(z) != 0) + Py_SIZE(z) = -(Py_SIZE(z)); + } + else { + if (Py_SIZE(b) < 0) + z = x_add(a, b); + else + z = x_sub(a, b); + } + return (PyObject *)z; +} + +/* Grade school multiplication, ignoring the signs. + * Returns the absolute value of the product, or NULL if error. + */ +static PyLongObject * +x_mul(PyLongObject *a, PyLongObject *b) +{ + PyLongObject *z; + Py_ssize_t size_a = ABS(Py_SIZE(a)); + Py_ssize_t size_b = ABS(Py_SIZE(b)); + Py_ssize_t i; + + z = _PyLong_New(size_a + size_b); + if (z == NULL) + return NULL; + + memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit)); + if (a == b) { + /* Efficient squaring per HAC, Algorithm 14.16: + * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf + * Gives slightly less than a 2x speedup when a == b, + * via exploiting that each entry in the multiplication + * pyramid appears twice (except for the size_a squares). + */ + for (i = 0; i < size_a; ++i) { + twodigits carry; + twodigits f = a->ob_digit[i]; + digit *pz = z->ob_digit + (i << 1); + digit *pa = a->ob_digit + i + 1; + digit *paend = a->ob_digit + size_a; + + SIGCHECK({ + Py_DECREF(z); + return NULL; + }); + + carry = *pz + f * f; + *pz++ = (digit)(carry & PyLong_MASK); + carry >>= PyLong_SHIFT; + assert(carry <= PyLong_MASK); + + /* Now f is added in twice in each column of the + * pyramid it appears. Same as adding f<<1 once. + */ + f <<= 1; + while (pa < paend) { + carry += *pz + *pa++ * f; + *pz++ = (digit)(carry & PyLong_MASK); + carry >>= PyLong_SHIFT; + assert(carry <= (PyLong_MASK << 1)); + } + if (carry) { + carry += *pz; + *pz++ = (digit)(carry & PyLong_MASK); + carry >>= PyLong_SHIFT; + } + if (carry) + *pz += (digit)(carry & PyLong_MASK); + assert((carry >> PyLong_SHIFT) == 0); + } + } + else { /* a is not the same as b -- gradeschool long mult */ + for (i = 0; i < size_a; ++i) { + twodigits carry = 0; + twodigits f = a->ob_digit[i]; + digit *pz = z->ob_digit + i; + digit *pb = b->ob_digit; + digit *pbend = b->ob_digit + size_b; + + SIGCHECK({ + Py_DECREF(z); + return NULL; + }); + + while (pb < pbend) { + carry += *pz + *pb++ * f; + *pz++ = (digit)(carry & PyLong_MASK); + carry >>= PyLong_SHIFT; + assert(carry <= PyLong_MASK); + } + if (carry) + *pz += (digit)(carry & PyLong_MASK); + assert((carry >> PyLong_SHIFT) == 0); + } + } + return long_normalize(z); +} + +/* A helper for Karatsuba multiplication (k_mul). + Takes a long "n" and an integer "size" representing the place to + split, and sets low and high such that abs(n) == (high << size) + low, + viewing the shift as being by digits. The sign bit is ignored, and + the return values are >= 0. + Returns 0 on success, -1 on failure. +*/ +static int +kmul_split(PyLongObject *n, + Py_ssize_t size, + PyLongObject **high, + PyLongObject **low) +{ + PyLongObject *hi, *lo; + Py_ssize_t size_lo, size_hi; + const Py_ssize_t size_n = ABS(Py_SIZE(n)); + + size_lo = MIN(size_n, size); + size_hi = size_n - size_lo; + + if ((hi = _PyLong_New(size_hi)) == NULL) + return -1; + if ((lo = _PyLong_New(size_lo)) == NULL) { + Py_DECREF(hi); + return -1; + } + + memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); + memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); + + *high = long_normalize(hi); + *low = long_normalize(lo); + return 0; +} + +static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); + +/* Karatsuba multiplication. Ignores the input signs, and returns the + * absolute value of the product (or NULL if error). + * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). + */ +static PyLongObject * +k_mul(PyLongObject *a, PyLongObject *b) +{ + Py_ssize_t asize = ABS(Py_SIZE(a)); + Py_ssize_t bsize = ABS(Py_SIZE(b)); + PyLongObject *ah = NULL; + PyLongObject *al = NULL; + PyLongObject *bh = NULL; + PyLongObject *bl = NULL; + PyLongObject *ret = NULL; + PyLongObject *t1, *t2, *t3; + Py_ssize_t shift; /* the number of digits we split off */ + Py_ssize_t i; + + /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl + * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl + * Then the original product is + * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl + * By picking X to be a power of 2, "*X" is just shifting, and it's + * been reduced to 3 multiplies on numbers half the size. + */ + + /* We want to split based on the larger number; fiddle so that b + * is largest. + */ + if (asize > bsize) { + t1 = a; + a = b; + b = t1; + + i = asize; + asize = bsize; + bsize = i; + } + + /* Use gradeschool math when either number is too small. */ + i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; + if (asize <= i) { + if (asize == 0) + return (PyLongObject *)PyLong_FromLong(0); + else + return x_mul(a, b); + } + + /* If a is small compared to b, splitting on b gives a degenerate + * case with ah==0, and Karatsuba may be (even much) less efficient + * than "grade school" then. However, we can still win, by viewing + * b as a string of "big digits", each of width a->ob_size. That + * leads to a sequence of balanced calls to k_mul. + */ + if (2 * asize <= bsize) + return k_lopsided_mul(a, b); + + /* Split a & b into hi & lo pieces. */ + shift = bsize >> 1; + if (kmul_split(a, shift, &ah, &al) < 0) goto fail; + assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */ + + if (a == b) { + bh = ah; + bl = al; + Py_INCREF(bh); + Py_INCREF(bl); + } + else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; + + /* The plan: + * 1. Allocate result space (asize + bsize digits: that's always + * enough). + * 2. Compute ah*bh, and copy into result at 2*shift. + * 3. Compute al*bl, and copy into result at 0. Note that this + * can't overlap with #2. + * 4. Subtract al*bl from the result, starting at shift. This may + * underflow (borrow out of the high digit), but we don't care: + * we're effectively doing unsigned arithmetic mod + * BASE**(sizea + sizeb), and so long as the *final* result fits, + * borrows and carries out of the high digit can be ignored. + * 5. Subtract ah*bh from the result, starting at shift. + * 6. Compute (ah+al)*(bh+bl), and add it into the result starting + * at shift. + */ + + /* 1. Allocate result space. */ + ret = _PyLong_New(asize + bsize); + if (ret == NULL) goto fail; +#ifdef Py_DEBUG + /* Fill with trash, to catch reference to uninitialized digits. */ + memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); +#endif + + /* 2. t1 <- ah*bh, and copy into high digits of result. */ + if ((t1 = k_mul(ah, bh)) == NULL) goto fail; + assert(Py_SIZE(t1) >= 0); + assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); + memcpy(ret->ob_digit + 2*shift, t1->ob_digit, + Py_SIZE(t1) * sizeof(digit)); + + /* Zero-out the digits higher than the ah*bh copy. */ + i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); + if (i) + memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, + i * sizeof(digit)); + + /* 3. t2 <- al*bl, and copy into the low digits. */ + if ((t2 = k_mul(al, bl)) == NULL) { + Py_DECREF(t1); + goto fail; + } + assert(Py_SIZE(t2) >= 0); + assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ + memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); + + /* Zero out remaining digits. */ + i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */ + if (i) + memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); + + /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first + * because it's fresher in cache. + */ + i = Py_SIZE(ret) - shift; /* # digits after shift */ + (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); + Py_DECREF(t2); + + (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); + Py_DECREF(t1); + + /* 6. t3 <- (ah+al)(bh+bl), and add into result. */ + if ((t1 = x_add(ah, al)) == NULL) goto fail; + Py_DECREF(ah); + Py_DECREF(al); + ah = al = NULL; + + if (a == b) { + t2 = t1; + Py_INCREF(t2); + } + else if ((t2 = x_add(bh, bl)) == NULL) { + Py_DECREF(t1); + goto fail; + } + Py_DECREF(bh); + Py_DECREF(bl); + bh = bl = NULL; + + t3 = k_mul(t1, t2); + Py_DECREF(t1); + Py_DECREF(t2); + if (t3 == NULL) goto fail; + assert(Py_SIZE(t3) >= 0); + + /* Add t3. It's not obvious why we can't run out of room here. + * See the (*) comment after this function. + */ + (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); + Py_DECREF(t3); + + return long_normalize(ret); + + fail: + Py_XDECREF(ret); + Py_XDECREF(ah); + Py_XDECREF(al); + Py_XDECREF(bh); + Py_XDECREF(bl); + return NULL; +} + +/* (*) Why adding t3 can't "run out of room" above. + +Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts +to start with: + +1. For any integer i, i = c(i/2) + f(i/2). In particular, + bsize = c(bsize/2) + f(bsize/2). +2. shift = f(bsize/2) +3. asize <= bsize +4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this + routine, so asize > bsize/2 >= f(bsize/2) in this routine. + +We allocated asize + bsize result digits, and add t3 into them at an offset +of shift. This leaves asize+bsize-shift allocated digit positions for t3 +to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = +asize + c(bsize/2) available digit positions. + +bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has +at most c(bsize/2) digits + 1 bit. + +If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) +digits, and al has at most f(bsize/2) digits in any case. So ah+al has at +most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. + +The product (ah+al)*(bh+bl) therefore has at most + + c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits + +and we have asize + c(bsize/2) available digit positions. We need to show +this is always enough. An instance of c(bsize/2) cancels out in both, so +the question reduces to whether asize digits is enough to hold +(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize, +then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4, +asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 +digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If +asize == bsize, then we're asking whether bsize digits is enough to hold +c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits +is enough to hold 2 bits. This is so if bsize >= 2, which holds because +bsize >= KARATSUBA_CUTOFF >= 2. + +Note that since there's always enough room for (ah+al)*(bh+bl), and that's +clearly >= each of ah*bh and al*bl, there's always enough room to subtract +ah*bh and al*bl too. +*/ + +/* b has at least twice the digits of a, and a is big enough that Karatsuba + * would pay off *if* the inputs had balanced sizes. View b as a sequence + * of slices, each with a->ob_size digits, and multiply the slices by a, + * one at a time. This gives k_mul balanced inputs to work with, and is + * also cache-friendly (we compute one double-width slice of the result + * at a time, then move on, never backtracking except for the helpful + * single-width slice overlap between successive partial sums). + */ +static PyLongObject * +k_lopsided_mul(PyLongObject *a, PyLongObject *b) +{ + const Py_ssize_t asize = ABS(Py_SIZE(a)); + Py_ssize_t bsize = ABS(Py_SIZE(b)); + Py_ssize_t nbdone; /* # of b digits already multiplied */ + PyLongObject *ret; + PyLongObject *bslice = NULL; + + assert(asize > KARATSUBA_CUTOFF); + assert(2 * asize <= bsize); + + /* Allocate result space, and zero it out. */ + ret = _PyLong_New(asize + bsize); + if (ret == NULL) + return NULL; + memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit)); + + /* Successive slices of b are copied into bslice. */ + bslice = _PyLong_New(asize); + if (bslice == NULL) + goto fail; + + nbdone = 0; + while (bsize > 0) { + PyLongObject *product; + const Py_ssize_t nbtouse = MIN(bsize, asize); + + /* Multiply the next slice of b by a. */ + memcpy(bslice->ob_digit, b->ob_digit + nbdone, + nbtouse * sizeof(digit)); + Py_SIZE(bslice) = nbtouse; + product = k_mul(a, bslice); + if (product == NULL) + goto fail; + + /* Add into result. */ + (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone, + product->ob_digit, Py_SIZE(product)); + Py_DECREF(product); + + bsize -= nbtouse; + nbdone += nbtouse; + } + + Py_DECREF(bslice); + return long_normalize(ret); + + fail: + Py_DECREF(ret); + Py_XDECREF(bslice); + return NULL; +} + +static PyObject * +long_mul(PyLongObject *a, PyLongObject *b) +{ + PyLongObject *z; + + CHECK_BINOP(a, b); + + /* fast path for single-digit multiplication */ + if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { + stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b); +#ifdef HAVE_LONG_LONG + return PyLong_FromLongLong((PY_LONG_LONG)v); +#else + /* if we don't have long long then we're almost certainly + using 15-bit digits, so v will fit in a long. In the + unlikely event that we're using 30-bit digits on a platform + without long long, a large v will just cause us to fall + through to the general multiplication code below. */ + if (v >= LONG_MIN && v <= LONG_MAX) + return PyLong_FromLong((long)v); +#endif + } + + z = k_mul(a, b); + /* Negate if exactly one of the inputs is negative. */ + if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) + NEGATE(z); + return (PyObject *)z; +} + +/* The / and % operators are now defined in terms of divmod(). + The expression a mod b has the value a - b*floor(a/b). + The long_divrem function gives the remainder after division of + |a| by |b|, with the sign of a. This is also expressed + as a - b*trunc(a/b), if trunc truncates towards zero. + Some examples: + a b a rem b a mod b + 13 10 3 3 + -13 10 -3 7 + 13 -10 3 -7 + -13 -10 -3 -3 + So, to get from rem to mod, we have to add b if a and b + have different signs. We then subtract one from the 'div' + part of the outcome to keep the invariant intact. */ + +/* Compute + * *pdiv, *pmod = divmod(v, w) + * NULL can be passed for pdiv or pmod, in which case that part of + * the result is simply thrown away. The caller owns a reference to + * each of these it requests (does not pass NULL for). + */ +static int +l_divmod(PyLongObject *v, PyLongObject *w, + PyLongObject **pdiv, PyLongObject **pmod) +{ + PyLongObject *div, *mod; + + if (long_divrem(v, w, &div, &mod) < 0) + return -1; + if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) || + (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) { + PyLongObject *temp; + PyLongObject *one; + temp = (PyLongObject *) long_add(mod, w); + Py_DECREF(mod); + mod = temp; + if (mod == NULL) { + Py_DECREF(div); + return -1; + } + one = (PyLongObject *) PyLong_FromLong(1L); + if (one == NULL || + (temp = (PyLongObject *) long_sub(div, one)) == NULL) { + Py_DECREF(mod); + Py_DECREF(div); + Py_XDECREF(one); + return -1; + } + Py_DECREF(one); + Py_DECREF(div); + div = temp; + } + if (pdiv != NULL) + *pdiv = div; + else + Py_DECREF(div); + + if (pmod != NULL) + *pmod = mod; + else + Py_DECREF(mod); + + return 0; +} + +static PyObject * +long_div(PyObject *a, PyObject *b) +{ + PyLongObject *div; + + CHECK_BINOP(a, b); + if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0) + div = NULL; + return (PyObject *)div; +} + +/* PyLong/PyLong -> float, with correctly rounded result. */ + +#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT) +#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT) + +static PyObject * +long_true_divide(PyObject *v, PyObject *w) +{ + PyLongObject *a, *b, *x; + Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits; + digit mask, low; + int inexact, negate, a_is_small, b_is_small; + double dx, result; + + CHECK_BINOP(v, w); + a = (PyLongObject *)v; + b = (PyLongObject *)w; + + /* + Method in a nutshell: + + 0. reduce to case a, b > 0; filter out obvious underflow/overflow + 1. choose a suitable integer 'shift' + 2. use integer arithmetic to compute x = floor(2**-shift*a/b) + 3. adjust x for correct rounding + 4. convert x to a double dx with the same value + 5. return ldexp(dx, shift). + + In more detail: + + 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b + returns either 0.0 or -0.0, depending on the sign of b. For a and + b both nonzero, ignore signs of a and b, and add the sign back in + at the end. Now write a_bits and b_bits for the bit lengths of a + and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise + for b). Then + + 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1). + + So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and + so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP - + DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of + the way, we can assume that + + DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP. + + 1. The integer 'shift' is chosen so that x has the right number of + bits for a double, plus two or three extra bits that will be used + in the rounding decisions. Writing a_bits and b_bits for the + number of significant bits in a and b respectively, a + straightforward formula for shift is: + + shift = a_bits - b_bits - DBL_MANT_DIG - 2 + + This is fine in the usual case, but if a/b is smaller than the + smallest normal float then it can lead to double rounding on an + IEEE 754 platform, giving incorrectly rounded results. So we + adjust the formula slightly. The actual formula used is: + + shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2 + + 2. The quantity x is computed by first shifting a (left -shift bits + if shift <= 0, right shift bits if shift > 0) and then dividing by + b. For both the shift and the division, we keep track of whether + the result is inexact, in a flag 'inexact'; this information is + needed at the rounding stage. + + With the choice of shift above, together with our assumption that + a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows + that x >= 1. + + 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace + this with an exactly representable float of the form + + round(x/2**extra_bits) * 2**(extra_bits+shift). + + For float representability, we need x/2**extra_bits < + 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP - + DBL_MANT_DIG. This translates to the condition: + + extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG + + To round, we just modify the bottom digit of x in-place; this can + end up giving a digit with value > PyLONG_MASK, but that's not a + problem since digits can hold values up to 2*PyLONG_MASK+1. + + With the original choices for shift above, extra_bits will always + be 2 or 3. Then rounding under the round-half-to-even rule, we + round up iff the most significant of the extra bits is 1, and + either: (a) the computation of x in step 2 had an inexact result, + or (b) at least one other of the extra bits is 1, or (c) the least + significant bit of x (above those to be rounded) is 1. + + 4. Conversion to a double is straightforward; all floating-point + operations involved in the conversion are exact, so there's no + danger of rounding errors. + + 5. Use ldexp(x, shift) to compute x*2**shift, the final result. + The result will always be exactly representable as a double, except + in the case that it overflows. To avoid dependence on the exact + behaviour of ldexp on overflow, we check for overflow before + applying ldexp. The result of ldexp is adjusted for sign before + returning. + */ + + /* Reduce to case where a and b are both positive. */ + a_size = ABS(Py_SIZE(a)); + b_size = ABS(Py_SIZE(b)); + negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0); + if (b_size == 0) { + PyErr_SetString(PyExc_ZeroDivisionError, + "division by zero"); + goto error; + } + if (a_size == 0) + goto underflow_or_zero; + + /* Fast path for a and b small (exactly representable in a double). + Relies on floating-point division being correctly rounded; results + may be subject to double rounding on x86 machines that operate with + the x87 FPU set to 64-bit precision. */ + a_is_small = a_size <= MANT_DIG_DIGITS || + (a_size == MANT_DIG_DIGITS+1 && + a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); + b_is_small = b_size <= MANT_DIG_DIGITS || + (b_size == MANT_DIG_DIGITS+1 && + b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); + if (a_is_small && b_is_small) { + double da, db; + da = a->ob_digit[--a_size]; + while (a_size > 0) + da = da * PyLong_BASE + a->ob_digit[--a_size]; + db = b->ob_digit[--b_size]; + while (b_size > 0) + db = db * PyLong_BASE + b->ob_digit[--b_size]; + result = da / db; + goto success; + } + + /* Catch obvious cases of underflow and overflow */ + diff = a_size - b_size; + if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1) + /* Extreme overflow */ + goto overflow; + else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT) + /* Extreme underflow */ + goto underflow_or_zero; + /* Next line is now safe from overflowing a Py_ssize_t */ + diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) - + bits_in_digit(b->ob_digit[b_size - 1]); + /* Now diff = a_bits - b_bits. */ + if (diff > DBL_MAX_EXP) + goto overflow; + else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1) + goto underflow_or_zero; + + /* Choose value for shift; see comments for step 1 above. */ + shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2; + + inexact = 0; + + /* x = abs(a * 2**-shift) */ + if (shift <= 0) { + Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT; + digit rem; + /* x = a << -shift */ + if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) { + /* In practice, it's probably impossible to end up + here. Both a and b would have to be enormous, + using close to SIZE_T_MAX bytes of memory each. */ + PyErr_SetString(PyExc_OverflowError, + "intermediate overflow during division"); + goto error; + } + x = _PyLong_New(a_size + shift_digits + 1); + if (x == NULL) + goto error; + for (i = 0; i < shift_digits; i++) + x->ob_digit[i] = 0; + rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit, + a_size, -shift % PyLong_SHIFT); + x->ob_digit[a_size + shift_digits] = rem; + } + else { + Py_ssize_t shift_digits = shift / PyLong_SHIFT; + digit rem; + /* x = a >> shift */ + assert(a_size >= shift_digits); + x = _PyLong_New(a_size - shift_digits); + if (x == NULL) + goto error; + rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits, + a_size - shift_digits, shift % PyLong_SHIFT); + /* set inexact if any of the bits shifted out is nonzero */ + if (rem) + inexact = 1; + while (!inexact && shift_digits > 0) + if (a->ob_digit[--shift_digits]) + inexact = 1; + } + long_normalize(x); + x_size = Py_SIZE(x); + + /* x //= b. If the remainder is nonzero, set inexact. We own the only + reference to x, so it's safe to modify it in-place. */ + if (b_size == 1) { + digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size, + b->ob_digit[0]); + long_normalize(x); + if (rem) + inexact = 1; + } + else { + PyLongObject *div, *rem; + div = x_divrem(x, b, &rem); + Py_DECREF(x); + x = div; + if (x == NULL) + goto error; + if (Py_SIZE(rem)) + inexact = 1; + Py_DECREF(rem); + } + x_size = ABS(Py_SIZE(x)); + assert(x_size > 0); /* result of division is never zero */ + x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]); + + /* The number of extra bits that have to be rounded away. */ + extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG; + assert(extra_bits == 2 || extra_bits == 3); + + /* Round by directly modifying the low digit of x. */ + mask = (digit)1 << (extra_bits - 1); + low = x->ob_digit[0] | inexact; + if (low & mask && low & (3*mask-1)) + low += mask; + x->ob_digit[0] = low & ~(mask-1U); + + /* Convert x to a double dx; the conversion is exact. */ + dx = x->ob_digit[--x_size]; + while (x_size > 0) + dx = dx * PyLong_BASE + x->ob_digit[--x_size]; + Py_DECREF(x); + + /* Check whether ldexp result will overflow a double. */ + if (shift + x_bits >= DBL_MAX_EXP && + (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits))) + goto overflow; + result = ldexp(dx, (int)shift); + + success: + return PyFloat_FromDouble(negate ? -result : result); + + underflow_or_zero: + return PyFloat_FromDouble(negate ? -0.0 : 0.0); + + overflow: + PyErr_SetString(PyExc_OverflowError, + "integer division result too large for a float"); + error: + return NULL; +} + +static PyObject * +long_mod(PyObject *a, PyObject *b) +{ + PyLongObject *mod; + + CHECK_BINOP(a, b); + + if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0) + mod = NULL; + return (PyObject *)mod; +} + +static PyObject * +long_divmod(PyObject *a, PyObject *b) +{ + PyLongObject *div, *mod; + PyObject *z; + + CHECK_BINOP(a, b); + + if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) { + return NULL; + } + z = PyTuple_New(2); + if (z != NULL) { + PyTuple_SetItem(z, 0, (PyObject *) div); + PyTuple_SetItem(z, 1, (PyObject *) mod); + } + else { + Py_DECREF(div); + Py_DECREF(mod); + } + return z; +} + +/* pow(v, w, x) */ +static PyObject * +long_pow(PyObject *v, PyObject *w, PyObject *x) +{ + PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ + int negativeOutput = 0; /* if x<0 return negative output */ + + PyLongObject *z = NULL; /* accumulated result */ + Py_ssize_t i, j, k; /* counters */ + PyLongObject *temp = NULL; + + /* 5-ary values. If the exponent is large enough, table is + * precomputed so that table[i] == a**i % c for i in range(32). + */ + PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + + /* a, b, c = v, w, x */ + CHECK_BINOP(v, w); + a = (PyLongObject*)v; Py_INCREF(a); + b = (PyLongObject*)w; Py_INCREF(b); + if (PyLong_Check(x)) { + c = (PyLongObject *)x; + Py_INCREF(x); + } + else if (x == Py_None) + c = NULL; + else { + Py_DECREF(a); + Py_DECREF(b); + Py_RETURN_NOTIMPLEMENTED; + } + + if (Py_SIZE(b) < 0) { /* if exponent is negative */ + if (c) { + PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " + "cannot be negative when 3rd argument specified"); + goto Error; + } + else { + /* else return a float. This works because we know + that this calls float_pow() which converts its + arguments to double. */ + Py_DECREF(a); + Py_DECREF(b); + return PyFloat_Type.tp_as_number->nb_power(v, w, x); + } + } + + if (c) { + /* if modulus == 0: + raise ValueError() */ + if (Py_SIZE(c) == 0) { + PyErr_SetString(PyExc_ValueError, + "pow() 3rd argument cannot be 0"); + goto Error; + } + + /* if modulus < 0: + negativeOutput = True + modulus = -modulus */ + if (Py_SIZE(c) < 0) { + negativeOutput = 1; + temp = (PyLongObject *)_PyLong_Copy(c); + if (temp == NULL) + goto Error; + Py_DECREF(c); + c = temp; + temp = NULL; + NEGATE(c); + } + + /* if modulus == 1: + return 0 */ + if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) { + z = (PyLongObject *)PyLong_FromLong(0L); + goto Done; + } + + /* if base < 0: + base = base % modulus + Having the base positive just makes things easier. */ + if (Py_SIZE(a) < 0) { + if (l_divmod(a, c, NULL, &temp) < 0) + goto Error; + Py_DECREF(a); + a = temp; + temp = NULL; + } + } + + /* At this point a, b, and c are guaranteed non-negative UNLESS + c is NULL, in which case a may be negative. */ + + z = (PyLongObject *)PyLong_FromLong(1L); + if (z == NULL) + goto Error; + + /* Perform a modular reduction, X = X % c, but leave X alone if c + * is NULL. + */ +#define REDUCE(X) \ + do { \ + if (c != NULL) { \ + if (l_divmod(X, c, NULL, &temp) < 0) \ + goto Error; \ + Py_XDECREF(X); \ + X = temp; \ + temp = NULL; \ + } \ + } while(0) + + /* Multiply two values, then reduce the result: + result = X*Y % c. If c is NULL, skip the mod. */ +#define MULT(X, Y, result) \ + do { \ + temp = (PyLongObject *)long_mul(X, Y); \ + if (temp == NULL) \ + goto Error; \ + Py_XDECREF(result); \ + result = temp; \ + temp = NULL; \ + REDUCE(result); \ + } while(0) + + if (Py_SIZE(b) <= FIVEARY_CUTOFF) { + /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ + /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */ + for (i = Py_SIZE(b) - 1; i >= 0; --i) { + digit bi = b->ob_digit[i]; + + for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { + MULT(z, z, z); + if (bi & j) + MULT(z, a, z); + } + } + } + else { + /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */ + Py_INCREF(z); /* still holds 1L */ + table[0] = z; + for (i = 1; i < 32; ++i) + MULT(table[i-1], a, table[i]); + + for (i = Py_SIZE(b) - 1; i >= 0; --i) { + const digit bi = b->ob_digit[i]; + + for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { + const int index = (bi >> j) & 0x1f; + for (k = 0; k < 5; ++k) + MULT(z, z, z); + if (index) + MULT(z, table[index], z); + } + } + } + + if (negativeOutput && (Py_SIZE(z) != 0)) { + temp = (PyLongObject *)long_sub(z, c); + if (temp == NULL) + goto Error; + Py_DECREF(z); + z = temp; + temp = NULL; + } + goto Done; + + Error: + if (z != NULL) { + Py_DECREF(z); + z = NULL; + } + /* fall through */ + Done: + if (Py_SIZE(b) > FIVEARY_CUTOFF) { + for (i = 0; i < 32; ++i) + Py_XDECREF(table[i]); + } + Py_DECREF(a); + Py_DECREF(b); + Py_XDECREF(c); + Py_XDECREF(temp); + return (PyObject *)z; +} + +static PyObject * +long_invert(PyLongObject *v) +{ + /* Implement ~x as -(x+1) */ + PyLongObject *x; + PyLongObject *w; + if (ABS(Py_SIZE(v)) <=1) + return PyLong_FromLong(-(MEDIUM_VALUE(v)+1)); + w = (PyLongObject *)PyLong_FromLong(1L); + if (w == NULL) + return NULL; + x = (PyLongObject *) long_add(v, w); + Py_DECREF(w); + if (x == NULL) + return NULL; + Py_SIZE(x) = -(Py_SIZE(x)); + return (PyObject *)maybe_small_long(x); +} + +static PyObject * +long_neg(PyLongObject *v) +{ + PyLongObject *z; + if (ABS(Py_SIZE(v)) <= 1) + return PyLong_FromLong(-MEDIUM_VALUE(v)); + z = (PyLongObject *)_PyLong_Copy(v); + if (z != NULL) + Py_SIZE(z) = -(Py_SIZE(v)); + return (PyObject *)z; +} + +static PyObject * +long_abs(PyLongObject *v) +{ + if (Py_SIZE(v) < 0) + return long_neg(v); + else + return long_long((PyObject *)v); +} + +static int +long_bool(PyLongObject *v) +{ + return Py_SIZE(v) != 0; +} + +static PyObject * +long_rshift(PyLongObject *a, PyLongObject *b) +{ + PyLongObject *z = NULL; + Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j; + digit lomask, himask; + + CHECK_BINOP(a, b); + + if (Py_SIZE(a) < 0) { + /* Right shifting negative numbers is harder */ + PyLongObject *a1, *a2; + a1 = (PyLongObject *) long_invert(a); + if (a1 == NULL) + goto rshift_error; + a2 = (PyLongObject *) long_rshift(a1, b); + Py_DECREF(a1); + if (a2 == NULL) + goto rshift_error; + z = (PyLongObject *) long_invert(a2); + Py_DECREF(a2); + } + else { + shiftby = PyLong_AsSsize_t((PyObject *)b); + if (shiftby == -1L && PyErr_Occurred()) + goto rshift_error; + if (shiftby < 0) { + PyErr_SetString(PyExc_ValueError, + "negative shift count"); + goto rshift_error; + } + wordshift = shiftby / PyLong_SHIFT; + newsize = ABS(Py_SIZE(a)) - wordshift; + if (newsize <= 0) + return PyLong_FromLong(0); + loshift = shiftby % PyLong_SHIFT; + hishift = PyLong_SHIFT - loshift; + lomask = ((digit)1 << hishift) - 1; + himask = PyLong_MASK ^ lomask; + z = _PyLong_New(newsize); + if (z == NULL) + goto rshift_error; + if (Py_SIZE(a) < 0) + Py_SIZE(z) = -(Py_SIZE(z)); + for (i = 0, j = wordshift; i < newsize; i++, j++) { + z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; + if (i+1 < newsize) + z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask; + } + z = long_normalize(z); + } + rshift_error: + return (PyObject *) maybe_small_long(z); + +} + +static PyObject * +long_lshift(PyObject *v, PyObject *w) +{ + /* This version due to Tim Peters */ + PyLongObject *a = (PyLongObject*)v; + PyLongObject *b = (PyLongObject*)w; + PyLongObject *z = NULL; + Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j; + twodigits accum; + + CHECK_BINOP(a, b); + + shiftby = PyLong_AsSsize_t((PyObject *)b); + if (shiftby == -1L && PyErr_Occurred()) + goto lshift_error; + if (shiftby < 0) { + PyErr_SetString(PyExc_ValueError, "negative shift count"); + goto lshift_error; + } + /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ + wordshift = shiftby / PyLong_SHIFT; + remshift = shiftby - wordshift * PyLong_SHIFT; + + oldsize = ABS(Py_SIZE(a)); + newsize = oldsize + wordshift; + if (remshift) + ++newsize; + z = _PyLong_New(newsize); + if (z == NULL) + goto lshift_error; + if (Py_SIZE(a) < 0) + NEGATE(z); + for (i = 0; i < wordshift; i++) + z->ob_digit[i] = 0; + accum = 0; + for (i = wordshift, j = 0; j < oldsize; i++, j++) { + accum |= (twodigits)a->ob_digit[j] << remshift; + z->ob_digit[i] = (digit)(accum & PyLong_MASK); + accum >>= PyLong_SHIFT; + } + if (remshift) + z->ob_digit[newsize-1] = (digit)accum; + else + assert(!accum); + z = long_normalize(z); + lshift_error: + return (PyObject *) maybe_small_long(z); +} + +/* Compute two's complement of digit vector a[0:m], writing result to + z[0:m]. The digit vector a need not be normalized, but should not + be entirely zero. a and z may point to the same digit vector. */ + +static void +v_complement(digit *z, digit *a, Py_ssize_t m) +{ + Py_ssize_t i; + digit carry = 1; + for (i = 0; i < m; ++i) { + carry += a[i] ^ PyLong_MASK; + z[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + assert(carry == 0); +} + +/* Bitwise and/xor/or operations */ + +static PyObject * +long_bitwise(PyLongObject *a, + int op, /* '&', '|', '^' */ + PyLongObject *b) +{ + int nega, negb, negz; + Py_ssize_t size_a, size_b, size_z, i; + PyLongObject *z; + + /* Bitwise operations for negative numbers operate as though + on a two's complement representation. So convert arguments + from sign-magnitude to two's complement, and convert the + result back to sign-magnitude at the end. */ + + /* If a is negative, replace it by its two's complement. */ + size_a = ABS(Py_SIZE(a)); + nega = Py_SIZE(a) < 0; + if (nega) { + z = _PyLong_New(size_a); + if (z == NULL) + return NULL; + v_complement(z->ob_digit, a->ob_digit, size_a); + a = z; + } + else + /* Keep reference count consistent. */ + Py_INCREF(a); + + /* Same for b. */ + size_b = ABS(Py_SIZE(b)); + negb = Py_SIZE(b) < 0; + if (negb) { + z = _PyLong_New(size_b); + if (z == NULL) { + Py_DECREF(a); + return NULL; + } + v_complement(z->ob_digit, b->ob_digit, size_b); + b = z; + } + else + Py_INCREF(b); + + /* Swap a and b if necessary to ensure size_a >= size_b. */ + if (size_a < size_b) { + z = a; a = b; b = z; + size_z = size_a; size_a = size_b; size_b = size_z; + negz = nega; nega = negb; negb = negz; + } + + /* JRH: The original logic here was to allocate the result value (z) + as the longer of the two operands. However, there are some cases + where the result is guaranteed to be shorter than that: AND of two + positives, OR of two negatives: use the shorter number. AND with + mixed signs: use the positive number. OR with mixed signs: use the + negative number. + */ + switch (op) { + case '^': + negz = nega ^ negb; + size_z = size_a; + break; + case '&': + negz = nega & negb; + size_z = negb ? size_a : size_b; + break; + case '|': + negz = nega | negb; + size_z = negb ? size_b : size_a; + break; + default: + PyErr_BadArgument(); + return NULL; + } + + /* We allow an extra digit if z is negative, to make sure that + the final two's complement of z doesn't overflow. */ + z = _PyLong_New(size_z + negz); + if (z == NULL) { + Py_DECREF(a); + Py_DECREF(b); + return NULL; + } + + /* Compute digits for overlap of a and b. */ + switch(op) { + case '&': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i]; + break; + case '|': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; + break; + case '^': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i]; + break; + default: + PyErr_BadArgument(); + return NULL; + } + + /* Copy any remaining digits of a, inverting if necessary. */ + if (op == '^' && negb) + for (; i < size_z; ++i) + z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK; + else if (i < size_z) + memcpy(&z->ob_digit[i], &a->ob_digit[i], + (size_z-i)*sizeof(digit)); + + /* Complement result if negative. */ + if (negz) { + Py_SIZE(z) = -(Py_SIZE(z)); + z->ob_digit[size_z] = PyLong_MASK; + v_complement(z->ob_digit, z->ob_digit, size_z+1); + } + + Py_DECREF(a); + Py_DECREF(b); + return (PyObject *)maybe_small_long(long_normalize(z)); +} + +static PyObject * +long_and(PyObject *a, PyObject *b) +{ + PyObject *c; + CHECK_BINOP(a, b); + c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b); + return c; +} + +static PyObject * +long_xor(PyObject *a, PyObject *b) +{ + PyObject *c; + CHECK_BINOP(a, b); + c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b); + return c; +} + +static PyObject * +long_or(PyObject *a, PyObject *b) +{ + PyObject *c; + CHECK_BINOP(a, b); + c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b); + return c; +} + +static PyObject * +long_long(PyObject *v) +{ + if (PyLong_CheckExact(v)) + Py_INCREF(v); + else + v = _PyLong_Copy((PyLongObject *)v); + return v; +} + +static PyObject * +long_float(PyObject *v) +{ + double result; + result = PyLong_AsDouble(v); + if (result == -1.0 && PyErr_Occurred()) + return NULL; + return PyFloat_FromDouble(result); +} + +static PyObject * +long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); + +static PyObject * +long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + PyObject *obase = NULL, *x = NULL; + long base; + int overflow; + static char *kwlist[] = {"x", "base", 0}; + + if (type != &PyLong_Type) + return long_subtype_new(type, args, kwds); /* Wimp out */ + if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:int", kwlist, + &x, &obase)) + return NULL; + if (x == NULL) + return PyLong_FromLong(0L); + if (obase == NULL) + return PyNumber_Long(x); + + base = PyLong_AsLongAndOverflow(obase, &overflow); + if (base == -1 && PyErr_Occurred()) + return NULL; + if (overflow || (base != 0 && base < 2) || base > 36) { + PyErr_SetString(PyExc_ValueError, + "int() arg 2 must be >= 2 and <= 36"); + return NULL; + } + + if (PyUnicode_Check(x)) + return PyLong_FromUnicodeObject(x, (int)base); + else if (PyByteArray_Check(x) || PyBytes_Check(x)) { + /* Since PyLong_FromString doesn't have a length parameter, + * check here for possible NULs in the string. */ + char *string; + Py_ssize_t size = Py_SIZE(x); + if (PyByteArray_Check(x)) + string = PyByteArray_AS_STRING(x); + else + string = PyBytes_AS_STRING(x); + if (strlen(string) != (size_t)size) { + /* We only see this if there's a null byte in x, + x is a bytes or buffer, *and* a base is given. */ + PyErr_Format(PyExc_ValueError, + "invalid literal for int() with base %d: %R", + (int)base, x); + return NULL; + } + return PyLong_FromString(string, NULL, (int)base); + } + else { + PyErr_SetString(PyExc_TypeError, + "int() can't convert non-string with explicit base"); + return NULL; + } +} + +/* Wimpy, slow approach to tp_new calls for subtypes of long: + first create a regular long from whatever arguments we got, + then allocate a subtype instance and initialize it from + the regular long. The regular long is then thrown away. +*/ +static PyObject * +long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + PyLongObject *tmp, *newobj; + Py_ssize_t i, n; + + assert(PyType_IsSubtype(type, &PyLong_Type)); + tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); + if (tmp == NULL) + return NULL; + assert(PyLong_CheckExact(tmp)); + n = Py_SIZE(tmp); + if (n < 0) + n = -n; + newobj = (PyLongObject *)type->tp_alloc(type, n); + if (newobj == NULL) { + Py_DECREF(tmp); + return NULL; + } + assert(PyLong_Check(newobj)); + Py_SIZE(newobj) = Py_SIZE(tmp); + for (i = 0; i < n; i++) + newobj->ob_digit[i] = tmp->ob_digit[i]; + Py_DECREF(tmp); + return (PyObject *)newobj; +} + +static PyObject * +long_getnewargs(PyLongObject *v) +{ + return Py_BuildValue("(N)", _PyLong_Copy(v)); +} + +static PyObject * +long_get0(PyLongObject *v, void *context) { + return PyLong_FromLong(0L); +} + +static PyObject * +long_get1(PyLongObject *v, void *context) { + return PyLong_FromLong(1L); +} + +static PyObject * +long__format__(PyObject *self, PyObject *args) +{ + PyObject *format_spec; + + if (!PyArg_ParseTuple(args, "U:__format__", &format_spec)) + return NULL; + return _PyLong_FormatAdvanced(self, format_spec, 0, + PyUnicode_GET_LENGTH(format_spec)); +} + +/* Return a pair (q, r) such that a = b * q + r, and + abs(r) <= abs(b)/2, with equality possible only if q is even. + In other words, q == a / b, rounded to the nearest integer using + round-half-to-even. */ + +PyObject * +_PyLong_DivmodNear(PyObject *a, PyObject *b) +{ + PyLongObject *quo = NULL, *rem = NULL; + PyObject *one = NULL, *twice_rem, *result, *temp; + int cmp, quo_is_odd, quo_is_neg; + + /* Equivalent Python code: + + def divmod_near(a, b): + q, r = divmod(a, b) + # round up if either r / b > 0.5, or r / b == 0.5 and q is odd. + # The expression r / b > 0.5 is equivalent to 2 * r > b if b is + # positive, 2 * r < b if b negative. + greater_than_half = 2*r > b if b > 0 else 2*r < b + exactly_half = 2*r == b + if greater_than_half or exactly_half and q % 2 == 1: + q += 1 + r -= b + return q, r + + */ + if (!PyLong_Check(a) || !PyLong_Check(b)) { + PyErr_SetString(PyExc_TypeError, + "non-integer arguments in division"); + return NULL; + } + + /* Do a and b have different signs? If so, quotient is negative. */ + quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0); + + one = PyLong_FromLong(1L); + if (one == NULL) + return NULL; + + if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0) + goto error; + + /* compare twice the remainder with the divisor, to see + if we need to adjust the quotient and remainder */ + twice_rem = long_lshift((PyObject *)rem, one); + if (twice_rem == NULL) + goto error; + if (quo_is_neg) { + temp = long_neg((PyLongObject*)twice_rem); + Py_DECREF(twice_rem); + twice_rem = temp; + if (twice_rem == NULL) + goto error; + } + cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b); + Py_DECREF(twice_rem); + + quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0); + if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) { + /* fix up quotient */ + if (quo_is_neg) + temp = long_sub(quo, (PyLongObject *)one); + else + temp = long_add(quo, (PyLongObject *)one); + Py_DECREF(quo); + quo = (PyLongObject *)temp; + if (quo == NULL) + goto error; + /* and remainder */ + if (quo_is_neg) + temp = long_add(rem, (PyLongObject *)b); + else + temp = long_sub(rem, (PyLongObject *)b); + Py_DECREF(rem); + rem = (PyLongObject *)temp; + if (rem == NULL) + goto error; + } + + result = PyTuple_New(2); + if (result == NULL) + goto error; + + /* PyTuple_SET_ITEM steals references */ + PyTuple_SET_ITEM(result, 0, (PyObject *)quo); + PyTuple_SET_ITEM(result, 1, (PyObject *)rem); + Py_DECREF(one); + return result; + + error: + Py_XDECREF(quo); + Py_XDECREF(rem); + Py_XDECREF(one); + return NULL; +} + +static PyObject * +long_round(PyObject *self, PyObject *args) +{ + PyObject *o_ndigits=NULL, *temp, *result, *ndigits; + + /* To round an integer m to the nearest 10**n (n positive), we make use of + * the divmod_near operation, defined by: + * + * divmod_near(a, b) = (q, r) + * + * where q is the nearest integer to the quotient a / b (the + * nearest even integer in the case of a tie) and r == a - q * b. + * Hence q * b = a - r is the nearest multiple of b to a, + * preferring even multiples in the case of a tie. + * + * So the nearest multiple of 10**n to m is: + * + * m - divmod_near(m, 10**n)[1]. + */ + if (!PyArg_ParseTuple(args, "|O", &o_ndigits)) + return NULL; + if (o_ndigits == NULL) + return long_long(self); + + ndigits = PyNumber_Index(o_ndigits); + if (ndigits == NULL) + return NULL; + + /* if ndigits >= 0 then no rounding is necessary; return self unchanged */ + if (Py_SIZE(ndigits) >= 0) { + Py_DECREF(ndigits); + return long_long(self); + } + + /* result = self - divmod_near(self, 10 ** -ndigits)[1] */ + temp = long_neg((PyLongObject*)ndigits); + Py_DECREF(ndigits); + ndigits = temp; + if (ndigits == NULL) + return NULL; + + result = PyLong_FromLong(10L); + if (result == NULL) { + Py_DECREF(ndigits); + return NULL; + } + + temp = long_pow(result, ndigits, Py_None); + Py_DECREF(ndigits); + Py_DECREF(result); + result = temp; + if (result == NULL) + return NULL; + + temp = _PyLong_DivmodNear(self, result); + Py_DECREF(result); + result = temp; + if (result == NULL) + return NULL; + + temp = long_sub((PyLongObject *)self, + (PyLongObject *)PyTuple_GET_ITEM(result, 1)); + Py_DECREF(result); + result = temp; + + return result; +} + +static PyObject * +long_sizeof(PyLongObject *v) +{ + Py_ssize_t res; + + res = offsetof(PyLongObject, ob_digit) + ABS(Py_SIZE(v))*sizeof(digit); + return PyLong_FromSsize_t(res); +} + +static PyObject * +long_bit_length(PyLongObject *v) +{ + PyLongObject *result, *x, *y; + Py_ssize_t ndigits, msd_bits = 0; + digit msd; + + assert(v != NULL); + assert(PyLong_Check(v)); + + ndigits = ABS(Py_SIZE(v)); + if (ndigits == 0) + return PyLong_FromLong(0); + + msd = v->ob_digit[ndigits-1]; + while (msd >= 32) { + msd_bits += 6; + msd >>= 6; + } + msd_bits += (long)(BitLengthTable[msd]); + + if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT) + return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits); + + /* expression above may overflow; use Python integers instead */ + result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1); + if (result == NULL) + return NULL; + x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT); + if (x == NULL) + goto error; + y = (PyLongObject *)long_mul(result, x); + Py_DECREF(x); + if (y == NULL) + goto error; + Py_DECREF(result); + result = y; + + x = (PyLongObject *)PyLong_FromLong((long)msd_bits); + if (x == NULL) + goto error; + y = (PyLongObject *)long_add(result, x); + Py_DECREF(x); + if (y == NULL) + goto error; + Py_DECREF(result); + result = y; + + return (PyObject *)result; + + error: + Py_DECREF(result); + return NULL; +} + +PyDoc_STRVAR(long_bit_length_doc, +"int.bit_length() -> int\n\ +\n\ +Number of bits necessary to represent self in binary.\n\ +>>> bin(37)\n\ +'0b100101'\n\ +>>> (37).bit_length()\n\ +6"); + +#if 0 +static PyObject * +long_is_finite(PyObject *v) +{ + Py_RETURN_TRUE; +} +#endif + + +static PyObject * +long_to_bytes(PyLongObject *v, PyObject *args, PyObject *kwds) +{ + PyObject *byteorder_str; + PyObject *is_signed_obj = NULL; + Py_ssize_t length; + int little_endian; + int is_signed; + PyObject *bytes; + static char *kwlist[] = {"length", "byteorder", "signed", NULL}; + + if (!PyArg_ParseTupleAndKeywords(args, kwds, "nU|O:to_bytes", kwlist, + &length, &byteorder_str, + &is_signed_obj)) + return NULL; + + if (args != NULL && Py_SIZE(args) > 2) { + PyErr_SetString(PyExc_TypeError, + "'signed' is a keyword-only argument"); + return NULL; + } + + if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little")) + little_endian = 1; + else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big")) + little_endian = 0; + else { + PyErr_SetString(PyExc_ValueError, + "byteorder must be either 'little' or 'big'"); + return NULL; + } + + if (is_signed_obj != NULL) { + int cmp = PyObject_IsTrue(is_signed_obj); + if (cmp < 0) + return NULL; + is_signed = cmp ? 1 : 0; + } + else { + /* If the signed argument was omitted, use False as the + default. */ + is_signed = 0; + } + + if (length < 0) { + PyErr_SetString(PyExc_ValueError, + "length argument must be non-negative"); + return NULL; + } + + bytes = PyBytes_FromStringAndSize(NULL, length); + if (bytes == NULL) + return NULL; + + if (_PyLong_AsByteArray(v, (unsigned char *)PyBytes_AS_STRING(bytes), + length, little_endian, is_signed) < 0) { + Py_DECREF(bytes); + return NULL; + } + + return bytes; +} + +PyDoc_STRVAR(long_to_bytes_doc, +"int.to_bytes(length, byteorder, *, signed=False) -> bytes\n\ +\n\ +Return an array of bytes representing an integer.\n\ +\n\ +The integer is represented using length bytes. An OverflowError is\n\ +raised if the integer is not representable with the given number of\n\ +bytes.\n\ +\n\ +The byteorder argument determines the byte order used to represent the\n\ +integer. If byteorder is 'big', the most significant byte is at the\n\ +beginning of the byte array. If byteorder is 'little', the most\n\ +significant byte is at the end of the byte array. To request the native\n\ +byte order of the host system, use `sys.byteorder' as the byte order value.\n\ +\n\ +The signed keyword-only argument determines whether two's complement is\n\ +used to represent the integer. If signed is False and a negative integer\n\ +is given, an OverflowError is raised."); + +static PyObject * +long_from_bytes(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + PyObject *byteorder_str; + PyObject *is_signed_obj = NULL; + int little_endian; + int is_signed; + PyObject *obj; + PyObject *bytes; + PyObject *long_obj; + static char *kwlist[] = {"bytes", "byteorder", "signed", NULL}; + + if (!PyArg_ParseTupleAndKeywords(args, kwds, "OU|O:from_bytes", kwlist, + &obj, &byteorder_str, + &is_signed_obj)) + return NULL; + + if (args != NULL && Py_SIZE(args) > 2) { + PyErr_SetString(PyExc_TypeError, + "'signed' is a keyword-only argument"); + return NULL; + } + + if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little")) + little_endian = 1; + else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big")) + little_endian = 0; + else { + PyErr_SetString(PyExc_ValueError, + "byteorder must be either 'little' or 'big'"); + return NULL; + } + + if (is_signed_obj != NULL) { + int cmp = PyObject_IsTrue(is_signed_obj); + if (cmp < 0) + return NULL; + is_signed = cmp ? 1 : 0; + } + else { + /* If the signed argument was omitted, use False as the + default. */ + is_signed = 0; + } + + bytes = PyObject_Bytes(obj); + if (bytes == NULL) + return NULL; + + long_obj = _PyLong_FromByteArray( + (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes), + little_endian, is_signed); + Py_DECREF(bytes); + + /* If from_bytes() was used on subclass, allocate new subclass + * instance, initialize it with decoded long value and return it. + */ + if (type != &PyLong_Type && PyType_IsSubtype(type, &PyLong_Type)) { + PyLongObject *newobj; + int i; + Py_ssize_t n = ABS(Py_SIZE(long_obj)); + + newobj = (PyLongObject *)type->tp_alloc(type, n); + if (newobj == NULL) { + Py_DECREF(long_obj); + return NULL; + } + assert(PyLong_Check(newobj)); + Py_SIZE(newobj) = Py_SIZE(long_obj); + for (i = 0; i < n; i++) { + newobj->ob_digit[i] = + ((PyLongObject *)long_obj)->ob_digit[i]; + } + Py_DECREF(long_obj); + return (PyObject *)newobj; + } + + return long_obj; +} + +PyDoc_STRVAR(long_from_bytes_doc, +"int.from_bytes(bytes, byteorder, *, signed=False) -> int\n\ +\n\ +Return the integer represented by the given array of bytes.\n\ +\n\ +The bytes argument must either support the buffer protocol or be an\n\ +iterable object producing bytes. Bytes and bytearray are examples of\n\ +built-in objects that support the buffer protocol.\n\ +\n\ +The byteorder argument determines the byte order used to represent the\n\ +integer. If byteorder is 'big', the most significant byte is at the\n\ +beginning of the byte array. If byteorder is 'little', the most\n\ +significant byte is at the end of the byte array. To request the native\n\ +byte order of the host system, use `sys.byteorder' as the byte order value.\n\ +\n\ +The signed keyword-only argument indicates whether two's complement is\n\ +used to represent the integer."); + +static PyMethodDef long_methods[] = { + {"conjugate", (PyCFunction)long_long, METH_NOARGS, + "Returns self, the complex conjugate of any int."}, + {"bit_length", (PyCFunction)long_bit_length, METH_NOARGS, + long_bit_length_doc}, +#if 0 + {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS, + "Returns always True."}, +#endif + {"to_bytes", (PyCFunction)long_to_bytes, + METH_VARARGS|METH_KEYWORDS, long_to_bytes_doc}, + {"from_bytes", (PyCFunction)long_from_bytes, + METH_VARARGS|METH_KEYWORDS|METH_CLASS, long_from_bytes_doc}, + {"__trunc__", (PyCFunction)long_long, METH_NOARGS, + "Truncating an Integral returns itself."}, + {"__floor__", (PyCFunction)long_long, METH_NOARGS, + "Flooring an Integral returns itself."}, + {"__ceil__", (PyCFunction)long_long, METH_NOARGS, + "Ceiling of an Integral returns itself."}, + {"__round__", (PyCFunction)long_round, METH_VARARGS, + "Rounding an Integral returns itself.\n" + "Rounding with an ndigits argument also returns an integer."}, + {"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS}, + {"__format__", (PyCFunction)long__format__, METH_VARARGS}, + {"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS, + "Returns size in memory, in bytes"}, + {NULL, NULL} /* sentinel */ +}; + +static PyGetSetDef long_getset[] = { + {"real", + (getter)long_long, (setter)NULL, + "the real part of a complex number", + NULL}, + {"imag", + (getter)long_get0, (setter)NULL, + "the imaginary part of a complex number", + NULL}, + {"numerator", + (getter)long_long, (setter)NULL, + "the numerator of a rational number in lowest terms", + NULL}, + {"denominator", + (getter)long_get1, (setter)NULL, + "the denominator of a rational number in lowest terms", + NULL}, + {NULL} /* Sentinel */ +}; + +PyDoc_STRVAR(long_doc, +"int(x[, base]) -> integer\n\ +\n\ +Convert a string or number to an integer, if possible. A floating\n\ +point argument will be truncated towards zero (this does not include a\n\ +string representation of a floating point number!) When converting a\n\ +string, use the optional base. It is an error to supply a base when\n\ +converting a non-string."); + +static PyNumberMethods long_as_number = { + (binaryfunc)long_add, /*nb_add*/ + (binaryfunc)long_sub, /*nb_subtract*/ + (binaryfunc)long_mul, /*nb_multiply*/ + long_mod, /*nb_remainder*/ + long_divmod, /*nb_divmod*/ + long_pow, /*nb_power*/ + (unaryfunc)long_neg, /*nb_negative*/ + (unaryfunc)long_long, /*tp_positive*/ + (unaryfunc)long_abs, /*tp_absolute*/ + (inquiry)long_bool, /*tp_bool*/ + (unaryfunc)long_invert, /*nb_invert*/ + long_lshift, /*nb_lshift*/ + (binaryfunc)long_rshift, /*nb_rshift*/ + long_and, /*nb_and*/ + long_xor, /*nb_xor*/ + long_or, /*nb_or*/ + long_long, /*nb_int*/ + 0, /*nb_reserved*/ + long_float, /*nb_float*/ + 0, /* nb_inplace_add */ + 0, /* nb_inplace_subtract */ + 0, /* nb_inplace_multiply */ + 0, /* nb_inplace_remainder */ + 0, /* nb_inplace_power */ + 0, /* nb_inplace_lshift */ + 0, /* nb_inplace_rshift */ + 0, /* nb_inplace_and */ + 0, /* nb_inplace_xor */ + 0, /* nb_inplace_or */ + long_div, /* nb_floor_divide */ + long_true_divide, /* nb_true_divide */ + 0, /* nb_inplace_floor_divide */ + 0, /* nb_inplace_true_divide */ + long_long, /* nb_index */ +}; + +PyTypeObject PyLong_Type = { + PyVarObject_HEAD_INIT(&PyType_Type, 0) + "int", /* tp_name */ + offsetof(PyLongObject, ob_digit), /* tp_basicsize */ + sizeof(digit), /* tp_itemsize */ + long_dealloc, /* tp_dealloc */ + 0, /* tp_print */ + 0, /* tp_getattr */ + 0, /* tp_setattr */ + 0, /* tp_reserved */ + long_to_decimal_string, /* tp_repr */ + &long_as_number, /* tp_as_number */ + 0, /* tp_as_sequence */ + 0, /* tp_as_mapping */ + (hashfunc)long_hash, /* tp_hash */ + 0, /* tp_call */ + long_to_decimal_string, /* tp_str */ + PyObject_GenericGetAttr, /* tp_getattro */ + 0, /* tp_setattro */ + 0, /* tp_as_buffer */ + Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | + Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */ + long_doc, /* tp_doc */ + 0, /* tp_traverse */ + 0, /* tp_clear */ + long_richcompare, /* tp_richcompare */ + 0, /* tp_weaklistoffset */ + 0, /* tp_iter */ + 0, /* tp_iternext */ + long_methods, /* tp_methods */ + 0, /* tp_members */ + long_getset, /* tp_getset */ + 0, /* tp_base */ + 0, /* tp_dict */ + 0, /* tp_descr_get */ + 0, /* tp_descr_set */ + 0, /* tp_dictoffset */ + 0, /* tp_init */ + 0, /* tp_alloc */ + long_new, /* tp_new */ + PyObject_Del, /* tp_free */ +}; + +static PyTypeObject Int_InfoType; + +PyDoc_STRVAR(int_info__doc__, +"sys.int_info\n\ +\n\ +A struct sequence that holds information about Python's\n\ +internal representation of integers. The attributes are read only."); + +static PyStructSequence_Field int_info_fields[] = { + {"bits_per_digit", "size of a digit in bits"}, + {"sizeof_digit", "size in bytes of the C type used to represent a digit"}, + {NULL, NULL} +}; + +static PyStructSequence_Desc int_info_desc = { + "sys.int_info", /* name */ + int_info__doc__, /* doc */ + int_info_fields, /* fields */ + 2 /* number of fields */ +}; + +PyObject * +PyLong_GetInfo(void) +{ + PyObject* int_info; + int field = 0; + int_info = PyStructSequence_New(&Int_InfoType); + if (int_info == NULL) + return NULL; + PyStructSequence_SET_ITEM(int_info, field++, + PyLong_FromLong(PyLong_SHIFT)); + PyStructSequence_SET_ITEM(int_info, field++, + PyLong_FromLong(sizeof(digit))); + if (PyErr_Occurred()) { + Py_CLEAR(int_info); + return NULL; + } + return int_info; +} + +int +_PyLong_Init(void) +{ +#if NSMALLNEGINTS + NSMALLPOSINTS > 0 + int ival, size; + PyLongObject *v = small_ints; + + for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++, v++) { + size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1); + if (Py_TYPE(v) == &PyLong_Type) { + /* The element is already initialized, most likely + * the Python interpreter was initialized before. + */ + Py_ssize_t refcnt; + PyObject* op = (PyObject*)v; + + refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op); + _Py_NewReference(op); + /* _Py_NewReference sets the ref count to 1 but + * the ref count might be larger. Set the refcnt + * to the original refcnt + 1 */ + Py_REFCNT(op) = refcnt + 1; + assert(Py_SIZE(op) == size); + assert(v->ob_digit[0] == abs(ival)); + } + else { + PyObject_INIT(v, &PyLong_Type); + } + Py_SIZE(v) = size; + v->ob_digit[0] = abs(ival); + } +#endif + /* initialize int_info */ + if (Int_InfoType.tp_name == 0) + PyStructSequence_InitType(&Int_InfoType, &int_info_desc); + + return 1; +} + +void +PyLong_Fini(void) +{ + /* Integers are currently statically allocated. Py_DECREF is not + needed, but Python must forget about the reference or multiple + reinitializations will fail. */ +#if NSMALLNEGINTS + NSMALLPOSINTS > 0 + int i; + PyLongObject *v = small_ints; + for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) { + _Py_DEC_REFTOTAL; + _Py_ForgetReference((PyObject*)v); + } +#endif +}