Mercurial > lcfOS
comparison cos/python/Objects/listobject.c @ 27:7f74363f4c82
Added some files for the python port
author | windel |
---|---|
date | Tue, 27 Dec 2011 18:59:02 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
26:dcce92b1efbc | 27:7f74363f4c82 |
---|---|
1 /* List object implementation */ | |
2 | |
3 #include "Python.h" | |
4 | |
5 /* Ensure ob_item has room for at least newsize elements, and set | |
6 * ob_size to newsize. If newsize > ob_size on entry, the content | |
7 * of the new slots at exit is undefined heap trash; it's the caller's | |
8 * responsibility to overwrite them with sane values. | |
9 * The number of allocated elements may grow, shrink, or stay the same. | |
10 * Failure is impossible if newsize <= self.allocated on entry, although | |
11 * that partly relies on an assumption that the system realloc() never | |
12 * fails when passed a number of bytes <= the number of bytes last | |
13 * allocated (the C standard doesn't guarantee this, but it's hard to | |
14 * imagine a realloc implementation where it wouldn't be true). | |
15 * Note that self->ob_item may change, and even if newsize is less | |
16 * than ob_size on entry. | |
17 */ | |
18 static int | |
19 list_resize(PyListObject *self, Py_ssize_t newsize) | |
20 { | |
21 PyObject **items; | |
22 size_t new_allocated; | |
23 Py_ssize_t allocated = self->allocated; | |
24 | |
25 /* Bypass realloc() when a previous overallocation is large enough | |
26 to accommodate the newsize. If the newsize falls lower than half | |
27 the allocated size, then proceed with the realloc() to shrink the list. | |
28 */ | |
29 if (allocated >= newsize && newsize >= (allocated >> 1)) { | |
30 assert(self->ob_item != NULL || newsize == 0); | |
31 Py_SIZE(self) = newsize; | |
32 return 0; | |
33 } | |
34 | |
35 /* This over-allocates proportional to the list size, making room | |
36 * for additional growth. The over-allocation is mild, but is | |
37 * enough to give linear-time amortized behavior over a long | |
38 * sequence of appends() in the presence of a poorly-performing | |
39 * system realloc(). | |
40 * The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ... | |
41 */ | |
42 new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6); | |
43 | |
44 /* check for integer overflow */ | |
45 if (new_allocated > PY_SIZE_MAX - newsize) { | |
46 PyErr_NoMemory(); | |
47 return -1; | |
48 } else { | |
49 new_allocated += newsize; | |
50 } | |
51 | |
52 if (newsize == 0) | |
53 new_allocated = 0; | |
54 items = self->ob_item; | |
55 if (new_allocated <= (PY_SIZE_MAX / sizeof(PyObject *))) | |
56 PyMem_RESIZE(items, PyObject *, new_allocated); | |
57 else | |
58 items = NULL; | |
59 if (items == NULL) { | |
60 PyErr_NoMemory(); | |
61 return -1; | |
62 } | |
63 self->ob_item = items; | |
64 Py_SIZE(self) = newsize; | |
65 self->allocated = new_allocated; | |
66 return 0; | |
67 } | |
68 | |
69 | |
70 /* Empty list reuse scheme to save calls to malloc and free */ | |
71 #ifndef PyList_MAXFREELIST | |
72 #define PyList_MAXFREELIST 80 | |
73 #endif | |
74 static PyListObject *free_list[PyList_MAXFREELIST]; | |
75 static int numfree = 0; | |
76 | |
77 int | |
78 PyList_ClearFreeList(void) | |
79 { | |
80 PyListObject *op; | |
81 int ret = numfree; | |
82 while (numfree) { | |
83 op = free_list[--numfree]; | |
84 assert(PyList_CheckExact(op)); | |
85 PyObject_GC_Del(op); | |
86 } | |
87 return ret; | |
88 } | |
89 | |
90 void | |
91 PyList_Fini(void) | |
92 { | |
93 PyList_ClearFreeList(); | |
94 } | |
95 | |
96 PyObject * | |
97 PyList_New(Py_ssize_t size) | |
98 { | |
99 PyListObject *op; | |
100 size_t nbytes; | |
101 | |
102 if (size < 0) { | |
103 PyErr_BadInternalCall(); | |
104 return NULL; | |
105 } | |
106 /* Check for overflow without an actual overflow, | |
107 * which can cause compiler to optimise out */ | |
108 if ((size_t)size > PY_SIZE_MAX / sizeof(PyObject *)) | |
109 return PyErr_NoMemory(); | |
110 nbytes = size * sizeof(PyObject *); | |
111 if (numfree) { | |
112 numfree--; | |
113 op = free_list[numfree]; | |
114 _Py_NewReference((PyObject *)op); | |
115 } else { | |
116 op = PyObject_GC_New(PyListObject, &PyList_Type); | |
117 if (op == NULL) | |
118 return NULL; | |
119 } | |
120 if (size <= 0) | |
121 op->ob_item = NULL; | |
122 else { | |
123 op->ob_item = (PyObject **) PyMem_MALLOC(nbytes); | |
124 if (op->ob_item == NULL) { | |
125 Py_DECREF(op); | |
126 return PyErr_NoMemory(); | |
127 } | |
128 memset(op->ob_item, 0, nbytes); | |
129 } | |
130 Py_SIZE(op) = size; | |
131 op->allocated = size; | |
132 _PyObject_GC_TRACK(op); | |
133 return (PyObject *) op; | |
134 } | |
135 | |
136 Py_ssize_t | |
137 PyList_Size(PyObject *op) | |
138 { | |
139 if (!PyList_Check(op)) { | |
140 PyErr_BadInternalCall(); | |
141 return -1; | |
142 } | |
143 else | |
144 return Py_SIZE(op); | |
145 } | |
146 | |
147 static PyObject *indexerr = NULL; | |
148 | |
149 PyObject * | |
150 PyList_GetItem(PyObject *op, Py_ssize_t i) | |
151 { | |
152 if (!PyList_Check(op)) { | |
153 PyErr_BadInternalCall(); | |
154 return NULL; | |
155 } | |
156 if (i < 0 || i >= Py_SIZE(op)) { | |
157 if (indexerr == NULL) { | |
158 indexerr = PyUnicode_FromString( | |
159 "list index out of range"); | |
160 if (indexerr == NULL) | |
161 return NULL; | |
162 } | |
163 PyErr_SetObject(PyExc_IndexError, indexerr); | |
164 return NULL; | |
165 } | |
166 return ((PyListObject *)op) -> ob_item[i]; | |
167 } | |
168 | |
169 int | |
170 PyList_SetItem(register PyObject *op, register int i, | |
171 register PyObject *newitem) | |
172 { | |
173 register PyObject *olditem; | |
174 register PyObject **p; | |
175 if (!PyList_Check(op)) | |
176 { | |
177 Py_XDECREF(newitem); | |
178 PyErr_BadInternalCall(); | |
179 return -1; | |
180 } | |
181 if (i < 0 || i >= Py_SIZE(op)) | |
182 { | |
183 Py_XDECREF(newitem); | |
184 PyErr_SetString(PyExc_IndexError, | |
185 "list assignment index out of range"); | |
186 return -1; | |
187 } | |
188 p = ((PyListObject *)op) -> ob_item + i; | |
189 olditem = *p; | |
190 *p = newitem; | |
191 Py_XDECREF(olditem); | |
192 return 0; | |
193 } | |
194 | |
195 static int | |
196 ins1(PyListObject *self, int where, PyObject *v) | |
197 { | |
198 int i, n = Py_SIZE(self); | |
199 PyObject **items; | |
200 if (v == NULL) { | |
201 PyErr_BadInternalCall(); | |
202 return -1; | |
203 } | |
204 if (n == PY_SSIZE_T_MAX) { | |
205 PyErr_SetString(PyExc_OverflowError, | |
206 "cannot add more objects to list"); | |
207 return -1; | |
208 } | |
209 | |
210 if (list_resize(self, n+1) == -1) | |
211 return -1; | |
212 | |
213 if (where < 0) { | |
214 where += n; | |
215 if (where < 0) | |
216 where = 0; | |
217 } | |
218 if (where > n) | |
219 where = n; | |
220 items = self->ob_item; | |
221 for (i = n; --i >= where; ) | |
222 items[i+1] = items[i]; | |
223 Py_INCREF(v); | |
224 items[where] = v; | |
225 return 0; | |
226 } | |
227 | |
228 int | |
229 PyList_Insert(PyObject *op, int where, PyObject *newitem) | |
230 { | |
231 if (!PyList_Check(op)) { | |
232 PyErr_BadInternalCall(); | |
233 return -1; | |
234 } | |
235 return ins1((PyListObject *)op, where, newitem); | |
236 } | |
237 | |
238 static int | |
239 app1(PyListObject *self, PyObject *v) | |
240 { | |
241 Py_ssize_t n = PyList_GET_SIZE(self); | |
242 | |
243 assert (v != NULL); | |
244 if (n == PY_SSIZE_T_MAX) { | |
245 PyErr_SetString(PyExc_OverflowError, | |
246 "cannot add more objects to list"); | |
247 return -1; | |
248 } | |
249 | |
250 if (list_resize(self, n+1) == -1) | |
251 return -1; | |
252 | |
253 Py_INCREF(v); | |
254 PyList_SET_ITEM(self, n, v); | |
255 return 0; | |
256 } | |
257 | |
258 int | |
259 PyList_Append(PyObject *op, PyObject *newitem) | |
260 { | |
261 if (PyList_Check(op) && (newitem != NULL)) | |
262 return app1((PyListObject *)op, newitem); | |
263 PyErr_BadInternalCall(); | |
264 return -1; | |
265 } | |
266 | |
267 /* Methods */ | |
268 | |
269 static void | |
270 list_dealloc(PyListObject *op) | |
271 { | |
272 Py_ssize_t i; | |
273 PyObject_GC_UnTrack(op); | |
274 Py_TRASHCAN_SAFE_BEGIN(op) | |
275 if (op->ob_item != NULL) { | |
276 /* Do it backwards, for Christian Tismer. | |
277 There's a simple test case where somehow this reduces | |
278 thrashing when a *very* large list is created and | |
279 immediately deleted. */ | |
280 i = Py_SIZE(op); | |
281 while (--i >= 0) { | |
282 Py_XDECREF(op->ob_item[i]); | |
283 } | |
284 PyMem_FREE(op->ob_item); | |
285 } | |
286 if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op)) | |
287 free_list[numfree++] = op; | |
288 else | |
289 Py_TYPE(op)->tp_free((PyObject *)op); | |
290 Py_TRASHCAN_SAFE_END(op) | |
291 } | |
292 | |
293 static PyObject * | |
294 list_repr(PyListObject *v) | |
295 { | |
296 Py_ssize_t i; | |
297 PyObject *s = NULL; | |
298 _PyAccu acc; | |
299 static PyObject *sep = NULL; | |
300 | |
301 if (Py_SIZE(v) == 0) { | |
302 return PyUnicode_FromString("[]"); | |
303 } | |
304 | |
305 if (sep == NULL) { | |
306 sep = PyUnicode_FromString(", "); | |
307 if (sep == NULL) | |
308 return NULL; | |
309 } | |
310 | |
311 i = Py_ReprEnter((PyObject*)v); | |
312 if (i != 0) { | |
313 return i > 0 ? PyUnicode_FromString("[...]") : NULL; | |
314 } | |
315 | |
316 if (_PyAccu_Init(&acc)) | |
317 goto error; | |
318 | |
319 s = PyUnicode_FromString("["); | |
320 if (s == NULL || _PyAccu_Accumulate(&acc, s)) | |
321 goto error; | |
322 Py_CLEAR(s); | |
323 | |
324 /* Do repr() on each element. Note that this may mutate the list, | |
325 so must refetch the list size on each iteration. */ | |
326 for (i = 0; i < Py_SIZE(v); ++i) { | |
327 if (Py_EnterRecursiveCall(" while getting the repr of a list")) | |
328 goto error; | |
329 s = PyObject_Repr(v->ob_item[i]); | |
330 Py_LeaveRecursiveCall(); | |
331 if (i > 0 && _PyAccu_Accumulate(&acc, sep)) | |
332 goto error; | |
333 if (s == NULL || _PyAccu_Accumulate(&acc, s)) | |
334 goto error; | |
335 Py_CLEAR(s); | |
336 } | |
337 s = PyUnicode_FromString("]"); | |
338 if (s == NULL || _PyAccu_Accumulate(&acc, s)) | |
339 goto error; | |
340 Py_CLEAR(s); | |
341 | |
342 Py_ReprLeave((PyObject *)v); | |
343 return _PyAccu_Finish(&acc); | |
344 | |
345 error: | |
346 _PyAccu_Destroy(&acc); | |
347 Py_XDECREF(s); | |
348 Py_ReprLeave((PyObject *)v); | |
349 return NULL; | |
350 } | |
351 | |
352 static Py_ssize_t | |
353 list_length(PyListObject *a) | |
354 { | |
355 return Py_SIZE(a); | |
356 } | |
357 | |
358 static int | |
359 list_contains(PyListObject *a, PyObject *el) | |
360 { | |
361 Py_ssize_t i; | |
362 int cmp; | |
363 | |
364 for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) | |
365 cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i), | |
366 Py_EQ); | |
367 return cmp; | |
368 } | |
369 | |
370 static PyObject * | |
371 list_item(PyListObject *a, int i) | |
372 { | |
373 if (i < 0 || i >= Py_SIZE(a)) { | |
374 if (indexerr == NULL) { | |
375 indexerr = PyUnicode_FromString( | |
376 "list index out of range"); | |
377 if (indexerr == NULL) | |
378 return NULL; | |
379 } | |
380 PyErr_SetObject(PyExc_IndexError, indexerr); | |
381 return NULL; | |
382 } | |
383 Py_INCREF(a->ob_item[i]); | |
384 return a->ob_item[i]; | |
385 } | |
386 | |
387 static PyObject * | |
388 list_slice(PyListObject *a, int ilow, int ihigh) | |
389 { | |
390 PyListObject *np; | |
391 PyObject **src, **dest; | |
392 int i, len; | |
393 if (ilow < 0) | |
394 ilow = 0; | |
395 else if (ilow > Py_SIZE(a)) | |
396 ilow = Py_SIZE(a); | |
397 if (ihigh < ilow) | |
398 ihigh = ilow; | |
399 else if (ihigh > Py_SIZE(a)) | |
400 ihigh = Py_SIZE(a); | |
401 len = ihigh - ilow; | |
402 np = (PyListObject *) PyList_New(len); | |
403 if (np == NULL) | |
404 return NULL; | |
405 | |
406 src = a->ob_item + ilow; | |
407 dest = np->ob_item; | |
408 for (i = 0; i < len; i++) { | |
409 PyObject *v = src[i]; | |
410 Py_INCREF(v); | |
411 dest[i] = v; | |
412 } | |
413 return (PyObject *)np; | |
414 } | |
415 | |
416 PyObject * | |
417 PyList_GetSlice(PyObject *a, int ilow, int ihigh) | |
418 { | |
419 if (!PyList_Check(a)) { | |
420 PyErr_BadInternalCall(); | |
421 return NULL; | |
422 } | |
423 return list_slice((PyListObject *)a, ilow, ihigh); | |
424 } | |
425 | |
426 static PyObject * | |
427 list_concat(PyListObject *a, PyObject *bb) | |
428 { | |
429 Py_ssize_t size; | |
430 Py_ssize_t i; | |
431 PyObject **src, **dest; | |
432 PyListObject *np; | |
433 if (!PyList_Check(bb)) { | |
434 PyErr_Format(PyExc_TypeError, | |
435 "can only concatenate list (not \"%.200s\") to list", | |
436 bb->ob_type->tp_name); | |
437 return NULL; | |
438 } | |
439 #define b ((PyListObject *)bb) | |
440 size = Py_SIZE(a) + Py_SIZE(b); | |
441 if (size < 0) | |
442 return PyErr_NoMemory(); | |
443 np = (PyListObject *) PyList_New(size); | |
444 if (np == NULL) { | |
445 return NULL; | |
446 } | |
447 src = a->ob_item; | |
448 dest = np->ob_item; | |
449 for (i = 0; i < Py_SIZE(a); i++) { | |
450 PyObject *v = src[i]; | |
451 Py_INCREF(v); | |
452 dest[i] = v; | |
453 } | |
454 src = b->ob_item; | |
455 dest = np->ob_item + Py_SIZE(a); | |
456 for (i = 0; i < Py_SIZE(b); i++) { | |
457 PyObject *v = src[i]; | |
458 Py_INCREF(v); | |
459 dest[i] = v; | |
460 } | |
461 return (PyObject *)np; | |
462 #undef b | |
463 } | |
464 | |
465 static PyObject * | |
466 list_repeat(PyListObject *a, int n) | |
467 { | |
468 Py_ssize_t i, j; | |
469 Py_ssize_t size; | |
470 PyListObject *np; | |
471 PyObject **p, **items; | |
472 PyObject *elem; | |
473 if (n < 0) | |
474 n = 0; | |
475 if (n > 0 && Py_SIZE(a) > PY_SSIZE_T_MAX / n) | |
476 return PyErr_NoMemory(); | |
477 size = Py_SIZE(a) * n; | |
478 if (size == 0) | |
479 return PyList_New(0); | |
480 np = (PyListObject *) PyList_New(size); | |
481 if (np == NULL) | |
482 return NULL; | |
483 | |
484 items = np->ob_item; | |
485 if (Py_SIZE(a) == 1) { | |
486 elem = a->ob_item[0]; | |
487 for (i = 0; i < n; i++) { | |
488 items[i] = elem; | |
489 Py_INCREF(elem); | |
490 } | |
491 return (PyObject *) np; | |
492 } | |
493 p = np->ob_item; | |
494 items = a->ob_item; | |
495 for (i = 0; i < n; i++) { | |
496 for (j = 0; j < Py_SIZE(a); j++) { | |
497 *p = items[j]; | |
498 Py_INCREF(*p); | |
499 p++; | |
500 } | |
501 } | |
502 return (PyObject *) np; | |
503 } | |
504 | |
505 static int | |
506 list_clear(PyListObject *a) | |
507 { | |
508 Py_ssize_t i; | |
509 PyObject **item = a->ob_item; | |
510 if (item != NULL) { | |
511 /* Because XDECREF can recursively invoke operations on | |
512 this list, we make it empty first. */ | |
513 i = Py_SIZE(a); | |
514 Py_SIZE(a) = 0; | |
515 a->ob_item = NULL; | |
516 a->allocated = 0; | |
517 while (--i >= 0) { | |
518 Py_XDECREF(item[i]); | |
519 } | |
520 PyMem_FREE(item); | |
521 } | |
522 /* Never fails; the return value can be ignored. | |
523 Note that there is no guarantee that the list is actually empty | |
524 at this point, because XDECREF may have populated it again! */ | |
525 return 0; | |
526 } | |
527 | |
528 /* a[ilow:ihigh] = v if v != NULL. | |
529 * del a[ilow:ihigh] if v == NULL. | |
530 * | |
531 * Special speed gimmick: when v is NULL and ihigh - ilow <= 8, it's | |
532 * guaranteed the call cannot fail. | |
533 */ | |
534 static int | |
535 list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v) | |
536 { | |
537 /* Because [X]DECREF can recursively invoke list operations on | |
538 this list, we must postpone all [X]DECREF activity until | |
539 after the list is back in its canonical shape. Therefore | |
540 we must allocate an additional array, 'recycle', into which | |
541 we temporarily copy the items that are deleted from the | |
542 list. :-( */ | |
543 PyObject *recycle_on_stack[8]; | |
544 PyObject **recycle = recycle_on_stack; /* will allocate more if needed */ | |
545 PyObject **item; | |
546 PyObject **vitem = NULL; | |
547 PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */ | |
548 Py_ssize_t n; /* # of elements in replacement list */ | |
549 Py_ssize_t norig; /* # of elements in list getting replaced */ | |
550 Py_ssize_t d; /* Change in size */ | |
551 Py_ssize_t k; | |
552 size_t s; | |
553 int result = -1; /* guilty until proved innocent */ | |
554 #define b ((PyListObject *)v) | |
555 if (v == NULL) | |
556 n = 0; | |
557 else { | |
558 if (a == b) { | |
559 /* Special case "a[i:j] = a" -- copy b first */ | |
560 v = list_slice(b, 0, Py_SIZE(b)); | |
561 if (v == NULL) | |
562 return result; | |
563 result = list_ass_slice(a, ilow, ihigh, v); | |
564 Py_DECREF(v); | |
565 return result; | |
566 } | |
567 v_as_SF = PySequence_Fast(v, "can only assign an iterable"); | |
568 if(v_as_SF == NULL) | |
569 goto Error; | |
570 n = PySequence_Fast_GET_SIZE(v_as_SF); | |
571 vitem = PySequence_Fast_ITEMS(v_as_SF); | |
572 } | |
573 if (ilow < 0) | |
574 ilow = 0; | |
575 else if (ilow > Py_SIZE(a)) | |
576 ilow = Py_SIZE(a); | |
577 | |
578 if (ihigh < ilow) | |
579 ihigh = ilow; | |
580 else if (ihigh > Py_SIZE(a)) | |
581 ihigh = Py_SIZE(a); | |
582 | |
583 norig = ihigh - ilow; | |
584 assert(norig >= 0); | |
585 d = n - norig; | |
586 if (Py_SIZE(a) + d == 0) { | |
587 Py_XDECREF(v_as_SF); | |
588 return list_clear(a); | |
589 } | |
590 item = a->ob_item; | |
591 /* recycle the items that we are about to remove */ | |
592 s = norig * sizeof(PyObject *); | |
593 if (s > sizeof(recycle_on_stack)) { | |
594 recycle = (PyObject **)PyMem_MALLOC(s); | |
595 if (recycle == NULL) { | |
596 PyErr_NoMemory(); | |
597 goto Error; | |
598 } | |
599 } | |
600 memcpy(recycle, &item[ilow], s); | |
601 | |
602 if (d < 0) { /* Delete -d items */ | |
603 memmove(&item[ihigh+d], &item[ihigh], | |
604 (Py_SIZE(a) - ihigh)*sizeof(PyObject *)); | |
605 list_resize(a, Py_SIZE(a) + d); | |
606 item = a->ob_item; | |
607 } | |
608 else if (d > 0) { /* Insert d items */ | |
609 k = Py_SIZE(a); | |
610 if (list_resize(a, k+d) < 0) | |
611 goto Error; | |
612 item = a->ob_item; | |
613 memmove(&item[ihigh+d], &item[ihigh], | |
614 (k - ihigh)*sizeof(PyObject *)); | |
615 } | |
616 for (k = 0; k < n; k++, ilow++) { | |
617 PyObject *w = vitem[k]; | |
618 Py_XINCREF(w); | |
619 item[ilow] = w; | |
620 } | |
621 for (k = norig - 1; k >= 0; --k) | |
622 Py_XDECREF(recycle[k]); | |
623 result = 0; | |
624 Error: | |
625 if (recycle != recycle_on_stack) | |
626 PyMem_FREE(recycle); | |
627 Py_XDECREF(v_as_SF); | |
628 return result; | |
629 #undef b | |
630 } | |
631 | |
632 int | |
633 PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v) | |
634 { | |
635 if (!PyList_Check(a)) { | |
636 PyErr_BadInternalCall(); | |
637 return -1; | |
638 } | |
639 return list_ass_slice((PyListObject *)a, ilow, ihigh, v); | |
640 } | |
641 | |
642 static PyObject * | |
643 list_inplace_repeat(PyListObject *self, Py_ssize_t n) | |
644 { | |
645 PyObject **items; | |
646 Py_ssize_t size, i, j, p; | |
647 | |
648 | |
649 size = PyList_GET_SIZE(self); | |
650 if (size == 0 || n == 1) { | |
651 Py_INCREF(self); | |
652 return (PyObject *)self; | |
653 } | |
654 | |
655 if (n < 1) { | |
656 (void)list_clear(self); | |
657 Py_INCREF(self); | |
658 return (PyObject *)self; | |
659 } | |
660 | |
661 if (size > PY_SSIZE_T_MAX / n) { | |
662 return PyErr_NoMemory(); | |
663 } | |
664 | |
665 if (list_resize(self, size*n) == -1) | |
666 return NULL; | |
667 | |
668 p = size; | |
669 items = self->ob_item; | |
670 for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */ | |
671 for (j = 0; j < size; j++) { | |
672 PyObject *o = items[j]; | |
673 Py_INCREF(o); | |
674 items[p++] = o; | |
675 } | |
676 } | |
677 Py_INCREF(self); | |
678 return (PyObject *)self; | |
679 } | |
680 | |
681 static int | |
682 list_ass_item(PyListObject *a, Py_ssize_t i, PyObject *v) | |
683 { | |
684 PyObject *old_value; | |
685 if (i < 0 || i >= Py_SIZE(a)) { | |
686 PyErr_SetString(PyExc_IndexError, | |
687 "list assignment index out of range"); | |
688 return -1; | |
689 } | |
690 if (v == NULL) | |
691 return list_ass_slice(a, i, i+1, v); | |
692 Py_INCREF(v); | |
693 old_value = a->ob_item[i]; | |
694 a->ob_item[i] = v; | |
695 Py_DECREF(old_value); | |
696 return 0; | |
697 } | |
698 | |
699 static PyObject * | |
700 listinsert(PyListObject *self, PyObject *args) | |
701 { | |
702 Py_ssize_t i; | |
703 PyObject *v; | |
704 if (!PyArg_ParseTuple(args, "nO:insert", &i, &v)) | |
705 return NULL; | |
706 if (ins1(self, i, v) == 0) | |
707 Py_RETURN_NONE; | |
708 return NULL; | |
709 } | |
710 | |
711 static PyObject * | |
712 listclear(PyListObject *self) | |
713 { | |
714 list_clear(self); | |
715 Py_RETURN_NONE; | |
716 } | |
717 | |
718 static PyObject * | |
719 listcopy(PyListObject *self) | |
720 { | |
721 return list_slice(self, 0, Py_SIZE(self)); | |
722 } | |
723 | |
724 static PyObject * | |
725 listappend(PyListObject *self, PyObject *v) | |
726 { | |
727 if (app1(self, v) == 0) | |
728 Py_RETURN_NONE; | |
729 return NULL; | |
730 } | |
731 | |
732 static PyObject * | |
733 listextend(PyListObject *self, PyObject *b) | |
734 { | |
735 PyObject *it; /* iter(v) */ | |
736 Py_ssize_t m; /* size of self */ | |
737 Py_ssize_t n; /* guess for size of b */ | |
738 Py_ssize_t mn; /* m + n */ | |
739 Py_ssize_t i; | |
740 PyObject *(*iternext)(PyObject *); | |
741 | |
742 /* Special cases: | |
743 1) lists and tuples which can use PySequence_Fast ops | |
744 2) extending self to self requires making a copy first | |
745 */ | |
746 if (PyList_CheckExact(b) || PyTuple_CheckExact(b) || (PyObject *)self == b) { | |
747 PyObject **src, **dest; | |
748 b = PySequence_Fast(b, "argument must be iterable"); | |
749 if (!b) | |
750 return NULL; | |
751 n = PySequence_Fast_GET_SIZE(b); | |
752 if (n == 0) { | |
753 /* short circuit when b is empty */ | |
754 Py_DECREF(b); | |
755 Py_RETURN_NONE; | |
756 } | |
757 m = Py_SIZE(self); | |
758 if (list_resize(self, m + n) == -1) { | |
759 Py_DECREF(b); | |
760 return NULL; | |
761 } | |
762 /* note that we may still have self == b here for the | |
763 * situation a.extend(a), but the following code works | |
764 * in that case too. Just make sure to resize self | |
765 * before calling PySequence_Fast_ITEMS. | |
766 */ | |
767 /* populate the end of self with b's items */ | |
768 src = PySequence_Fast_ITEMS(b); | |
769 dest = self->ob_item + m; | |
770 for (i = 0; i < n; i++) { | |
771 PyObject *o = src[i]; | |
772 Py_INCREF(o); | |
773 dest[i] = o; | |
774 } | |
775 Py_DECREF(b); | |
776 Py_RETURN_NONE; | |
777 } | |
778 | |
779 it = PyObject_GetIter(b); | |
780 if (it == NULL) | |
781 return NULL; | |
782 iternext = *it->ob_type->tp_iternext; | |
783 | |
784 /* Guess a result list size. */ | |
785 n = _PyObject_LengthHint(b, 8); | |
786 if (n == -1) { | |
787 Py_DECREF(it); | |
788 return NULL; | |
789 } | |
790 m = Py_SIZE(self); | |
791 mn = m + n; | |
792 if (mn >= m) { | |
793 /* Make room. */ | |
794 if (list_resize(self, mn) == -1) | |
795 goto error; | |
796 /* Make the list sane again. */ | |
797 Py_SIZE(self) = m; | |
798 } | |
799 /* Else m + n overflowed; on the chance that n lied, and there really | |
800 * is enough room, ignore it. If n was telling the truth, we'll | |
801 * eventually run out of memory during the loop. | |
802 */ | |
803 | |
804 /* Run iterator to exhaustion. */ | |
805 for (;;) { | |
806 PyObject *item = iternext(it); | |
807 if (item == NULL) { | |
808 if (PyErr_Occurred()) { | |
809 if (PyErr_ExceptionMatches(PyExc_StopIteration)) | |
810 PyErr_Clear(); | |
811 else | |
812 goto error; | |
813 } | |
814 break; | |
815 } | |
816 if (Py_SIZE(self) < self->allocated) { | |
817 /* steals ref */ | |
818 PyList_SET_ITEM(self, Py_SIZE(self), item); | |
819 ++Py_SIZE(self); | |
820 } | |
821 else { | |
822 int status = app1(self, item); | |
823 Py_DECREF(item); /* append creates a new ref */ | |
824 if (status < 0) | |
825 goto error; | |
826 } | |
827 } | |
828 | |
829 /* Cut back result list if initial guess was too large. */ | |
830 if (Py_SIZE(self) < self->allocated) | |
831 list_resize(self, Py_SIZE(self)); /* shrinking can't fail */ | |
832 | |
833 Py_DECREF(it); | |
834 Py_RETURN_NONE; | |
835 | |
836 error: | |
837 Py_DECREF(it); | |
838 return NULL; | |
839 } | |
840 | |
841 PyObject * | |
842 _PyList_Extend(PyListObject *self, PyObject *b) | |
843 { | |
844 return listextend(self, b); | |
845 } | |
846 | |
847 static PyObject * | |
848 list_inplace_concat(PyListObject *self, PyObject *other) | |
849 { | |
850 PyObject *result; | |
851 | |
852 result = listextend(self, other); | |
853 if (result == NULL) | |
854 return result; | |
855 Py_DECREF(result); | |
856 Py_INCREF(self); | |
857 return (PyObject *)self; | |
858 } | |
859 | |
860 static PyObject * | |
861 listpop(PyListObject *self, PyObject *args) | |
862 { | |
863 Py_ssize_t i = -1; | |
864 PyObject *v; | |
865 int status; | |
866 | |
867 if (!PyArg_ParseTuple(args, "|n:pop", &i)) | |
868 return NULL; | |
869 | |
870 if (Py_SIZE(self) == 0) { | |
871 /* Special-case most common failure cause */ | |
872 PyErr_SetString(PyExc_IndexError, "pop from empty list"); | |
873 return NULL; | |
874 } | |
875 if (i < 0) | |
876 i += Py_SIZE(self); | |
877 if (i < 0 || i >= Py_SIZE(self)) { | |
878 PyErr_SetString(PyExc_IndexError, "pop index out of range"); | |
879 return NULL; | |
880 } | |
881 v = self->ob_item[i]; | |
882 if (i == Py_SIZE(self) - 1) { | |
883 status = list_resize(self, Py_SIZE(self) - 1); | |
884 assert(status >= 0); | |
885 return v; /* and v now owns the reference the list had */ | |
886 } | |
887 Py_INCREF(v); | |
888 status = list_ass_slice(self, i, i+1, (PyObject *)NULL); | |
889 assert(status >= 0); | |
890 /* Use status, so that in a release build compilers don't | |
891 * complain about the unused name. | |
892 */ | |
893 (void) status; | |
894 | |
895 return v; | |
896 } | |
897 | |
898 /* Reverse a slice of a list in place, from lo up to (exclusive) hi. */ | |
899 static void | |
900 reverse_slice(PyObject **lo, PyObject **hi) | |
901 { | |
902 assert(lo && hi); | |
903 | |
904 --hi; | |
905 while (lo < hi) { | |
906 PyObject *t = *lo; | |
907 *lo = *hi; | |
908 *hi = t; | |
909 ++lo; | |
910 --hi; | |
911 } | |
912 } | |
913 | |
914 /* Lots of code for an adaptive, stable, natural mergesort. There are many | |
915 * pieces to this algorithm; read listsort.txt for overviews and details. | |
916 */ | |
917 | |
918 /* A sortslice contains a pointer to an array of keys and a pointer to | |
919 * an array of corresponding values. In other words, keys[i] | |
920 * corresponds with values[i]. If values == NULL, then the keys are | |
921 * also the values. | |
922 * | |
923 * Several convenience routines are provided here, so that keys and | |
924 * values are always moved in sync. | |
925 */ | |
926 | |
927 typedef struct { | |
928 PyObject **keys; | |
929 PyObject **values; | |
930 } sortslice; | |
931 | |
932 Py_LOCAL_INLINE(void) | |
933 sortslice_copy(sortslice *s1, int i, sortslice *s2, int j) | |
934 { | |
935 s1->keys[i] = s2->keys[j]; | |
936 if (s1->values != NULL) | |
937 s1->values[i] = s2->values[j]; | |
938 } | |
939 | |
940 Py_LOCAL_INLINE(void) | |
941 sortslice_copy_incr(sortslice *dst, sortslice *src) | |
942 { | |
943 *dst->keys++ = *src->keys++; | |
944 if (dst->values != NULL) | |
945 *dst->values++ = *src->values++; | |
946 } | |
947 | |
948 Py_LOCAL_INLINE(void) | |
949 sortslice_copy_decr(sortslice *dst, sortslice *src) | |
950 { | |
951 *dst->keys-- = *src->keys--; | |
952 if (dst->values != NULL) | |
953 *dst->values-- = *src->values--; | |
954 } | |
955 | |
956 | |
957 Py_LOCAL_INLINE(void) | |
958 sortslice_memcpy(sortslice *s1, int i, sortslice *s2, int j, int n) | |
959 { | |
960 memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n); | |
961 if (s1->values != NULL) | |
962 memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n); | |
963 } | |
964 | |
965 Py_LOCAL_INLINE(void) | |
966 sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j, | |
967 Py_ssize_t n) | |
968 { | |
969 memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n); | |
970 if (s1->values != NULL) | |
971 memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n); | |
972 } | |
973 | |
974 Py_LOCAL_INLINE(void) | |
975 sortslice_advance(sortslice *slice, Py_ssize_t n) | |
976 { | |
977 slice->keys += n; | |
978 if (slice->values != NULL) | |
979 slice->values += n; | |
980 } | |
981 | |
982 /* Comparison function: PyObject_RichCompareBool with Py_LT. | |
983 * Returns -1 on error, 1 if x < y, 0 if x >= y. | |
984 */ | |
985 | |
986 #define ISLT(X, Y) (PyObject_RichCompareBool(X, Y, Py_LT)) | |
987 | |
988 /* Compare X to Y via "<". Goto "fail" if the comparison raises an | |
989 error. Else "k" is set to true iff X<Y, and an "if (k)" block is | |
990 started. It makes more sense in context <wink>. X and Y are PyObject*s. | |
991 */ | |
992 #define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail; \ | |
993 if (k) | |
994 | |
995 /* binarysort is the best method for sorting small arrays: it does | |
996 few compares, but can do data movement quadratic in the number of | |
997 elements. | |
998 [lo, hi) is a contiguous slice of a list, and is sorted via | |
999 binary insertion. This sort is stable. | |
1000 On entry, must have lo <= start <= hi, and that [lo, start) is already | |
1001 sorted (pass start == lo if you don't know!). | |
1002 If islt() complains return -1, else 0. | |
1003 Even in case of error, the output slice will be some permutation of | |
1004 the input (nothing is lost or duplicated). | |
1005 */ | |
1006 static int | |
1007 binarysort(sortslice lo, PyObject **hi, PyObject **start) | |
1008 { | |
1009 register Py_ssize_t k; | |
1010 register PyObject **l, **p, **r; | |
1011 register PyObject *pivot; | |
1012 | |
1013 assert(lo.keys <= start && start <= hi); | |
1014 /* assert [lo, start) is sorted */ | |
1015 if (lo.keys == start) | |
1016 ++start; | |
1017 for (; start < hi; ++start) { | |
1018 /* set l to where *start belongs */ | |
1019 l = lo.keys; | |
1020 r = start; | |
1021 pivot = *r; | |
1022 /* Invariants: | |
1023 * pivot >= all in [lo, l). | |
1024 * pivot < all in [r, start). | |
1025 * The second is vacuously true at the start. | |
1026 */ | |
1027 assert(l < r); | |
1028 do { | |
1029 p = l + ((r - l) >> 1); | |
1030 IFLT(pivot, *p) | |
1031 r = p; | |
1032 else | |
1033 l = p+1; | |
1034 } while (l < r); | |
1035 assert(l == r); | |
1036 /* The invariants still hold, so pivot >= all in [lo, l) and | |
1037 pivot < all in [l, start), so pivot belongs at l. Note | |
1038 that if there are elements equal to pivot, l points to the | |
1039 first slot after them -- that's why this sort is stable. | |
1040 Slide over to make room. | |
1041 Caution: using memmove is much slower under MSVC 5; | |
1042 we're not usually moving many slots. */ | |
1043 for (p = start; p > l; --p) | |
1044 *p = *(p-1); | |
1045 *l = pivot; | |
1046 if (lo.values != NULL) { | |
1047 Py_ssize_t offset = lo.values - lo.keys; | |
1048 p = start + offset; | |
1049 pivot = *p; | |
1050 l += offset; | |
1051 for (p = start + offset; p > l; --p) | |
1052 *p = *(p-1); | |
1053 *l = pivot; | |
1054 } | |
1055 } | |
1056 return 0; | |
1057 | |
1058 fail: | |
1059 return -1; | |
1060 } | |
1061 | |
1062 /* | |
1063 Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi | |
1064 is required on entry. "A run" is the longest ascending sequence, with | |
1065 | |
1066 lo[0] <= lo[1] <= lo[2] <= ... | |
1067 | |
1068 or the longest descending sequence, with | |
1069 | |
1070 lo[0] > lo[1] > lo[2] > ... | |
1071 | |
1072 Boolean *descending is set to 0 in the former case, or to 1 in the latter. | |
1073 For its intended use in a stable mergesort, the strictness of the defn of | |
1074 "descending" is needed so that the caller can safely reverse a descending | |
1075 sequence without violating stability (strict > ensures there are no equal | |
1076 elements to get out of order). | |
1077 | |
1078 Returns -1 in case of error. | |
1079 */ | |
1080 static Py_ssize_t | |
1081 count_run(PyObject **lo, PyObject **hi, int *descending) | |
1082 { | |
1083 Py_ssize_t k; | |
1084 Py_ssize_t n; | |
1085 | |
1086 assert(lo < hi); | |
1087 *descending = 0; | |
1088 ++lo; | |
1089 if (lo == hi) | |
1090 return 1; | |
1091 | |
1092 n = 2; | |
1093 IFLT(*lo, *(lo-1)) { | |
1094 *descending = 1; | |
1095 for (lo = lo+1; lo < hi; ++lo, ++n) { | |
1096 IFLT(*lo, *(lo-1)) | |
1097 ; | |
1098 else | |
1099 break; | |
1100 } | |
1101 } | |
1102 else { | |
1103 for (lo = lo+1; lo < hi; ++lo, ++n) { | |
1104 IFLT(*lo, *(lo-1)) | |
1105 break; | |
1106 } | |
1107 } | |
1108 | |
1109 return n; | |
1110 fail: | |
1111 return -1; | |
1112 } | |
1113 | |
1114 /* | |
1115 Locate the proper position of key in a sorted vector; if the vector contains | |
1116 an element equal to key, return the position immediately to the left of | |
1117 the leftmost equal element. [gallop_right() does the same except returns | |
1118 the position to the right of the rightmost equal element (if any).] | |
1119 | |
1120 "a" is a sorted vector with n elements, starting at a[0]. n must be > 0. | |
1121 | |
1122 "hint" is an index at which to begin the search, 0 <= hint < n. The closer | |
1123 hint is to the final result, the faster this runs. | |
1124 | |
1125 The return value is the int k in 0..n such that | |
1126 | |
1127 a[k-1] < key <= a[k] | |
1128 | |
1129 pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW, | |
1130 key belongs at index k; or, IOW, the first k elements of a should precede | |
1131 key, and the last n-k should follow key. | |
1132 | |
1133 Returns -1 on error. See listsort.txt for info on the method. | |
1134 */ | |
1135 static Py_ssize_t | |
1136 gallop_left(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint) | |
1137 { | |
1138 Py_ssize_t ofs; | |
1139 Py_ssize_t lastofs; | |
1140 Py_ssize_t k; | |
1141 | |
1142 assert(key && a && n > 0 && hint >= 0 && hint < n); | |
1143 | |
1144 a += hint; | |
1145 lastofs = 0; | |
1146 ofs = 1; | |
1147 IFLT(*a, key) { | |
1148 /* a[hint] < key -- gallop right, until | |
1149 * a[hint + lastofs] < key <= a[hint + ofs] | |
1150 */ | |
1151 const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */ | |
1152 while (ofs < maxofs) { | |
1153 IFLT(a[ofs], key) { | |
1154 lastofs = ofs; | |
1155 ofs = (ofs << 1) + 1; | |
1156 if (ofs <= 0) /* int overflow */ | |
1157 ofs = maxofs; | |
1158 } | |
1159 else /* key <= a[hint + ofs] */ | |
1160 break; | |
1161 } | |
1162 if (ofs > maxofs) | |
1163 ofs = maxofs; | |
1164 /* Translate back to offsets relative to &a[0]. */ | |
1165 lastofs += hint; | |
1166 ofs += hint; | |
1167 } | |
1168 else { | |
1169 /* key <= a[hint] -- gallop left, until | |
1170 * a[hint - ofs] < key <= a[hint - lastofs] | |
1171 */ | |
1172 const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */ | |
1173 while (ofs < maxofs) { | |
1174 IFLT(*(a-ofs), key) | |
1175 break; | |
1176 /* key <= a[hint - ofs] */ | |
1177 lastofs = ofs; | |
1178 ofs = (ofs << 1) + 1; | |
1179 if (ofs <= 0) /* int overflow */ | |
1180 ofs = maxofs; | |
1181 } | |
1182 if (ofs > maxofs) | |
1183 ofs = maxofs; | |
1184 /* Translate back to positive offsets relative to &a[0]. */ | |
1185 k = lastofs; | |
1186 lastofs = hint - ofs; | |
1187 ofs = hint - k; | |
1188 } | |
1189 a -= hint; | |
1190 | |
1191 assert(-1 <= lastofs && lastofs < ofs && ofs <= n); | |
1192 /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the | |
1193 * right of lastofs but no farther right than ofs. Do a binary | |
1194 * search, with invariant a[lastofs-1] < key <= a[ofs]. | |
1195 */ | |
1196 ++lastofs; | |
1197 while (lastofs < ofs) { | |
1198 Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1); | |
1199 | |
1200 IFLT(a[m], key) | |
1201 lastofs = m+1; /* a[m] < key */ | |
1202 else | |
1203 ofs = m; /* key <= a[m] */ | |
1204 } | |
1205 assert(lastofs == ofs); /* so a[ofs-1] < key <= a[ofs] */ | |
1206 return ofs; | |
1207 | |
1208 fail: | |
1209 return -1; | |
1210 } | |
1211 | |
1212 /* | |
1213 Exactly like gallop_left(), except that if key already exists in a[0:n], | |
1214 finds the position immediately to the right of the rightmost equal value. | |
1215 | |
1216 The return value is the int k in 0..n such that | |
1217 | |
1218 a[k-1] <= key < a[k] | |
1219 | |
1220 or -1 if error. | |
1221 | |
1222 The code duplication is massive, but this is enough different given that | |
1223 we're sticking to "<" comparisons that it's much harder to follow if | |
1224 written as one routine with yet another "left or right?" flag. | |
1225 */ | |
1226 static Py_ssize_t | |
1227 gallop_right(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint) | |
1228 { | |
1229 Py_ssize_t ofs; | |
1230 Py_ssize_t lastofs; | |
1231 Py_ssize_t k; | |
1232 | |
1233 assert(key && a && n > 0 && hint >= 0 && hint < n); | |
1234 | |
1235 a += hint; | |
1236 lastofs = 0; | |
1237 ofs = 1; | |
1238 IFLT(key, *a) { | |
1239 /* key < a[hint] -- gallop left, until | |
1240 * a[hint - ofs] <= key < a[hint - lastofs] | |
1241 */ | |
1242 const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */ | |
1243 while (ofs < maxofs) { | |
1244 IFLT(key, *(a-ofs)) { | |
1245 lastofs = ofs; | |
1246 ofs = (ofs << 1) + 1; | |
1247 if (ofs <= 0) /* int overflow */ | |
1248 ofs = maxofs; | |
1249 } | |
1250 else /* a[hint - ofs] <= key */ | |
1251 break; | |
1252 } | |
1253 if (ofs > maxofs) | |
1254 ofs = maxofs; | |
1255 /* Translate back to positive offsets relative to &a[0]. */ | |
1256 k = lastofs; | |
1257 lastofs = hint - ofs; | |
1258 ofs = hint - k; | |
1259 } | |
1260 else { | |
1261 /* a[hint] <= key -- gallop right, until | |
1262 * a[hint + lastofs] <= key < a[hint + ofs] | |
1263 */ | |
1264 const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */ | |
1265 while (ofs < maxofs) { | |
1266 IFLT(key, a[ofs]) | |
1267 break; | |
1268 /* a[hint + ofs] <= key */ | |
1269 lastofs = ofs; | |
1270 ofs = (ofs << 1) + 1; | |
1271 if (ofs <= 0) /* int overflow */ | |
1272 ofs = maxofs; | |
1273 } | |
1274 if (ofs > maxofs) | |
1275 ofs = maxofs; | |
1276 /* Translate back to offsets relative to &a[0]. */ | |
1277 lastofs += hint; | |
1278 ofs += hint; | |
1279 } | |
1280 a -= hint; | |
1281 | |
1282 assert(-1 <= lastofs && lastofs < ofs && ofs <= n); | |
1283 /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the | |
1284 * right of lastofs but no farther right than ofs. Do a binary | |
1285 * search, with invariant a[lastofs-1] <= key < a[ofs]. | |
1286 */ | |
1287 ++lastofs; | |
1288 while (lastofs < ofs) { | |
1289 Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1); | |
1290 | |
1291 IFLT(key, a[m]) | |
1292 ofs = m; /* key < a[m] */ | |
1293 else | |
1294 lastofs = m+1; /* a[m] <= key */ | |
1295 } | |
1296 assert(lastofs == ofs); /* so a[ofs-1] <= key < a[ofs] */ | |
1297 return ofs; | |
1298 | |
1299 fail: | |
1300 return -1; | |
1301 } | |
1302 | |
1303 /* The maximum number of entries in a MergeState's pending-runs stack. | |
1304 * This is enough to sort arrays of size up to about | |
1305 * 32 * phi ** MAX_MERGE_PENDING | |
1306 * where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array | |
1307 * with 2**64 elements. | |
1308 */ | |
1309 #define MAX_MERGE_PENDING 85 | |
1310 | |
1311 /* When we get into galloping mode, we stay there until both runs win less | |
1312 * often than MIN_GALLOP consecutive times. See listsort.txt for more info. | |
1313 */ | |
1314 #define MIN_GALLOP 7 | |
1315 | |
1316 /* Avoid malloc for small temp arrays. */ | |
1317 #define MERGESTATE_TEMP_SIZE 256 | |
1318 | |
1319 /* One MergeState exists on the stack per invocation of mergesort. It's just | |
1320 * a convenient way to pass state around among the helper functions. | |
1321 */ | |
1322 struct s_slice { | |
1323 sortslice base; | |
1324 Py_ssize_t len; | |
1325 }; | |
1326 | |
1327 typedef struct s_MergeState { | |
1328 /* This controls when we get *into* galloping mode. It's initialized | |
1329 * to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for | |
1330 * random data, and lower for highly structured data. | |
1331 */ | |
1332 Py_ssize_t min_gallop; | |
1333 | |
1334 /* 'a' is temp storage to help with merges. It contains room for | |
1335 * alloced entries. | |
1336 */ | |
1337 sortslice a; /* may point to temparray below */ | |
1338 Py_ssize_t alloced; | |
1339 | |
1340 /* A stack of n pending runs yet to be merged. Run #i starts at | |
1341 * address base[i] and extends for len[i] elements. It's always | |
1342 * true (so long as the indices are in bounds) that | |
1343 * | |
1344 * pending[i].base + pending[i].len == pending[i+1].base | |
1345 * | |
1346 * so we could cut the storage for this, but it's a minor amount, | |
1347 * and keeping all the info explicit simplifies the code. | |
1348 */ | |
1349 int n; | |
1350 struct s_slice pending[MAX_MERGE_PENDING]; | |
1351 | |
1352 /* 'a' points to this when possible, rather than muck with malloc. */ | |
1353 PyObject *temparray[MERGESTATE_TEMP_SIZE]; | |
1354 } MergeState; | |
1355 | |
1356 /* Conceptually a MergeState's constructor. */ | |
1357 static void | |
1358 merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc) | |
1359 { | |
1360 assert(ms != NULL); | |
1361 if (has_keyfunc) { | |
1362 /* The temporary space for merging will need at most half the list | |
1363 * size rounded up. Use the minimum possible space so we can use the | |
1364 * rest of temparray for other things. In particular, if there is | |
1365 * enough extra space, listsort() will use it to store the keys. | |
1366 */ | |
1367 ms->alloced = (list_size + 1) / 2; | |
1368 | |
1369 /* ms->alloced describes how many keys will be stored at | |
1370 ms->temparray, but we also need to store the values. Hence, | |
1371 ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */ | |
1372 if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced) | |
1373 ms->alloced = MERGESTATE_TEMP_SIZE / 2; | |
1374 ms->a.values = &ms->temparray[ms->alloced]; | |
1375 } | |
1376 else { | |
1377 ms->alloced = MERGESTATE_TEMP_SIZE; | |
1378 ms->a.values = NULL; | |
1379 } | |
1380 ms->a.keys = ms->temparray; | |
1381 ms->n = 0; | |
1382 ms->min_gallop = MIN_GALLOP; | |
1383 } | |
1384 | |
1385 /* Free all the temp memory owned by the MergeState. This must be called | |
1386 * when you're done with a MergeState, and may be called before then if | |
1387 * you want to free the temp memory early. | |
1388 */ | |
1389 static void | |
1390 merge_freemem(MergeState *ms) | |
1391 { | |
1392 assert(ms != NULL); | |
1393 if (ms->a.keys != ms->temparray) | |
1394 PyMem_Free(ms->a.keys); | |
1395 } | |
1396 | |
1397 /* Ensure enough temp memory for 'need' array slots is available. | |
1398 * Returns 0 on success and -1 if the memory can't be gotten. | |
1399 */ | |
1400 static int | |
1401 merge_getmem(MergeState *ms, Py_ssize_t need) | |
1402 { | |
1403 int multiplier; | |
1404 | |
1405 assert(ms != NULL); | |
1406 if (need <= ms->alloced) | |
1407 return 0; | |
1408 | |
1409 multiplier = ms->a.values != NULL ? 2 : 1; | |
1410 | |
1411 /* Don't realloc! That can cost cycles to copy the old data, but | |
1412 * we don't care what's in the block. | |
1413 */ | |
1414 merge_freemem(ms); | |
1415 if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject*) / multiplier) { | |
1416 PyErr_NoMemory(); | |
1417 return -1; | |
1418 } | |
1419 ms->a.keys = (PyObject**)PyMem_Malloc(multiplier * need | |
1420 * sizeof(PyObject *)); | |
1421 if (ms->a.keys != NULL) { | |
1422 ms->alloced = need; | |
1423 if (ms->a.values != NULL) | |
1424 ms->a.values = &ms->a.keys[need]; | |
1425 return 0; | |
1426 } | |
1427 PyErr_NoMemory(); | |
1428 return -1; | |
1429 } | |
1430 #define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \ | |
1431 merge_getmem(MS, NEED)) | |
1432 | |
1433 /* Merge the na elements starting at ssa with the nb elements starting at | |
1434 * ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0. | |
1435 * Must also have that ssa.keys[na-1] belongs at the end of the merge, and | |
1436 * should have na <= nb. See listsort.txt for more info. Return 0 if | |
1437 * successful, -1 if error. | |
1438 */ | |
1439 static Py_ssize_t | |
1440 merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na, | |
1441 sortslice ssb, Py_ssize_t nb) | |
1442 { | |
1443 Py_ssize_t k; | |
1444 sortslice dest; | |
1445 int result = -1; /* guilty until proved innocent */ | |
1446 Py_ssize_t min_gallop; | |
1447 | |
1448 assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0); | |
1449 assert(ssa.keys + na == ssb.keys); | |
1450 if (MERGE_GETMEM(ms, na) < 0) | |
1451 return -1; | |
1452 sortslice_memcpy(&ms->a, 0, &ssa, 0, na); | |
1453 dest = ssa; | |
1454 ssa = ms->a; | |
1455 | |
1456 sortslice_copy_incr(&dest, &ssb); | |
1457 --nb; | |
1458 if (nb == 0) | |
1459 goto Succeed; | |
1460 if (na == 1) | |
1461 goto CopyB; | |
1462 | |
1463 min_gallop = ms->min_gallop; | |
1464 for (;;) { | |
1465 Py_ssize_t acount = 0; /* # of times A won in a row */ | |
1466 Py_ssize_t bcount = 0; /* # of times B won in a row */ | |
1467 | |
1468 /* Do the straightforward thing until (if ever) one run | |
1469 * appears to win consistently. | |
1470 */ | |
1471 for (;;) { | |
1472 assert(na > 1 && nb > 0); | |
1473 k = ISLT(ssb.keys[0], ssa.keys[0]); | |
1474 if (k) { | |
1475 if (k < 0) | |
1476 goto Fail; | |
1477 sortslice_copy_incr(&dest, &ssb); | |
1478 ++bcount; | |
1479 acount = 0; | |
1480 --nb; | |
1481 if (nb == 0) | |
1482 goto Succeed; | |
1483 if (bcount >= min_gallop) | |
1484 break; | |
1485 } | |
1486 else { | |
1487 sortslice_copy_incr(&dest, &ssa); | |
1488 ++acount; | |
1489 bcount = 0; | |
1490 --na; | |
1491 if (na == 1) | |
1492 goto CopyB; | |
1493 if (acount >= min_gallop) | |
1494 break; | |
1495 } | |
1496 } | |
1497 | |
1498 /* One run is winning so consistently that galloping may | |
1499 * be a huge win. So try that, and continue galloping until | |
1500 * (if ever) neither run appears to be winning consistently | |
1501 * anymore. | |
1502 */ | |
1503 ++min_gallop; | |
1504 do { | |
1505 assert(na > 1 && nb > 0); | |
1506 min_gallop -= min_gallop > 1; | |
1507 ms->min_gallop = min_gallop; | |
1508 k = gallop_right(ssb.keys[0], ssa.keys, na, 0); | |
1509 acount = k; | |
1510 if (k) { | |
1511 if (k < 0) | |
1512 goto Fail; | |
1513 sortslice_memcpy(&dest, 0, &ssa, 0, k); | |
1514 sortslice_advance(&dest, k); | |
1515 sortslice_advance(&ssa, k); | |
1516 na -= k; | |
1517 if (na == 1) | |
1518 goto CopyB; | |
1519 /* na==0 is impossible now if the comparison | |
1520 * function is consistent, but we can't assume | |
1521 * that it is. | |
1522 */ | |
1523 if (na == 0) | |
1524 goto Succeed; | |
1525 } | |
1526 sortslice_copy_incr(&dest, &ssb); | |
1527 --nb; | |
1528 if (nb == 0) | |
1529 goto Succeed; | |
1530 | |
1531 k = gallop_left(ssa.keys[0], ssb.keys, nb, 0); | |
1532 bcount = k; | |
1533 if (k) { | |
1534 if (k < 0) | |
1535 goto Fail; | |
1536 sortslice_memmove(&dest, 0, &ssb, 0, k); | |
1537 sortslice_advance(&dest, k); | |
1538 sortslice_advance(&ssb, k); | |
1539 nb -= k; | |
1540 if (nb == 0) | |
1541 goto Succeed; | |
1542 } | |
1543 sortslice_copy_incr(&dest, &ssa); | |
1544 --na; | |
1545 if (na == 1) | |
1546 goto CopyB; | |
1547 } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP); | |
1548 ++min_gallop; /* penalize it for leaving galloping mode */ | |
1549 ms->min_gallop = min_gallop; | |
1550 } | |
1551 Succeed: | |
1552 result = 0; | |
1553 Fail: | |
1554 if (na) | |
1555 sortslice_memcpy(&dest, 0, &ssa, 0, na); | |
1556 return result; | |
1557 CopyB: | |
1558 assert(na == 1 && nb > 0); | |
1559 /* The last element of ssa belongs at the end of the merge. */ | |
1560 sortslice_memmove(&dest, 0, &ssb, 0, nb); | |
1561 sortslice_copy(&dest, nb, &ssa, 0); | |
1562 return 0; | |
1563 } | |
1564 | |
1565 /* Merge the na elements starting at pa with the nb elements starting at | |
1566 * ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0. | |
1567 * Must also have that ssa.keys[na-1] belongs at the end of the merge, and | |
1568 * should have na >= nb. See listsort.txt for more info. Return 0 if | |
1569 * successful, -1 if error. | |
1570 */ | |
1571 static Py_ssize_t | |
1572 merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na, | |
1573 sortslice ssb, Py_ssize_t nb) | |
1574 { | |
1575 Py_ssize_t k; | |
1576 sortslice dest, basea, baseb; | |
1577 int result = -1; /* guilty until proved innocent */ | |
1578 Py_ssize_t min_gallop; | |
1579 | |
1580 assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0); | |
1581 assert(ssa.keys + na == ssb.keys); | |
1582 if (MERGE_GETMEM(ms, nb) < 0) | |
1583 return -1; | |
1584 dest = ssb; | |
1585 sortslice_advance(&dest, nb-1); | |
1586 sortslice_memcpy(&ms->a, 0, &ssb, 0, nb); | |
1587 basea = ssa; | |
1588 baseb = ms->a; | |
1589 ssb.keys = ms->a.keys + nb - 1; | |
1590 if (ssb.values != NULL) | |
1591 ssb.values = ms->a.values + nb - 1; | |
1592 sortslice_advance(&ssa, na - 1); | |
1593 | |
1594 sortslice_copy_decr(&dest, &ssa); | |
1595 --na; | |
1596 if (na == 0) | |
1597 goto Succeed; | |
1598 if (nb == 1) | |
1599 goto CopyA; | |
1600 | |
1601 min_gallop = ms->min_gallop; | |
1602 for (;;) { | |
1603 Py_ssize_t acount = 0; /* # of times A won in a row */ | |
1604 Py_ssize_t bcount = 0; /* # of times B won in a row */ | |
1605 | |
1606 /* Do the straightforward thing until (if ever) one run | |
1607 * appears to win consistently. | |
1608 */ | |
1609 for (;;) { | |
1610 assert(na > 0 && nb > 1); | |
1611 k = ISLT(ssb.keys[0], ssa.keys[0]); | |
1612 if (k) { | |
1613 if (k < 0) | |
1614 goto Fail; | |
1615 sortslice_copy_decr(&dest, &ssa); | |
1616 ++acount; | |
1617 bcount = 0; | |
1618 --na; | |
1619 if (na == 0) | |
1620 goto Succeed; | |
1621 if (acount >= min_gallop) | |
1622 break; | |
1623 } | |
1624 else { | |
1625 sortslice_copy_decr(&dest, &ssb); | |
1626 ++bcount; | |
1627 acount = 0; | |
1628 --nb; | |
1629 if (nb == 1) | |
1630 goto CopyA; | |
1631 if (bcount >= min_gallop) | |
1632 break; | |
1633 } | |
1634 } | |
1635 | |
1636 /* One run is winning so consistently that galloping may | |
1637 * be a huge win. So try that, and continue galloping until | |
1638 * (if ever) neither run appears to be winning consistently | |
1639 * anymore. | |
1640 */ | |
1641 ++min_gallop; | |
1642 do { | |
1643 assert(na > 0 && nb > 1); | |
1644 min_gallop -= min_gallop > 1; | |
1645 ms->min_gallop = min_gallop; | |
1646 k = gallop_right(ssb.keys[0], basea.keys, na, na-1); | |
1647 if (k < 0) | |
1648 goto Fail; | |
1649 k = na - k; | |
1650 acount = k; | |
1651 if (k) { | |
1652 sortslice_advance(&dest, -k); | |
1653 sortslice_advance(&ssa, -k); | |
1654 sortslice_memmove(&dest, 1, &ssa, 1, k); | |
1655 na -= k; | |
1656 if (na == 0) | |
1657 goto Succeed; | |
1658 } | |
1659 sortslice_copy_decr(&dest, &ssb); | |
1660 --nb; | |
1661 if (nb == 1) | |
1662 goto CopyA; | |
1663 | |
1664 k = gallop_left(ssa.keys[0], baseb.keys, nb, nb-1); | |
1665 if (k < 0) | |
1666 goto Fail; | |
1667 k = nb - k; | |
1668 bcount = k; | |
1669 if (k) { | |
1670 sortslice_advance(&dest, -k); | |
1671 sortslice_advance(&ssb, -k); | |
1672 sortslice_memcpy(&dest, 1, &ssb, 1, k); | |
1673 nb -= k; | |
1674 if (nb == 1) | |
1675 goto CopyA; | |
1676 /* nb==0 is impossible now if the comparison | |
1677 * function is consistent, but we can't assume | |
1678 * that it is. | |
1679 */ | |
1680 if (nb == 0) | |
1681 goto Succeed; | |
1682 } | |
1683 sortslice_copy_decr(&dest, &ssa); | |
1684 --na; | |
1685 if (na == 0) | |
1686 goto Succeed; | |
1687 } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP); | |
1688 ++min_gallop; /* penalize it for leaving galloping mode */ | |
1689 ms->min_gallop = min_gallop; | |
1690 } | |
1691 Succeed: | |
1692 result = 0; | |
1693 Fail: | |
1694 if (nb) | |
1695 sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb); | |
1696 return result; | |
1697 CopyA: | |
1698 assert(nb == 1 && na > 0); | |
1699 /* The first element of ssb belongs at the front of the merge. */ | |
1700 sortslice_memmove(&dest, 1-na, &ssa, 1-na, na); | |
1701 sortslice_advance(&dest, -na); | |
1702 sortslice_advance(&ssa, -na); | |
1703 sortslice_copy(&dest, 0, &ssb, 0); | |
1704 return 0; | |
1705 } | |
1706 | |
1707 /* Merge the two runs at stack indices i and i+1. | |
1708 * Returns 0 on success, -1 on error. | |
1709 */ | |
1710 static Py_ssize_t | |
1711 merge_at(MergeState *ms, Py_ssize_t i) | |
1712 { | |
1713 sortslice ssa, ssb; | |
1714 Py_ssize_t na, nb; | |
1715 Py_ssize_t k; | |
1716 | |
1717 assert(ms != NULL); | |
1718 assert(ms->n >= 2); | |
1719 assert(i >= 0); | |
1720 assert(i == ms->n - 2 || i == ms->n - 3); | |
1721 | |
1722 ssa = ms->pending[i].base; | |
1723 na = ms->pending[i].len; | |
1724 ssb = ms->pending[i+1].base; | |
1725 nb = ms->pending[i+1].len; | |
1726 assert(na > 0 && nb > 0); | |
1727 assert(ssa.keys + na == ssb.keys); | |
1728 | |
1729 /* Record the length of the combined runs; if i is the 3rd-last | |
1730 * run now, also slide over the last run (which isn't involved | |
1731 * in this merge). The current run i+1 goes away in any case. | |
1732 */ | |
1733 ms->pending[i].len = na + nb; | |
1734 if (i == ms->n - 3) | |
1735 ms->pending[i+1] = ms->pending[i+2]; | |
1736 --ms->n; | |
1737 | |
1738 /* Where does b start in a? Elements in a before that can be | |
1739 * ignored (already in place). | |
1740 */ | |
1741 k = gallop_right(*ssb.keys, ssa.keys, na, 0); | |
1742 if (k < 0) | |
1743 return -1; | |
1744 sortslice_advance(&ssa, k); | |
1745 na -= k; | |
1746 if (na == 0) | |
1747 return 0; | |
1748 | |
1749 /* Where does a end in b? Elements in b after that can be | |
1750 * ignored (already in place). | |
1751 */ | |
1752 nb = gallop_left(ssa.keys[na-1], ssb.keys, nb, nb-1); | |
1753 if (nb <= 0) | |
1754 return nb; | |
1755 | |
1756 /* Merge what remains of the runs, using a temp array with | |
1757 * min(na, nb) elements. | |
1758 */ | |
1759 if (na <= nb) | |
1760 return merge_lo(ms, ssa, na, ssb, nb); | |
1761 else | |
1762 return merge_hi(ms, ssa, na, ssb, nb); | |
1763 } | |
1764 | |
1765 /* Examine the stack of runs waiting to be merged, merging adjacent runs | |
1766 * until the stack invariants are re-established: | |
1767 * | |
1768 * 1. len[-3] > len[-2] + len[-1] | |
1769 * 2. len[-2] > len[-1] | |
1770 * | |
1771 * See listsort.txt for more info. | |
1772 * | |
1773 * Returns 0 on success, -1 on error. | |
1774 */ | |
1775 static int | |
1776 merge_collapse(MergeState *ms) | |
1777 { | |
1778 struct s_slice *p = ms->pending; | |
1779 | |
1780 assert(ms); | |
1781 while (ms->n > 1) { | |
1782 Py_ssize_t n = ms->n - 2; | |
1783 if (n > 0 && p[n-1].len <= p[n].len + p[n+1].len) { | |
1784 if (p[n-1].len < p[n+1].len) | |
1785 --n; | |
1786 if (merge_at(ms, n) < 0) | |
1787 return -1; | |
1788 } | |
1789 else if (p[n].len <= p[n+1].len) { | |
1790 if (merge_at(ms, n) < 0) | |
1791 return -1; | |
1792 } | |
1793 else | |
1794 break; | |
1795 } | |
1796 return 0; | |
1797 } | |
1798 | |
1799 /* Regardless of invariants, merge all runs on the stack until only one | |
1800 * remains. This is used at the end of the mergesort. | |
1801 * | |
1802 * Returns 0 on success, -1 on error. | |
1803 */ | |
1804 static int | |
1805 merge_force_collapse(MergeState *ms) | |
1806 { | |
1807 struct s_slice *p = ms->pending; | |
1808 | |
1809 assert(ms); | |
1810 while (ms->n > 1) { | |
1811 Py_ssize_t n = ms->n - 2; | |
1812 if (n > 0 && p[n-1].len < p[n+1].len) | |
1813 --n; | |
1814 if (merge_at(ms, n) < 0) | |
1815 return -1; | |
1816 } | |
1817 return 0; | |
1818 } | |
1819 | |
1820 /* Compute a good value for the minimum run length; natural runs shorter | |
1821 * than this are boosted artificially via binary insertion. | |
1822 * | |
1823 * If n < 64, return n (it's too small to bother with fancy stuff). | |
1824 * Else if n is an exact power of 2, return 32. | |
1825 * Else return an int k, 32 <= k <= 64, such that n/k is close to, but | |
1826 * strictly less than, an exact power of 2. | |
1827 * | |
1828 * See listsort.txt for more info. | |
1829 */ | |
1830 static Py_ssize_t | |
1831 merge_compute_minrun(Py_ssize_t n) | |
1832 { | |
1833 Py_ssize_t r = 0; /* becomes 1 if any 1 bits are shifted off */ | |
1834 | |
1835 assert(n >= 0); | |
1836 while (n >= 64) { | |
1837 r |= n & 1; | |
1838 n >>= 1; | |
1839 } | |
1840 return n + r; | |
1841 } | |
1842 | |
1843 static void | |
1844 reverse_sortslice(sortslice *s, Py_ssize_t n) | |
1845 { | |
1846 reverse_slice(s->keys, &s->keys[n]); | |
1847 if (s->values != NULL) | |
1848 reverse_slice(s->values, &s->values[n]); | |
1849 } | |
1850 | |
1851 /* An adaptive, stable, natural mergesort. See listsort.txt. | |
1852 * Returns Py_None on success, NULL on error. Even in case of error, the | |
1853 * list will be some permutation of its input state (nothing is lost or | |
1854 * duplicated). | |
1855 */ | |
1856 static PyObject * | |
1857 listsort(PyListObject *self, PyObject *args, PyObject *kwds) | |
1858 { | |
1859 MergeState ms; | |
1860 Py_ssize_t nremaining; | |
1861 Py_ssize_t minrun; | |
1862 sortslice lo; | |
1863 Py_ssize_t saved_ob_size, saved_allocated; | |
1864 PyObject **saved_ob_item; | |
1865 PyObject **final_ob_item; | |
1866 PyObject *result = NULL; /* guilty until proved innocent */ | |
1867 int reverse = 0; | |
1868 PyObject *keyfunc = NULL; | |
1869 Py_ssize_t i; | |
1870 static char *kwlist[] = {"key", "reverse", 0}; | |
1871 PyObject **keys; | |
1872 | |
1873 assert(self != NULL); | |
1874 assert (PyList_Check(self)); | |
1875 if (args != NULL) { | |
1876 if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:sort", | |
1877 kwlist, &keyfunc, &reverse)) | |
1878 return NULL; | |
1879 if (Py_SIZE(args) > 0) { | |
1880 PyErr_SetString(PyExc_TypeError, | |
1881 "must use keyword argument for key function"); | |
1882 return NULL; | |
1883 } | |
1884 } | |
1885 if (keyfunc == Py_None) | |
1886 keyfunc = NULL; | |
1887 | |
1888 /* The list is temporarily made empty, so that mutations performed | |
1889 * by comparison functions can't affect the slice of memory we're | |
1890 * sorting (allowing mutations during sorting is a core-dump | |
1891 * factory, since ob_item may change). | |
1892 */ | |
1893 saved_ob_size = Py_SIZE(self); | |
1894 saved_ob_item = self->ob_item; | |
1895 saved_allocated = self->allocated; | |
1896 Py_SIZE(self) = 0; | |
1897 self->ob_item = NULL; | |
1898 self->allocated = -1; /* any operation will reset it to >= 0 */ | |
1899 | |
1900 if (keyfunc == NULL) { | |
1901 keys = NULL; | |
1902 lo.keys = saved_ob_item; | |
1903 lo.values = NULL; | |
1904 } | |
1905 else { | |
1906 if (saved_ob_size < MERGESTATE_TEMP_SIZE/2) | |
1907 /* Leverage stack space we allocated but won't otherwise use */ | |
1908 keys = &ms.temparray[saved_ob_size+1]; | |
1909 else { | |
1910 keys = PyMem_MALLOC(sizeof(PyObject *) * saved_ob_size); | |
1911 if (keys == NULL) | |
1912 return NULL; | |
1913 } | |
1914 | |
1915 for (i = 0; i < saved_ob_size ; i++) { | |
1916 keys[i] = PyObject_CallFunctionObjArgs(keyfunc, saved_ob_item[i], | |
1917 NULL); | |
1918 if (keys[i] == NULL) { | |
1919 for (i=i-1 ; i>=0 ; i--) | |
1920 Py_DECREF(keys[i]); | |
1921 if (keys != &ms.temparray[saved_ob_size+1]) | |
1922 PyMem_FREE(keys); | |
1923 goto keyfunc_fail; | |
1924 } | |
1925 } | |
1926 | |
1927 lo.keys = keys; | |
1928 lo.values = saved_ob_item; | |
1929 } | |
1930 | |
1931 merge_init(&ms, saved_ob_size, keys != NULL); | |
1932 | |
1933 nremaining = saved_ob_size; | |
1934 if (nremaining < 2) | |
1935 goto succeed; | |
1936 | |
1937 /* Reverse sort stability achieved by initially reversing the list, | |
1938 applying a stable forward sort, then reversing the final result. */ | |
1939 if (reverse) { | |
1940 if (keys != NULL) | |
1941 reverse_slice(&keys[0], &keys[saved_ob_size]); | |
1942 reverse_slice(&saved_ob_item[0], &saved_ob_item[saved_ob_size]); | |
1943 } | |
1944 | |
1945 /* March over the array once, left to right, finding natural runs, | |
1946 * and extending short natural runs to minrun elements. | |
1947 */ | |
1948 minrun = merge_compute_minrun(nremaining); | |
1949 do { | |
1950 int descending; | |
1951 Py_ssize_t n; | |
1952 | |
1953 /* Identify next run. */ | |
1954 n = count_run(lo.keys, lo.keys + nremaining, &descending); | |
1955 if (n < 0) | |
1956 goto fail; | |
1957 if (descending) | |
1958 reverse_sortslice(&lo, n); | |
1959 /* If short, extend to min(minrun, nremaining). */ | |
1960 if (n < minrun) { | |
1961 const Py_ssize_t force = nremaining <= minrun ? | |
1962 nremaining : minrun; | |
1963 if (binarysort(lo, lo.keys + force, lo.keys + n) < 0) | |
1964 goto fail; | |
1965 n = force; | |
1966 } | |
1967 /* Push run onto pending-runs stack, and maybe merge. */ | |
1968 assert(ms.n < MAX_MERGE_PENDING); | |
1969 ms.pending[ms.n].base = lo; | |
1970 ms.pending[ms.n].len = n; | |
1971 ++ms.n; | |
1972 if (merge_collapse(&ms) < 0) | |
1973 goto fail; | |
1974 /* Advance to find next run. */ | |
1975 sortslice_advance(&lo, n); | |
1976 nremaining -= n; | |
1977 } while (nremaining); | |
1978 | |
1979 if (merge_force_collapse(&ms) < 0) | |
1980 goto fail; | |
1981 assert(ms.n == 1); | |
1982 assert(keys == NULL | |
1983 ? ms.pending[0].base.keys == saved_ob_item | |
1984 : ms.pending[0].base.keys == &keys[0]); | |
1985 assert(ms.pending[0].len == saved_ob_size); | |
1986 lo = ms.pending[0].base; | |
1987 | |
1988 succeed: | |
1989 result = Py_None; | |
1990 fail: | |
1991 if (keys != NULL) { | |
1992 for (i = 0; i < saved_ob_size; i++) | |
1993 Py_DECREF(keys[i]); | |
1994 if (keys != &ms.temparray[saved_ob_size+1]) | |
1995 PyMem_FREE(keys); | |
1996 } | |
1997 | |
1998 if (self->allocated != -1 && result != NULL) { | |
1999 /* The user mucked with the list during the sort, | |
2000 * and we don't already have another error to report. | |
2001 */ | |
2002 PyErr_SetString(PyExc_ValueError, "list modified during sort"); | |
2003 result = NULL; | |
2004 } | |
2005 | |
2006 if (reverse && saved_ob_size > 1) | |
2007 reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size); | |
2008 | |
2009 merge_freemem(&ms); | |
2010 | |
2011 keyfunc_fail: | |
2012 final_ob_item = self->ob_item; | |
2013 i = Py_SIZE(self); | |
2014 Py_SIZE(self) = saved_ob_size; | |
2015 self->ob_item = saved_ob_item; | |
2016 self->allocated = saved_allocated; | |
2017 if (final_ob_item != NULL) { | |
2018 /* we cannot use list_clear() for this because it does not | |
2019 guarantee that the list is really empty when it returns */ | |
2020 while (--i >= 0) { | |
2021 Py_XDECREF(final_ob_item[i]); | |
2022 } | |
2023 PyMem_FREE(final_ob_item); | |
2024 } | |
2025 Py_XINCREF(result); | |
2026 return result; | |
2027 } | |
2028 #undef IFLT | |
2029 #undef ISLT | |
2030 | |
2031 int | |
2032 PyList_Sort(PyObject *v) | |
2033 { | |
2034 if (v == NULL || !PyList_Check(v)) { | |
2035 PyErr_BadInternalCall(); | |
2036 return -1; | |
2037 } | |
2038 v = listsort((PyListObject *)v, (PyObject *)NULL, (PyObject *)NULL); | |
2039 if (v == NULL) | |
2040 return -1; | |
2041 Py_DECREF(v); | |
2042 return 0; | |
2043 } | |
2044 | |
2045 static PyObject * | |
2046 listreverse(PyListObject *self) | |
2047 { | |
2048 if (Py_SIZE(self) > 1) | |
2049 reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self)); | |
2050 Py_RETURN_NONE; | |
2051 } | |
2052 | |
2053 int | |
2054 PyList_Reverse(PyObject *v) | |
2055 { | |
2056 PyListObject *self = (PyListObject *)v; | |
2057 | |
2058 if (v == NULL || !PyList_Check(v)) { | |
2059 PyErr_BadInternalCall(); | |
2060 return -1; | |
2061 } | |
2062 if (Py_SIZE(self) > 1) | |
2063 reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self)); | |
2064 return 0; | |
2065 } | |
2066 | |
2067 PyObject * | |
2068 PyList_AsTuple(PyObject *v) | |
2069 { | |
2070 PyObject *w; | |
2071 PyObject **p, **q; | |
2072 Py_ssize_t n; | |
2073 if (v == NULL || !PyList_Check(v)) { | |
2074 PyErr_BadInternalCall(); | |
2075 return NULL; | |
2076 } | |
2077 n = Py_SIZE(v); | |
2078 w = PyTuple_New(n); | |
2079 if (w == NULL) | |
2080 return NULL; | |
2081 p = ((PyTupleObject *)w)->ob_item; | |
2082 q = ((PyListObject *)v)->ob_item; | |
2083 while (--n >= 0) { | |
2084 Py_INCREF(*q); | |
2085 *p = *q; | |
2086 p++; | |
2087 q++; | |
2088 } | |
2089 return w; | |
2090 } | |
2091 | |
2092 static PyObject * | |
2093 listindex(PyListObject *self, PyObject *args) | |
2094 { | |
2095 Py_ssize_t i, start=0, stop=Py_SIZE(self); | |
2096 PyObject *v; | |
2097 | |
2098 if (!PyArg_ParseTuple(args, "O|O&O&:index", &v, | |
2099 _PyEval_SliceIndex, &start, | |
2100 _PyEval_SliceIndex, &stop)) | |
2101 return NULL; | |
2102 if (start < 0) { | |
2103 start += Py_SIZE(self); | |
2104 if (start < 0) | |
2105 start = 0; | |
2106 } | |
2107 if (stop < 0) { | |
2108 stop += Py_SIZE(self); | |
2109 if (stop < 0) | |
2110 stop = 0; | |
2111 } | |
2112 for (i = start; i < stop && i < Py_SIZE(self); i++) { | |
2113 int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); | |
2114 if (cmp > 0) | |
2115 return PyLong_FromSsize_t(i); | |
2116 else if (cmp < 0) | |
2117 return NULL; | |
2118 } | |
2119 PyErr_Format(PyExc_ValueError, "%R is not in list", v); | |
2120 return NULL; | |
2121 } | |
2122 | |
2123 static PyObject * | |
2124 listcount(PyListObject *self, PyObject *v) | |
2125 { | |
2126 Py_ssize_t count = 0; | |
2127 Py_ssize_t i; | |
2128 | |
2129 for (i = 0; i < Py_SIZE(self); i++) { | |
2130 int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); | |
2131 if (cmp > 0) | |
2132 count++; | |
2133 else if (cmp < 0) | |
2134 return NULL; | |
2135 } | |
2136 return PyLong_FromSsize_t(count); | |
2137 } | |
2138 | |
2139 static PyObject * | |
2140 listremove(PyListObject *self, PyObject *v) | |
2141 { | |
2142 Py_ssize_t i; | |
2143 | |
2144 for (i = 0; i < Py_SIZE(self); i++) { | |
2145 int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); | |
2146 if (cmp > 0) { | |
2147 if (list_ass_slice(self, i, i+1, | |
2148 (PyObject *)NULL) == 0) | |
2149 Py_RETURN_NONE; | |
2150 return NULL; | |
2151 } | |
2152 else if (cmp < 0) | |
2153 return NULL; | |
2154 } | |
2155 PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list"); | |
2156 return NULL; | |
2157 } | |
2158 | |
2159 static int | |
2160 list_traverse(PyListObject *o, visitproc visit, void *arg) | |
2161 { | |
2162 Py_ssize_t i; | |
2163 | |
2164 for (i = Py_SIZE(o); --i >= 0; ) | |
2165 Py_VISIT(o->ob_item[i]); | |
2166 return 0; | |
2167 } | |
2168 | |
2169 static PyObject * | |
2170 list_richcompare(PyObject *v, PyObject *w, int op) | |
2171 { | |
2172 PyListObject *vl, *wl; | |
2173 Py_ssize_t i; | |
2174 | |
2175 if (!PyList_Check(v) || !PyList_Check(w)) | |
2176 Py_RETURN_NOTIMPLEMENTED; | |
2177 | |
2178 vl = (PyListObject *)v; | |
2179 wl = (PyListObject *)w; | |
2180 | |
2181 if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) { | |
2182 /* Shortcut: if the lengths differ, the lists differ */ | |
2183 PyObject *res; | |
2184 if (op == Py_EQ) | |
2185 res = Py_False; | |
2186 else | |
2187 res = Py_True; | |
2188 Py_INCREF(res); | |
2189 return res; | |
2190 } | |
2191 | |
2192 /* Search for the first index where items are different */ | |
2193 for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) { | |
2194 int k = PyObject_RichCompareBool(vl->ob_item[i], | |
2195 wl->ob_item[i], Py_EQ); | |
2196 if (k < 0) | |
2197 return NULL; | |
2198 if (!k) | |
2199 break; | |
2200 } | |
2201 | |
2202 if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) { | |
2203 /* No more items to compare -- compare sizes */ | |
2204 Py_ssize_t vs = Py_SIZE(vl); | |
2205 Py_ssize_t ws = Py_SIZE(wl); | |
2206 int cmp; | |
2207 PyObject *res; | |
2208 switch (op) { | |
2209 case Py_LT: cmp = vs < ws; break; | |
2210 case Py_LE: cmp = vs <= ws; break; | |
2211 case Py_EQ: cmp = vs == ws; break; | |
2212 case Py_NE: cmp = vs != ws; break; | |
2213 case Py_GT: cmp = vs > ws; break; | |
2214 case Py_GE: cmp = vs >= ws; break; | |
2215 default: return NULL; /* cannot happen */ | |
2216 } | |
2217 if (cmp) | |
2218 res = Py_True; | |
2219 else | |
2220 res = Py_False; | |
2221 Py_INCREF(res); | |
2222 return res; | |
2223 } | |
2224 | |
2225 /* We have an item that differs -- shortcuts for EQ/NE */ | |
2226 if (op == Py_EQ) { | |
2227 Py_INCREF(Py_False); | |
2228 return Py_False; | |
2229 } | |
2230 if (op == Py_NE) { | |
2231 Py_INCREF(Py_True); | |
2232 return Py_True; | |
2233 } | |
2234 | |
2235 /* Compare the final item again using the proper operator */ | |
2236 return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op); | |
2237 } | |
2238 | |
2239 static int | |
2240 list_init(PyListObject *self, PyObject *args, PyObject *kw) | |
2241 { | |
2242 PyObject *arg = NULL; | |
2243 static char *kwlist[] = {"sequence", 0}; | |
2244 | |
2245 if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:list", kwlist, &arg)) | |
2246 return -1; | |
2247 | |
2248 /* Verify list invariants established by PyType_GenericAlloc() */ | |
2249 assert(0 <= Py_SIZE(self)); | |
2250 assert(Py_SIZE(self) <= self->allocated || self->allocated == -1); | |
2251 assert(self->ob_item != NULL || | |
2252 self->allocated == 0 || self->allocated == -1); | |
2253 | |
2254 /* Empty previous contents */ | |
2255 if (self->ob_item != NULL) { | |
2256 (void)list_clear(self); | |
2257 } | |
2258 if (arg != NULL) { | |
2259 PyObject *rv = listextend(self, arg); | |
2260 if (rv == NULL) | |
2261 return -1; | |
2262 Py_DECREF(rv); | |
2263 } | |
2264 return 0; | |
2265 } | |
2266 | |
2267 static PyObject * | |
2268 list_sizeof(PyListObject *self) | |
2269 { | |
2270 Py_ssize_t res; | |
2271 | |
2272 res = sizeof(PyListObject) + self->allocated * sizeof(void*); | |
2273 return PyLong_FromSsize_t(res); | |
2274 } | |
2275 | |
2276 static PyObject *list_iter(PyObject *seq); | |
2277 static PyObject *list_reversed(PyListObject* seq, PyObject* unused); | |
2278 | |
2279 PyDoc_STRVAR(getitem_doc, | |
2280 "x.__getitem__(y) <==> x[y]"); | |
2281 PyDoc_STRVAR(reversed_doc, | |
2282 "L.__reversed__() -- return a reverse iterator over the list"); | |
2283 PyDoc_STRVAR(sizeof_doc, | |
2284 "L.__sizeof__() -- size of L in memory, in bytes"); | |
2285 PyDoc_STRVAR(clear_doc, | |
2286 "L.clear() -> None -- remove all items from L"); | |
2287 PyDoc_STRVAR(copy_doc, | |
2288 "L.copy() -> list -- a shallow copy of L"); | |
2289 PyDoc_STRVAR(append_doc, | |
2290 "L.append(object) -> None -- append object to end"); | |
2291 PyDoc_STRVAR(extend_doc, | |
2292 "L.extend(iterable) -> None -- extend list by appending elements from the iterable"); | |
2293 PyDoc_STRVAR(insert_doc, | |
2294 "L.insert(index, object) -- insert object before index"); | |
2295 PyDoc_STRVAR(pop_doc, | |
2296 "L.pop([index]) -> item -- remove and return item at index (default last).\n" | |
2297 "Raises IndexError if list is empty or index is out of range."); | |
2298 PyDoc_STRVAR(remove_doc, | |
2299 "L.remove(value) -> None -- remove first occurrence of value.\n" | |
2300 "Raises ValueError if the value is not present."); | |
2301 PyDoc_STRVAR(index_doc, | |
2302 "L.index(value, [start, [stop]]) -> integer -- return first index of value.\n" | |
2303 "Raises ValueError if the value is not present."); | |
2304 PyDoc_STRVAR(count_doc, | |
2305 "L.count(value) -> integer -- return number of occurrences of value"); | |
2306 PyDoc_STRVAR(reverse_doc, | |
2307 "L.reverse() -- reverse *IN PLACE*"); | |
2308 PyDoc_STRVAR(sort_doc, | |
2309 "L.sort(key=None, reverse=False) -> None -- stable sort *IN PLACE*"); | |
2310 | |
2311 static PyObject *list_subscript(PyListObject*, PyObject*); | |
2312 | |
2313 static PyMethodDef list_methods[] = { | |
2314 {"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, getitem_doc}, | |
2315 {"__reversed__",(PyCFunction)list_reversed, METH_NOARGS, reversed_doc}, | |
2316 {"__sizeof__", (PyCFunction)list_sizeof, METH_NOARGS, sizeof_doc}, | |
2317 {"clear", (PyCFunction)listclear, METH_NOARGS, clear_doc}, | |
2318 {"copy", (PyCFunction)listcopy, METH_NOARGS, copy_doc}, | |
2319 {"append", (PyCFunction)listappend, METH_O, append_doc}, | |
2320 {"insert", (PyCFunction)listinsert, METH_VARARGS, insert_doc}, | |
2321 {"extend", (PyCFunction)listextend, METH_O, extend_doc}, | |
2322 {"pop", (PyCFunction)listpop, METH_VARARGS, pop_doc}, | |
2323 {"remove", (PyCFunction)listremove, METH_O, remove_doc}, | |
2324 {"index", (PyCFunction)listindex, METH_VARARGS, index_doc}, | |
2325 {"count", (PyCFunction)listcount, METH_O, count_doc}, | |
2326 {"reverse", (PyCFunction)listreverse, METH_NOARGS, reverse_doc}, | |
2327 {"sort", (PyCFunction)listsort, METH_VARARGS | METH_KEYWORDS, sort_doc}, | |
2328 {NULL, NULL} /* sentinel */ | |
2329 }; | |
2330 | |
2331 static PySequenceMethods list_as_sequence = { | |
2332 (lenfunc)list_length, /* sq_length */ | |
2333 (binaryfunc)list_concat, /* sq_concat */ | |
2334 (ssizeargfunc)list_repeat, /* sq_repeat */ | |
2335 (ssizeargfunc)list_item, /* sq_item */ | |
2336 0, /* sq_slice */ | |
2337 (ssizeobjargproc)list_ass_item, /* sq_ass_item */ | |
2338 0, /* sq_ass_slice */ | |
2339 (objobjproc)list_contains, /* sq_contains */ | |
2340 (binaryfunc)list_inplace_concat, /* sq_inplace_concat */ | |
2341 (ssizeargfunc)list_inplace_repeat, /* sq_inplace_repeat */ | |
2342 }; | |
2343 | |
2344 PyDoc_STRVAR(list_doc, | |
2345 "list() -> new empty list\n" | |
2346 "list(iterable) -> new list initialized from iterable's items"); | |
2347 | |
2348 static PyObject * | |
2349 list_subscript(PyListObject* self, PyObject* item) | |
2350 { | |
2351 if (PyIndex_Check(item)) { | |
2352 Py_ssize_t i; | |
2353 i = PyNumber_AsSsize_t(item, PyExc_IndexError); | |
2354 if (i == -1 && PyErr_Occurred()) | |
2355 return NULL; | |
2356 if (i < 0) | |
2357 i += PyList_GET_SIZE(self); | |
2358 return list_item(self, i); | |
2359 } | |
2360 else if (PySlice_Check(item)) { | |
2361 Py_ssize_t start, stop, step, slicelength, cur, i; | |
2362 PyObject* result; | |
2363 PyObject* it; | |
2364 PyObject **src, **dest; | |
2365 | |
2366 if (PySlice_GetIndicesEx(item, Py_SIZE(self), | |
2367 &start, &stop, &step, &slicelength) < 0) { | |
2368 return NULL; | |
2369 } | |
2370 | |
2371 if (slicelength <= 0) { | |
2372 return PyList_New(0); | |
2373 } | |
2374 else if (step == 1) { | |
2375 return list_slice(self, start, stop); | |
2376 } | |
2377 else { | |
2378 result = PyList_New(slicelength); | |
2379 if (!result) return NULL; | |
2380 | |
2381 src = self->ob_item; | |
2382 dest = ((PyListObject *)result)->ob_item; | |
2383 for (cur = start, i = 0; i < slicelength; | |
2384 cur += (size_t)step, i++) { | |
2385 it = src[cur]; | |
2386 Py_INCREF(it); | |
2387 dest[i] = it; | |
2388 } | |
2389 | |
2390 return result; | |
2391 } | |
2392 } | |
2393 else { | |
2394 PyErr_Format(PyExc_TypeError, | |
2395 "list indices must be integers, not %.200s", | |
2396 item->ob_type->tp_name); | |
2397 return NULL; | |
2398 } | |
2399 } | |
2400 | |
2401 static int | |
2402 list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value) | |
2403 { | |
2404 if (PyIndex_Check(item)) { | |
2405 Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); | |
2406 if (i == -1 && PyErr_Occurred()) | |
2407 return -1; | |
2408 if (i < 0) | |
2409 i += PyList_GET_SIZE(self); | |
2410 return list_ass_item(self, i, value); | |
2411 } | |
2412 else if (PySlice_Check(item)) { | |
2413 Py_ssize_t start, stop, step, slicelength; | |
2414 | |
2415 if (PySlice_GetIndicesEx(item, Py_SIZE(self), | |
2416 &start, &stop, &step, &slicelength) < 0) { | |
2417 return -1; | |
2418 } | |
2419 | |
2420 if (step == 1) | |
2421 return list_ass_slice(self, start, stop, value); | |
2422 | |
2423 /* Make sure s[5:2] = [..] inserts at the right place: | |
2424 before 5, not before 2. */ | |
2425 if ((step < 0 && start < stop) || | |
2426 (step > 0 && start > stop)) | |
2427 stop = start; | |
2428 | |
2429 if (value == NULL) { | |
2430 /* delete slice */ | |
2431 PyObject **garbage; | |
2432 size_t cur; | |
2433 Py_ssize_t i; | |
2434 | |
2435 if (slicelength <= 0) | |
2436 return 0; | |
2437 | |
2438 if (step < 0) { | |
2439 stop = start + 1; | |
2440 start = stop + step*(slicelength - 1) - 1; | |
2441 step = -step; | |
2442 } | |
2443 | |
2444 assert((size_t)slicelength <= | |
2445 PY_SIZE_MAX / sizeof(PyObject*)); | |
2446 | |
2447 garbage = (PyObject**) | |
2448 PyMem_MALLOC(slicelength*sizeof(PyObject*)); | |
2449 if (!garbage) { | |
2450 PyErr_NoMemory(); | |
2451 return -1; | |
2452 } | |
2453 | |
2454 /* drawing pictures might help understand these for | |
2455 loops. Basically, we memmove the parts of the | |
2456 list that are *not* part of the slice: step-1 | |
2457 items for each item that is part of the slice, | |
2458 and then tail end of the list that was not | |
2459 covered by the slice */ | |
2460 for (cur = start, i = 0; | |
2461 cur < (size_t)stop; | |
2462 cur += step, i++) { | |
2463 Py_ssize_t lim = step - 1; | |
2464 | |
2465 garbage[i] = PyList_GET_ITEM(self, cur); | |
2466 | |
2467 if (cur + step >= (size_t)Py_SIZE(self)) { | |
2468 lim = Py_SIZE(self) - cur - 1; | |
2469 } | |
2470 | |
2471 memmove(self->ob_item + cur - i, | |
2472 self->ob_item + cur + 1, | |
2473 lim * sizeof(PyObject *)); | |
2474 } | |
2475 cur = start + (size_t)slicelength * step; | |
2476 if (cur < (size_t)Py_SIZE(self)) { | |
2477 memmove(self->ob_item + cur - slicelength, | |
2478 self->ob_item + cur, | |
2479 (Py_SIZE(self) - cur) * | |
2480 sizeof(PyObject *)); | |
2481 } | |
2482 | |
2483 Py_SIZE(self) -= slicelength; | |
2484 list_resize(self, Py_SIZE(self)); | |
2485 | |
2486 for (i = 0; i < slicelength; i++) { | |
2487 Py_DECREF(garbage[i]); | |
2488 } | |
2489 PyMem_FREE(garbage); | |
2490 | |
2491 return 0; | |
2492 } | |
2493 else { | |
2494 /* assign slice */ | |
2495 PyObject *ins, *seq; | |
2496 PyObject **garbage, **seqitems, **selfitems; | |
2497 Py_ssize_t cur, i; | |
2498 | |
2499 /* protect against a[::-1] = a */ | |
2500 if (self == (PyListObject*)value) { | |
2501 seq = list_slice((PyListObject*)value, 0, | |
2502 PyList_GET_SIZE(value)); | |
2503 } | |
2504 else { | |
2505 seq = PySequence_Fast(value, | |
2506 "must assign iterable " | |
2507 "to extended slice"); | |
2508 } | |
2509 if (!seq) | |
2510 return -1; | |
2511 | |
2512 if (PySequence_Fast_GET_SIZE(seq) != slicelength) { | |
2513 PyErr_Format(PyExc_ValueError, | |
2514 "attempt to assign sequence of " | |
2515 "size %zd to extended slice of " | |
2516 "size %zd", | |
2517 PySequence_Fast_GET_SIZE(seq), | |
2518 slicelength); | |
2519 Py_DECREF(seq); | |
2520 return -1; | |
2521 } | |
2522 | |
2523 if (!slicelength) { | |
2524 Py_DECREF(seq); | |
2525 return 0; | |
2526 } | |
2527 | |
2528 garbage = (PyObject**) | |
2529 PyMem_MALLOC(slicelength*sizeof(PyObject*)); | |
2530 if (!garbage) { | |
2531 Py_DECREF(seq); | |
2532 PyErr_NoMemory(); | |
2533 return -1; | |
2534 } | |
2535 | |
2536 selfitems = self->ob_item; | |
2537 seqitems = PySequence_Fast_ITEMS(seq); | |
2538 for (cur = start, i = 0; i < slicelength; | |
2539 cur += (size_t)step, i++) { | |
2540 garbage[i] = selfitems[cur]; | |
2541 ins = seqitems[i]; | |
2542 Py_INCREF(ins); | |
2543 selfitems[cur] = ins; | |
2544 } | |
2545 | |
2546 for (i = 0; i < slicelength; i++) { | |
2547 Py_DECREF(garbage[i]); | |
2548 } | |
2549 | |
2550 PyMem_FREE(garbage); | |
2551 Py_DECREF(seq); | |
2552 | |
2553 return 0; | |
2554 } | |
2555 } | |
2556 else { | |
2557 PyErr_Format(PyExc_TypeError, | |
2558 "list indices must be integers, not %.200s", | |
2559 item->ob_type->tp_name); | |
2560 return -1; | |
2561 } | |
2562 } | |
2563 | |
2564 static PyMappingMethods list_as_mapping = { | |
2565 (lenfunc)list_length, | |
2566 (binaryfunc)list_subscript, | |
2567 (objobjargproc)list_ass_subscript | |
2568 }; | |
2569 | |
2570 PyTypeObject PyList_Type = { | |
2571 PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
2572 "list", | |
2573 sizeof(PyListObject), | |
2574 0, | |
2575 (destructor)list_dealloc, /* tp_dealloc */ | |
2576 0, /* tp_print */ | |
2577 0, /* tp_getattr */ | |
2578 0, /* tp_setattr */ | |
2579 0, /* tp_reserved */ | |
2580 (reprfunc)list_repr, /* tp_repr */ | |
2581 0, /* tp_as_number */ | |
2582 &list_as_sequence, /* tp_as_sequence */ | |
2583 &list_as_mapping, /* tp_as_mapping */ | |
2584 PyObject_HashNotImplemented, /* tp_hash */ | |
2585 0, /* tp_call */ | |
2586 0, /* tp_str */ | |
2587 PyObject_GenericGetAttr, /* tp_getattro */ | |
2588 0, /* tp_setattro */ | |
2589 0, /* tp_as_buffer */ | |
2590 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | | |
2591 Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS, /* tp_flags */ | |
2592 list_doc, /* tp_doc */ | |
2593 (traverseproc)list_traverse, /* tp_traverse */ | |
2594 (inquiry)list_clear, /* tp_clear */ | |
2595 list_richcompare, /* tp_richcompare */ | |
2596 0, /* tp_weaklistoffset */ | |
2597 list_iter, /* tp_iter */ | |
2598 0, /* tp_iternext */ | |
2599 list_methods, /* tp_methods */ | |
2600 0, /* tp_members */ | |
2601 0, /* tp_getset */ | |
2602 0, /* tp_base */ | |
2603 0, /* tp_dict */ | |
2604 0, /* tp_descr_get */ | |
2605 0, /* tp_descr_set */ | |
2606 0, /* tp_dictoffset */ | |
2607 (initproc)list_init, /* tp_init */ | |
2608 PyType_GenericAlloc, /* tp_alloc */ | |
2609 PyType_GenericNew, /* tp_new */ | |
2610 PyObject_GC_Del, /* tp_free */ | |
2611 }; | |
2612 | |
2613 | |
2614 /*********************** List Iterator **************************/ | |
2615 | |
2616 typedef struct { | |
2617 PyObject_HEAD | |
2618 long it_index; | |
2619 PyListObject *it_seq; /* Set to NULL when iterator is exhausted */ | |
2620 } listiterobject; | |
2621 | |
2622 static PyObject *list_iter(PyObject *); | |
2623 static void listiter_dealloc(listiterobject *); | |
2624 static int listiter_traverse(listiterobject *, visitproc, void *); | |
2625 static PyObject *listiter_next(listiterobject *); | |
2626 static PyObject *listiter_len(listiterobject *); | |
2627 | |
2628 PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); | |
2629 | |
2630 static PyMethodDef listiter_methods[] = { | |
2631 {"__length_hint__", (PyCFunction)listiter_len, METH_NOARGS, length_hint_doc}, | |
2632 {NULL, NULL} /* sentinel */ | |
2633 }; | |
2634 | |
2635 PyTypeObject PyListIter_Type = { | |
2636 PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
2637 "list_iterator", /* tp_name */ | |
2638 sizeof(listiterobject), /* tp_basicsize */ | |
2639 0, /* tp_itemsize */ | |
2640 /* methods */ | |
2641 (destructor)listiter_dealloc, /* tp_dealloc */ | |
2642 0, /* tp_print */ | |
2643 0, /* tp_getattr */ | |
2644 0, /* tp_setattr */ | |
2645 0, /* tp_reserved */ | |
2646 0, /* tp_repr */ | |
2647 0, /* tp_as_number */ | |
2648 0, /* tp_as_sequence */ | |
2649 0, /* tp_as_mapping */ | |
2650 0, /* tp_hash */ | |
2651 0, /* tp_call */ | |
2652 0, /* tp_str */ | |
2653 PyObject_GenericGetAttr, /* tp_getattro */ | |
2654 0, /* tp_setattro */ | |
2655 0, /* tp_as_buffer */ | |
2656 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | |
2657 0, /* tp_doc */ | |
2658 (traverseproc)listiter_traverse, /* tp_traverse */ | |
2659 0, /* tp_clear */ | |
2660 0, /* tp_richcompare */ | |
2661 0, /* tp_weaklistoffset */ | |
2662 PyObject_SelfIter, /* tp_iter */ | |
2663 (iternextfunc)listiter_next, /* tp_iternext */ | |
2664 listiter_methods, /* tp_methods */ | |
2665 0, /* tp_members */ | |
2666 }; | |
2667 | |
2668 | |
2669 static PyObject * | |
2670 list_iter(PyObject *seq) | |
2671 { | |
2672 listiterobject *it; | |
2673 | |
2674 if (!PyList_Check(seq)) { | |
2675 PyErr_BadInternalCall(); | |
2676 return NULL; | |
2677 } | |
2678 it = PyObject_GC_New(listiterobject, &PyListIter_Type); | |
2679 if (it == NULL) | |
2680 return NULL; | |
2681 it->it_index = 0; | |
2682 Py_INCREF(seq); | |
2683 it->it_seq = (PyListObject *)seq; | |
2684 _PyObject_GC_TRACK(it); | |
2685 return (PyObject *)it; | |
2686 } | |
2687 | |
2688 static void | |
2689 listiter_dealloc(listiterobject *it) | |
2690 { | |
2691 _PyObject_GC_UNTRACK(it); | |
2692 Py_XDECREF(it->it_seq); | |
2693 PyObject_GC_Del(it); | |
2694 } | |
2695 | |
2696 static int | |
2697 listiter_traverse(listiterobject *it, visitproc visit, void *arg) | |
2698 { | |
2699 Py_VISIT(it->it_seq); | |
2700 return 0; | |
2701 } | |
2702 | |
2703 static PyObject * | |
2704 listiter_next(listiterobject *it) | |
2705 { | |
2706 PyListObject *seq; | |
2707 PyObject *item; | |
2708 | |
2709 assert(it != NULL); | |
2710 seq = it->it_seq; | |
2711 if (seq == NULL) | |
2712 return NULL; | |
2713 assert(PyList_Check(seq)); | |
2714 | |
2715 if (it->it_index < PyList_GET_SIZE(seq)) { | |
2716 item = PyList_GET_ITEM(seq, it->it_index); | |
2717 ++it->it_index; | |
2718 Py_INCREF(item); | |
2719 return item; | |
2720 } | |
2721 | |
2722 Py_DECREF(seq); | |
2723 it->it_seq = NULL; | |
2724 return NULL; | |
2725 } | |
2726 | |
2727 static PyObject * | |
2728 listiter_len(listiterobject *it) | |
2729 { | |
2730 Py_ssize_t len; | |
2731 if (it->it_seq) { | |
2732 len = PyList_GET_SIZE(it->it_seq) - it->it_index; | |
2733 if (len >= 0) | |
2734 return PyLong_FromSsize_t(len); | |
2735 } | |
2736 return PyLong_FromLong(0); | |
2737 } | |
2738 /*********************** List Reverse Iterator **************************/ | |
2739 | |
2740 typedef struct { | |
2741 PyObject_HEAD | |
2742 Py_ssize_t it_index; | |
2743 PyListObject *it_seq; /* Set to NULL when iterator is exhausted */ | |
2744 } listreviterobject; | |
2745 | |
2746 static PyObject *list_reversed(PyListObject *, PyObject *); | |
2747 static void listreviter_dealloc(listreviterobject *); | |
2748 static int listreviter_traverse(listreviterobject *, visitproc, void *); | |
2749 static PyObject *listreviter_next(listreviterobject *); | |
2750 static PyObject *listreviter_len(listreviterobject *); | |
2751 | |
2752 static PyMethodDef listreviter_methods[] = { | |
2753 {"__length_hint__", (PyCFunction)listreviter_len, METH_NOARGS, length_hint_doc}, | |
2754 {NULL, NULL} /* sentinel */ | |
2755 }; | |
2756 | |
2757 PyTypeObject PyListRevIter_Type = { | |
2758 PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
2759 "list_reverseiterator", /* tp_name */ | |
2760 sizeof(listreviterobject), /* tp_basicsize */ | |
2761 0, /* tp_itemsize */ | |
2762 /* methods */ | |
2763 (destructor)listreviter_dealloc, /* tp_dealloc */ | |
2764 0, /* tp_print */ | |
2765 0, /* tp_getattr */ | |
2766 0, /* tp_setattr */ | |
2767 0, /* tp_reserved */ | |
2768 0, /* tp_repr */ | |
2769 0, /* tp_as_number */ | |
2770 0, /* tp_as_sequence */ | |
2771 0, /* tp_as_mapping */ | |
2772 0, /* tp_hash */ | |
2773 0, /* tp_call */ | |
2774 0, /* tp_str */ | |
2775 PyObject_GenericGetAttr, /* tp_getattro */ | |
2776 0, /* tp_setattro */ | |
2777 0, /* tp_as_buffer */ | |
2778 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | |
2779 0, /* tp_doc */ | |
2780 (traverseproc)listreviter_traverse, /* tp_traverse */ | |
2781 0, /* tp_clear */ | |
2782 0, /* tp_richcompare */ | |
2783 0, /* tp_weaklistoffset */ | |
2784 PyObject_SelfIter, /* tp_iter */ | |
2785 (iternextfunc)listreviter_next, /* tp_iternext */ | |
2786 listreviter_methods, /* tp_methods */ | |
2787 0, | |
2788 }; | |
2789 | |
2790 static PyObject * | |
2791 list_reversed(PyListObject *seq, PyObject *unused) | |
2792 { | |
2793 listreviterobject *it; | |
2794 | |
2795 it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type); | |
2796 if (it == NULL) | |
2797 return NULL; | |
2798 assert(PyList_Check(seq)); | |
2799 it->it_index = PyList_GET_SIZE(seq) - 1; | |
2800 Py_INCREF(seq); | |
2801 it->it_seq = seq; | |
2802 PyObject_GC_Track(it); | |
2803 return (PyObject *)it; | |
2804 } | |
2805 | |
2806 static void | |
2807 listreviter_dealloc(listreviterobject *it) | |
2808 { | |
2809 PyObject_GC_UnTrack(it); | |
2810 Py_XDECREF(it->it_seq); | |
2811 PyObject_GC_Del(it); | |
2812 } | |
2813 | |
2814 static int | |
2815 listreviter_traverse(listreviterobject *it, visitproc visit, void *arg) | |
2816 { | |
2817 Py_VISIT(it->it_seq); | |
2818 return 0; | |
2819 } | |
2820 | |
2821 static PyObject * | |
2822 listreviter_next(listreviterobject *it) | |
2823 { | |
2824 PyObject *item; | |
2825 Py_ssize_t index = it->it_index; | |
2826 PyListObject *seq = it->it_seq; | |
2827 | |
2828 if (index>=0 && index < PyList_GET_SIZE(seq)) { | |
2829 item = PyList_GET_ITEM(seq, index); | |
2830 it->it_index--; | |
2831 Py_INCREF(item); | |
2832 return item; | |
2833 } | |
2834 it->it_index = -1; | |
2835 if (seq != NULL) { | |
2836 it->it_seq = NULL; | |
2837 Py_DECREF(seq); | |
2838 } | |
2839 return NULL; | |
2840 } | |
2841 | |
2842 static PyObject * | |
2843 listreviter_len(listreviterobject *it) | |
2844 { | |
2845 Py_ssize_t len = it->it_index + 1; | |
2846 if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len) | |
2847 len = 0; | |
2848 return PyLong_FromSsize_t(len); | |
2849 } |