diff cos/python/Include/object.h @ 27:7f74363f4c82

Added some files for the python port
author windel
date Tue, 27 Dec 2011 18:59:02 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cos/python/Include/object.h	Tue Dec 27 18:59:02 2011 +0100
@@ -0,0 +1,838 @@
+#ifndef Py_OBJECT_H
+#define Py_OBJECT_H
+
+/* Object and type object interface */
+
+/*
+Objects are structures allocated on the heap.  Special rules apply to
+the use of objects to ensure they are properly garbage-collected.
+Objects are never allocated statically or on the stack; they must be
+accessed through special macros and functions only.  (Type objects are
+exceptions to the first rule; the standard types are represented by
+statically initialized type objects, although work on type/class unification
+for Python 2.2 made it possible to have heap-allocated type objects too).
+
+An object has a 'reference count' that is increased or decreased when a
+pointer to the object is copied or deleted; when the reference count
+reaches zero there are no references to the object left and it can be
+removed from the heap.
+
+An object has a 'type' that determines what it represents and what kind
+of data it contains.  An object's type is fixed when it is created.
+Types themselves are represented as objects; an object contains a
+pointer to the corresponding type object.  The type itself has a type
+pointer pointing to the object representing the type 'type', which
+contains a pointer to itself!).
+
+Objects do not float around in memory; once allocated an object keeps
+the same size and address.  Objects that must hold variable-size data
+can contain pointers to variable-size parts of the object.  Not all
+objects of the same type have the same size; but the size cannot change
+after allocation.  (These restrictions are made so a reference to an
+object can be simply a pointer -- moving an object would require
+updating all the pointers, and changing an object's size would require
+moving it if there was another object right next to it.)
+
+Objects are always accessed through pointers of the type 'PyObject *'.
+The type 'PyObject' is a structure that only contains the reference count
+and the type pointer.  The actual memory allocated for an object
+contains other data that can only be accessed after casting the pointer
+to a pointer to a longer structure type.  This longer type must start
+with the reference count and type fields; the macro PyObject_HEAD should be
+used for this (to accommodate for future changes).  The implementation
+of a particular object type can cast the object pointer to the proper
+type and back.
+
+A standard interface exists for objects that contain an array of items
+whose size is determined when the object is allocated.
+*/
+
+/* PyObject_HEAD defines the initial segment of every PyObject. */
+#define PyObject_HEAD                   PyObject ob_base;
+
+#define PyObject_HEAD_INIT(type)   { 1, type },
+
+#define PyVarObject_HEAD_INIT(type, size)       \
+    { PyObject_HEAD_INIT(type) size },
+
+/* PyObject_VAR_HEAD defines the initial segment of all variable-size
+ * container objects.  These end with a declaration of an array with 1
+ * element, but enough space is malloc'ed so that the array actually
+ * has room for ob_size elements.  Note that ob_size is an element count,
+ * not necessarily a byte count.
+ */
+#define PyObject_VAR_HEAD      PyVarObject ob_base;
+#define Py_INVALID_SIZE (Py_ssize_t)-1
+
+/* Nothing is actually declared to be a PyObject, but every pointer to
+ * a Python object can be cast to a PyObject*.  This is inheritance built
+ * by hand.  Similarly every pointer to a variable-size Python object can,
+ * in addition, be cast to PyVarObject*.
+ */
+typedef struct _object {
+    int ob_refcnt;
+    struct _typeobject *ob_type;
+} PyObject;
+
+typedef struct {
+    PyObject ob_base;
+    int ob_size; /* Number of items in variable part */
+} PyVarObject;
+
+#define Py_REFCNT(ob)           (((PyObject*)(ob))->ob_refcnt)
+#define Py_TYPE(ob)             (((PyObject*)(ob))->ob_type)
+#define Py_SIZE(ob)             (((PyVarObject*)(ob))->ob_size)
+
+/*
+Type objects contain a string containing the type name (to help somewhat
+in debugging), the allocation parameters (see PyObject_New() and
+PyObject_NewVar()),
+and methods for accessing objects of the type.  Methods are optional, a
+nil pointer meaning that particular kind of access is not available for
+this type.  The Py_DECREF() macro uses the tp_dealloc method without
+checking for a nil pointer; it should always be implemented except if
+the implementation can guarantee that the reference count will never
+reach zero (e.g., for statically allocated type objects).
+
+NB: the methods for certain type groups are now contained in separate
+method blocks.
+*/
+
+typedef PyObject * (*unaryfunc)(PyObject *);
+typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
+typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
+typedef int (*inquiry)(PyObject *);
+typedef int (*lenfunc)(PyObject *);
+typedef PyObject *(*ssizeargfunc)(PyObject *, int);
+typedef PyObject *(*ssizessizeargfunc)(PyObject *, int, int);
+typedef int(*ssizeobjargproc)(PyObject *, int, PyObject *);
+typedef int(*ssizessizeobjargproc)(PyObject *, int, int, PyObject *);
+typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
+
+/* buffer interface */
+typedef struct bufferinfo {
+    void *buf;
+    PyObject *obj;        /* owned reference */
+    Py_ssize_t len;
+    Py_ssize_t itemsize;  /* This is Py_ssize_t so it can be
+                             pointed to by strides in simple case.*/
+    int readonly;
+    int ndim;
+    char *format;
+    Py_ssize_t *shape;
+    Py_ssize_t *strides;
+    Py_ssize_t *suboffsets;
+    Py_ssize_t smalltable[2];  /* static store for shape and strides of
+                                  mono-dimensional buffers. */
+    void *internal;
+} Py_buffer;
+
+typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
+typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
+
+    /* Flags for getting buffers */
+#define PyBUF_SIMPLE 0
+#define PyBUF_WRITABLE 0x0001
+/*  we used to include an E, backwards compatible alias  */
+#define PyBUF_WRITEABLE PyBUF_WRITABLE
+#define PyBUF_FORMAT 0x0004
+#define PyBUF_ND 0x0008
+#define PyBUF_STRIDES (0x0010 | PyBUF_ND)
+#define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
+#define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
+#define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
+#define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
+
+#define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
+#define PyBUF_CONTIG_RO (PyBUF_ND)
+
+#define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
+#define PyBUF_STRIDED_RO (PyBUF_STRIDES)
+
+#define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
+#define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)
+
+#define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
+#define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)
+
+
+#define PyBUF_READ  0x100
+#define PyBUF_WRITE 0x200
+
+/* End buffer interface */
+
+typedef int (*objobjproc)(PyObject *, PyObject *);
+typedef int (*visitproc)(PyObject *, void *);
+typedef int (*traverseproc)(PyObject *, visitproc, void *);
+
+typedef struct {
+    /* Number implementations must check *both*
+       arguments for proper type and implement the necessary conversions
+       in the slot functions themselves. */
+
+    binaryfunc nb_add;
+    binaryfunc nb_subtract;
+    binaryfunc nb_multiply;
+    binaryfunc nb_remainder;
+    binaryfunc nb_divmod;
+    ternaryfunc nb_power;
+    unaryfunc nb_negative;
+    unaryfunc nb_positive;
+    unaryfunc nb_absolute;
+    inquiry nb_bool;
+    unaryfunc nb_invert;
+    binaryfunc nb_lshift;
+    binaryfunc nb_rshift;
+    binaryfunc nb_and;
+    binaryfunc nb_xor;
+    binaryfunc nb_or;
+    unaryfunc nb_int;
+    void *nb_reserved;  /* the slot formerly known as nb_long */
+    unaryfunc nb_float;
+
+    binaryfunc nb_inplace_add;
+    binaryfunc nb_inplace_subtract;
+    binaryfunc nb_inplace_multiply;
+    binaryfunc nb_inplace_remainder;
+    ternaryfunc nb_inplace_power;
+    binaryfunc nb_inplace_lshift;
+    binaryfunc nb_inplace_rshift;
+    binaryfunc nb_inplace_and;
+    binaryfunc nb_inplace_xor;
+    binaryfunc nb_inplace_or;
+
+    binaryfunc nb_floor_divide;
+    binaryfunc nb_true_divide;
+    binaryfunc nb_inplace_floor_divide;
+    binaryfunc nb_inplace_true_divide;
+
+    unaryfunc nb_index;
+} PyNumberMethods;
+
+typedef struct {
+    lenfunc sq_length;
+    binaryfunc sq_concat;
+    ssizeargfunc sq_repeat;
+    ssizeargfunc sq_item;
+    void *was_sq_slice;
+    ssizeobjargproc sq_ass_item;
+    void *was_sq_ass_slice;
+    objobjproc sq_contains;
+
+    binaryfunc sq_inplace_concat;
+    ssizeargfunc sq_inplace_repeat;
+} PySequenceMethods;
+
+typedef struct {
+    lenfunc mp_length;
+    binaryfunc mp_subscript;
+    objobjargproc mp_ass_subscript;
+} PyMappingMethods;
+
+
+typedef struct {
+     getbufferproc bf_getbuffer;
+     releasebufferproc bf_releasebuffer;
+} PyBufferProcs;
+
+typedef void (*freefunc)(void *);
+typedef void (*destructor)(PyObject *);
+/* We can't provide a full compile-time check that limited-API
+   users won't implement tp_print. However, not defining printfunc
+   and making tp_print of a different function pointer type
+   should at least cause a warning in most cases. */
+typedef int (*printfunc)(PyObject *, FILE *, int);
+typedef PyObject *(*getattrfunc)(PyObject *, char *);
+typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
+typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
+typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
+typedef PyObject *(*reprfunc)(PyObject *);
+typedef Py_hash_t (*hashfunc)(PyObject *);
+typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
+typedef PyObject *(*getiterfunc) (PyObject *);
+typedef PyObject *(*iternextfunc) (PyObject *);
+typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
+typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
+typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
+typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
+typedef PyObject *(*allocfunc)(struct _typeobject *, int);
+
+typedef struct _typeobject PyTypeObject; /* opaque */
+typedef struct _typeobject {
+    PyObject_VAR_HEAD
+    const char *tp_name; /* For printing, in format "<module>.<name>" */
+    int tp_basicsize, tp_itemsize; /* For allocation */
+
+    /* Methods to implement standard operations */
+
+    destructor tp_dealloc;
+    printfunc tp_print;
+    getattrfunc tp_getattr;
+    setattrfunc tp_setattr;
+    void *tp_reserved; /* formerly known as tp_compare */
+    reprfunc tp_repr;
+
+    /* Method suites for standard classes */
+
+    PyNumberMethods *tp_as_number;
+    PySequenceMethods *tp_as_sequence;
+    PyMappingMethods *tp_as_mapping;
+
+    /* More standard operations (here for binary compatibility) */
+
+    hashfunc tp_hash;
+    ternaryfunc tp_call;
+    reprfunc tp_str;
+    getattrofunc tp_getattro;
+    setattrofunc tp_setattro;
+
+    /* Functions to access object as input/output buffer */
+    PyBufferProcs *tp_as_buffer;
+
+    /* Flags to define presence of optional/expanded features */
+    long tp_flags;
+
+    const char *tp_doc; /* Documentation string */
+
+    /* Assigned meaning in release 2.0 */
+    /* call function for all accessible objects */
+    traverseproc tp_traverse;
+
+    /* delete references to contained objects */
+    inquiry tp_clear;
+
+    /* Assigned meaning in release 2.1 */
+    /* rich comparisons */
+    richcmpfunc tp_richcompare;
+
+    /* weak reference enabler */
+    Py_ssize_t tp_weaklistoffset;
+
+    /* Iterators */
+    getiterfunc tp_iter;
+    iternextfunc tp_iternext;
+
+    /* Attribute descriptor and subclassing stuff */
+    struct PyMethodDef *tp_methods;
+    struct PyMemberDef *tp_members;
+    struct PyGetSetDef *tp_getset;
+    struct _typeobject *tp_base;
+    PyObject *tp_dict;
+    descrgetfunc tp_descr_get;
+    descrsetfunc tp_descr_set;
+    Py_ssize_t tp_dictoffset;
+    initproc tp_init;
+    allocfunc tp_alloc;
+    newfunc tp_new;
+    freefunc tp_free; /* Low-level free-memory routine */
+    inquiry tp_is_gc; /* For PyObject_IS_GC */
+    PyObject *tp_bases;
+    PyObject *tp_mro; /* method resolution order */
+    PyObject *tp_cache;
+    PyObject *tp_subclasses;
+    PyObject *tp_weaklist;
+    destructor tp_del;
+
+    /* Type attribute cache version tag. Added in version 2.6 */
+    unsigned int tp_version_tag;
+
+} PyTypeObject;
+
+typedef struct{
+    int slot;    /* slot id, see below */
+    void *pfunc; /* function pointer */
+} PyType_Slot;
+
+typedef struct{
+    const char* name;
+    int basicsize;
+    int itemsize;
+    int flags;
+    PyType_Slot *slots; /* terminated by slot==0. */
+} PyType_Spec;
+
+PyAPI_FUNC(PyObject*) PyType_FromSpec(PyType_Spec*);
+
+#ifndef Py_LIMITED_API
+/* The *real* layout of a type object when allocated on the heap */
+typedef struct _heaptypeobject {
+    /* Note: there's a dependency on the order of these members
+       in slotptr() in typeobject.c . */
+    PyTypeObject ht_type;
+    PyNumberMethods as_number;
+    PyMappingMethods as_mapping;
+    PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
+                                      so that the mapping wins when both
+                                      the mapping and the sequence define
+                                      a given operator (e.g. __getitem__).
+                                      see add_operators() in typeobject.c . */
+    PyBufferProcs as_buffer;
+    PyObject *ht_name, *ht_slots, *ht_qualname;
+    /* here are optional user slots, followed by the members. */
+} PyHeapTypeObject;
+
+/* access macro to the members which are floating "behind" the object */
+#define PyHeapType_GET_MEMBERS(etype) \
+    ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize))
+#endif
+
+/* Generic type check */
+PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
+#define PyObject_TypeCheck(ob, tp) \
+    (Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
+
+PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
+PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
+PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
+
+PyAPI_FUNC(long) PyType_GetFlags(PyTypeObject*);
+
+#define PyType_Check(op) \
+    PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS)
+#define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
+
+PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
+PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
+PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
+                                               PyObject *, PyObject *);
+#ifndef Py_LIMITED_API
+PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
+PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, char *, PyObject **);
+PyAPI_FUNC(PyTypeObject *) _PyType_CalculateMetaclass(PyTypeObject *, PyObject *);
+#endif
+PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
+PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
+
+/* Generic operations on objects */
+struct _Py_Identifier;
+#ifndef Py_LIMITED_API
+PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
+PyAPI_FUNC(void) _Py_BreakPoint(void);
+PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
+#endif
+PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
+PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
+PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *);
+PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *);
+PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
+PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
+PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
+PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
+PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
+PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
+PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
+PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
+PyAPI_FUNC(PyObject *) _PyObject_GetAttrId(PyObject *, struct _Py_Identifier *);
+PyAPI_FUNC(int) _PyObject_SetAttrId(PyObject *, struct _Py_Identifier *, PyObject *);
+PyAPI_FUNC(int) _PyObject_HasAttrId(PyObject *, struct _Py_Identifier *);
+#ifndef Py_LIMITED_API
+PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
+#endif
+PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
+#ifndef Py_LIMITED_API
+PyAPI_FUNC(PyObject *) _PyObject_NextNotImplemented(PyObject *);
+#endif
+PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
+PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
+                                              PyObject *, PyObject *);
+PyAPI_FUNC(Py_hash_t) PyObject_Hash(PyObject *);
+PyAPI_FUNC(Py_hash_t) PyObject_HashNotImplemented(PyObject *);
+PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
+PyAPI_FUNC(int) PyObject_Not(PyObject *);
+PyAPI_FUNC(int) PyCallable_Check(PyObject *);
+
+PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
+
+/* Same as PyObject_Generic{Get,Set}Attr, but passing the attributes
+   dict as the last parameter. */
+PyAPI_FUNC(PyObject *)
+_PyObject_GenericGetAttrWithDict(PyObject *, PyObject *, PyObject *);
+PyAPI_FUNC(int)
+_PyObject_GenericSetAttrWithDict(PyObject *, PyObject *,
+                                 PyObject *, PyObject *);
+
+
+/* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a
+   list of strings.  PyObject_Dir(NULL) is like builtins.dir(),
+   returning the names of the current locals.  In this case, if there are
+   no current locals, NULL is returned, and PyErr_Occurred() is false.
+*/
+PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
+
+
+/* Helpers for printing recursive container types */
+PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
+PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
+
+/* Helpers for hash functions */
+PyAPI_FUNC(Py_hash_t) _Py_HashDouble(double);
+PyAPI_FUNC(Py_hash_t) _Py_HashPointer(void*);
+PyAPI_FUNC(Py_hash_t) _Py_HashBytes(unsigned char*, Py_ssize_t);
+
+/* Helper for passing objects to printf and the like */
+#define PyObject_REPR(obj) _PyUnicode_AsString(PyObject_Repr(obj))
+
+/* Flag bits for printing: */
+#define Py_PRINT_RAW    1       /* No string quotes etc. */
+
+/*
+`Type flags (tp_flags)
+
+These flags are used to extend the type structure in a backwards-compatible
+fashion. Extensions can use the flags to indicate (and test) when a given
+type structure contains a new feature. The Python core will use these when
+introducing new functionality between major revisions (to avoid mid-version
+changes in the PYTHON_API_VERSION).
+
+Arbitration of the flag bit positions will need to be coordinated among
+all extension writers who publically release their extensions (this will
+be fewer than you might expect!)..
+
+Most flags were removed as of Python 3.0 to make room for new flags.  (Some
+flags are not for backwards compatibility but to indicate the presence of an
+optional feature; these flags remain of course.)
+
+Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
+
+Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
+given type object has a specified feature.
+*/
+
+/* Set if the type object is dynamically allocated */
+#define Py_TPFLAGS_HEAPTYPE (1L<<9)
+
+/* Set if the type allows subclassing */
+#define Py_TPFLAGS_BASETYPE (1L<<10)
+
+/* Set if the type is 'ready' -- fully initialized */
+#define Py_TPFLAGS_READY (1L<<12)
+
+/* Set while the type is being 'readied', to prevent recursive ready calls */
+#define Py_TPFLAGS_READYING (1L<<13)
+
+/* Objects support garbage collection (see objimp.h) */
+#define Py_TPFLAGS_HAVE_GC (1L<<14)
+
+/* These two bits are preserved for Stackless Python, next after this is 17 */
+#ifdef STACKLESS
+#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
+#else
+#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
+#endif
+
+/* Objects support type attribute cache */
+#define Py_TPFLAGS_HAVE_VERSION_TAG   (1L<<18)
+#define Py_TPFLAGS_VALID_VERSION_TAG  (1L<<19)
+
+/* Type is abstract and cannot be instantiated */
+#define Py_TPFLAGS_IS_ABSTRACT (1L<<20)
+
+/* These flags are used to determine if a type is a subclass. */
+#define Py_TPFLAGS_INT_SUBCLASS         (1L<<23)
+#define Py_TPFLAGS_LONG_SUBCLASS        (1L<<24)
+#define Py_TPFLAGS_LIST_SUBCLASS        (1L<<25)
+#define Py_TPFLAGS_TUPLE_SUBCLASS       (1L<<26)
+#define Py_TPFLAGS_BYTES_SUBCLASS       (1L<<27)
+#define Py_TPFLAGS_UNICODE_SUBCLASS     (1L<<28)
+#define Py_TPFLAGS_DICT_SUBCLASS        (1L<<29)
+#define Py_TPFLAGS_BASE_EXC_SUBCLASS    (1L<<30)
+#define Py_TPFLAGS_TYPE_SUBCLASS        (1L<<31)
+
+#define Py_TPFLAGS_DEFAULT  ( \
+                 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
+                 Py_TPFLAGS_HAVE_VERSION_TAG | \
+                0)
+
+#ifdef Py_LIMITED_API
+#define PyType_HasFeature(t,f)  ((PyType_GetFlags(t) & (f)) != 0)
+#else
+#define PyType_HasFeature(t,f)  (((t)->tp_flags & (f)) != 0)
+#endif
+#define PyType_FastSubclass(t,f)  PyType_HasFeature(t,f)
+
+
+/*
+The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
+reference counts.  Py_DECREF calls the object's deallocator function when
+the refcount falls to 0; for
+objects that don't contain references to other objects or heap memory
+this can be the standard function free().  Both macros can be used
+wherever a void expression is allowed.  The argument must not be a
+NULL pointer.  If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
+The macro _Py_NewReference(op) initialize reference counts to 1, and
+in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
+bookkeeping appropriate to the special build.
+
+We assume that the reference count field can never overflow; this can
+be proven when the size of the field is the same as the pointer size, so
+we ignore the possibility.  Provided a C int is at least 32 bits (which
+is implicitly assumed in many parts of this code), that's enough for
+about 2**31 references to an object.
+
+XXX The following became out of date in Python 2.2, but I'm not sure
+XXX what the full truth is now.  Certainly, heap-allocated type objects
+XXX can and should be deallocated.
+Type objects should never be deallocated; the type pointer in an object
+is not considered to be a reference to the type object, to save
+complications in the deallocation function.  (This is actually a
+decision that's up to the implementer of each new type so if you want,
+you can count such references to the type object.)
+
+*** WARNING*** The Py_DECREF macro must have a side-effect-free argument
+since it may evaluate its argument multiple times.  (The alternative
+would be to mace it a proper function or assign it to a global temporary
+variable first, both of which are slower; and in a multi-threaded
+environment the global variable trick is not safe.)
+*/
+
+/* First define a pile of simple helper macros, one set per special
+ * build symbol.  These either expand to the obvious things, or to
+ * nothing at all when the special mode isn't in effect.  The main
+ * macros can later be defined just once then, yet expand to different
+ * things depending on which special build options are and aren't in effect.
+ * Trust me <wink>:  while painful, this is 20x easier to understand than,
+ * e.g, defining _Py_NewReference five different times in a maze of nested
+ * #ifdefs (we used to do that -- it was impenetrable).
+ */
+#define _Py_INC_REFTOTAL
+#define _Py_DEC_REFTOTAL
+#define _Py_REF_DEBUG_COMMA
+#define _Py_CHECK_REFCNT(OP)    /* a semicolon */;
+
+#define _Py_INC_TPALLOCS(OP)
+#define _Py_INC_TPFREES(OP)
+#define _Py_DEC_TPFREES(OP)
+#define _Py_COUNT_ALLOCS_COMMA
+
+/* Without Py_TRACE_REFS, there's little enough to do that we expand code
+ * inline.
+ */
+#define _Py_NewReference(op) (                          \
+    _Py_INC_TPALLOCS(op)      \
+    _Py_INC_REFTOTAL           \
+    Py_REFCNT(op) = 1)
+
+#define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
+
+#define _Py_Dealloc(op) (                               \
+    _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA          \
+    (*Py_TYPE(op)->tp_dealloc)((PyObject *)(op)))
+
+#define Py_INCREF(op) (                         \
+    _Py_INC_REFTOTAL    \
+    ((PyObject*)(op))->ob_refcnt++)
+
+#define Py_DECREF(op)                                   \
+    do {                                                \
+        if (_Py_DEC_REFTOTAL  _Py_REF_DEBUG_COMMA       \
+        --((PyObject*)(op))->ob_refcnt != 0)            \
+            _Py_CHECK_REFCNT(op)                        \
+        else                                            \
+        _Py_Dealloc((PyObject *)(op));                  \
+    } while (0)
+
+/* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
+ * and tp_dealloc implementatons.
+ *
+ * Note that "the obvious" code can be deadly:
+ *
+ *     Py_XDECREF(op);
+ *     op = NULL;
+ *
+ * Typically, `op` is something like self->containee, and `self` is done
+ * using its `containee` member.  In the code sequence above, suppose
+ * `containee` is non-NULL with a refcount of 1.  Its refcount falls to
+ * 0 on the first line, which can trigger an arbitrary amount of code,
+ * possibly including finalizers (like __del__ methods or weakref callbacks)
+ * coded in Python, which in turn can release the GIL and allow other threads
+ * to run, etc.  Such code may even invoke methods of `self` again, or cause
+ * cyclic gc to trigger, but-- oops! --self->containee still points to the
+ * object being torn down, and it may be in an insane state while being torn
+ * down.  This has in fact been a rich historic source of miserable (rare &
+ * hard-to-diagnose) segfaulting (and other) bugs.
+ *
+ * The safe way is:
+ *
+ *      Py_CLEAR(op);
+ *
+ * That arranges to set `op` to NULL _before_ decref'ing, so that any code
+ * triggered as a side-effect of `op` getting torn down no longer believes
+ * `op` points to a valid object.
+ *
+ * There are cases where it's safe to use the naive code, but they're brittle.
+ * For example, if `op` points to a Python integer, you know that destroying
+ * one of those can't cause problems -- but in part that relies on that
+ * Python integers aren't currently weakly referencable.  Best practice is
+ * to use Py_CLEAR() even if you can't think of a reason for why you need to.
+ */
+#define Py_CLEAR(op)                            \
+    do {                                        \
+        if (op) {                               \
+            PyObject *_py_tmp = (PyObject *)(op);               \
+            (op) = NULL;                        \
+            Py_DECREF(_py_tmp);                 \
+        }                                       \
+    } while (0)
+
+/* Macros to use in case the object pointer may be NULL: */
+#define Py_XINCREF(op) do { if ((op) == NULL) ; else Py_INCREF(op); } while (0)
+#define Py_XDECREF(op) do { if ((op) == NULL) ; else Py_DECREF(op); } while (0)
+
+/*
+These are provided as conveniences to Python runtime embedders, so that
+they can have object code that is not dependent on Python compilation flags.
+*/
+PyAPI_FUNC(void) Py_IncRef(PyObject *);
+PyAPI_FUNC(void) Py_DecRef(PyObject *);
+
+/*
+_Py_NoneStruct is an object of undefined type which can be used in contexts
+where NULL (nil) is not suitable (since NULL often means 'error').
+
+Don't forget to apply Py_INCREF() when returning this value!!!
+*/
+PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
+#define Py_None (&_Py_NoneStruct)
+
+/* Macro for returning Py_None from a function */
+#define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
+
+/*
+Py_NotImplemented is a singleton used to signal that an operation is
+not implemented for a given type combination.
+*/
+PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
+#define Py_NotImplemented (&_Py_NotImplementedStruct)
+
+/* Macro for returning Py_NotImplemented from a function */
+#define Py_RETURN_NOTIMPLEMENTED \
+    return Py_INCREF(Py_NotImplemented), Py_NotImplemented
+
+/* Rich comparison opcodes */
+#define Py_LT 0
+#define Py_LE 1
+#define Py_EQ 2
+#define Py_NE 3
+#define Py_GT 4
+#define Py_GE 5
+
+/* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
+ * Defined in object.c.
+ */
+PyAPI_DATA(int) _Py_SwappedOp[];
+
+
+/*
+More conventions
+================
+
+Argument Checking
+-----------------
+
+Functions that take objects as arguments normally don't check for nil
+arguments, but they do check the type of the argument, and return an
+error if the function doesn't apply to the type.
+
+Failure Modes
+-------------
+
+Functions may fail for a variety of reasons, including running out of
+memory.  This is communicated to the caller in two ways: an error string
+is set (see errors.h), and the function result differs: functions that
+normally return a pointer return NULL for failure, functions returning
+an integer return -1 (which could be a legal return value too!), and
+other functions return 0 for success and -1 for failure.
+Callers should always check for errors before using the result.  If
+an error was set, the caller must either explicitly clear it, or pass
+the error on to its caller.
+
+Reference Counts
+----------------
+
+It takes a while to get used to the proper usage of reference counts.
+
+Functions that create an object set the reference count to 1; such new
+objects must be stored somewhere or destroyed again with Py_DECREF().
+Some functions that 'store' objects, such as PyTuple_SetItem() and
+PyList_SetItem(),
+don't increment the reference count of the object, since the most
+frequent use is to store a fresh object.  Functions that 'retrieve'
+objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
+don't increment
+the reference count, since most frequently the object is only looked at
+quickly.  Thus, to retrieve an object and store it again, the caller
+must call Py_INCREF() explicitly.
+
+NOTE: functions that 'consume' a reference count, like
+PyList_SetItem(), consume the reference even if the object wasn't
+successfully stored, to simplify error handling.
+
+It seems attractive to make other functions that take an object as
+argument consume a reference count; however, this may quickly get
+confusing (even the current practice is already confusing).  Consider
+it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
+times.
+*/
+
+
+/* Trashcan mechanism, thanks to Christian Tismer.
+
+When deallocating a container object, it's possible to trigger an unbounded
+chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
+next" object in the chain to 0.  This can easily lead to stack faults, and
+especially in threads (which typically have less stack space to work with).
+
+A container object that participates in cyclic gc can avoid this by
+bracketing the body of its tp_dealloc function with a pair of macros:
+
+static void
+mytype_dealloc(mytype *p)
+{
+    ... declarations go here ...
+
+    PyObject_GC_UnTrack(p);        // must untrack first
+    Py_TRASHCAN_SAFE_BEGIN(p)
+    ... The body of the deallocator goes here, including all calls ...
+    ... to Py_DECREF on contained objects.                         ...
+    Py_TRASHCAN_SAFE_END(p)
+}
+
+CAUTION:  Never return from the middle of the body!  If the body needs to
+"get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
+call, and goto it.  Else the call-depth counter (see below) will stay
+above 0 forever, and the trashcan will never get emptied.
+
+How it works:  The BEGIN macro increments a call-depth counter.  So long
+as this counter is small, the body of the deallocator is run directly without
+further ado.  But if the counter gets large, it instead adds p to a list of
+objects to be deallocated later, skips the body of the deallocator, and
+resumes execution after the END macro.  The tp_dealloc routine then returns
+without deallocating anything (and so unbounded call-stack depth is avoided).
+
+When the call stack finishes unwinding again, code generated by the END macro
+notices this, and calls another routine to deallocate all the objects that
+may have been added to the list of deferred deallocations.  In effect, a
+chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
+with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
+*/
+
+PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
+PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
+PyAPI_DATA(int) _PyTrash_delete_nesting;
+PyAPI_DATA(PyObject *) _PyTrash_delete_later;
+
+#define PyTrash_UNWIND_LEVEL 50
+
+#define Py_TRASHCAN_SAFE_BEGIN(op) \
+    if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
+        ++_PyTrash_delete_nesting;
+        /* The body of the deallocator is here. */
+#define Py_TRASHCAN_SAFE_END(op) \
+        --_PyTrash_delete_nesting; \
+        if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
+            _PyTrash_destroy_chain(); \
+    } \
+    else \
+        _PyTrash_deposit_object((PyObject*)op);
+
+#endif /* !Py_OBJECT_H */