Mercurial > ift6266
changeset 14:ebf61603489b
Added different image format handling (minibatches,32*32,lines of 1024...) and some commentaries
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Thu, 28 Jan 2010 11:50:01 -0500 |
parents | a25474d4d34f |
children | f6b6c74bb82f |
files | transformations/thick.py |
diffstat | 1 files changed, 17 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/transformations/thick.py Thu Jan 28 11:28:46 2010 -0500 +++ b/transformations/thick.py Thu Jan 28 11:50:01 2010 -0500 @@ -5,11 +5,11 @@ Simple implementation of random thickness deformation using morphological operation of scipy. Only one morphological operation applied (dilation or erosion), the kernel is random -out of a list of 11 symmetric kernels. +out of a list of 12 symmetric kernels. (only 5 to be chosen for erosion because it can +hurt the recognizability of the charater and 12 for dilation). Author: Xavier Glorot -Usage: ''' import scipy.ndimage.morphology @@ -19,10 +19,10 @@ class Thick(): def __init__(self,complexity = 1): #---------- private attributes - self.__nx__ = 32 - self.__ny__ = 32 - self.__erodemax__ = 4 - self.__dilatemax__ = 11 + self.__nx__ = 32 #xdim of the images + self.__ny__ = 32 #ydim of the images + self.__erodemax__ = 4 #nb of index max of erode structuring elements + self.__dilatemax__ = 11 #nb of index max of dilation structuring elements self.__structuring_elements__ = [N.asarray([[1,1]]),N.asarray([[1],[1]]),\ N.asarray([[1,1],[1,1]]),N.asarray([[0,1,0],[1,1,1],[0,1,0]]),\ N.asarray([[1,1,1],[1,1,1]]),N.asarray([[1,1],[1,1],[1,1]]),\ @@ -63,7 +63,7 @@ self.nb = -1 return self._get_current_parameters() - def transform_1_image(self,image): + def transform_1_image(self,image): #the real transformation method if self.meth!=0: maxi = float(N.max(image)) mini = float(N.min(image)) @@ -87,16 +87,23 @@ else: return image - def transform_image(self,image): - if image.ndim == 2: + def transform_image(self,image): #handling different format + if image.shape == (self.__nx__,self.__ny__): + return self.transform_1_image(image) + if image.ndim == 3: + for i in range(image.shape[0]): + image[i,:,:] = self.transform_1_image(image[i,:,:]) + return N.reshape(newimage,image.shape) + if image.ndim == 2 and image.shape != (self.__nx__,self.__ny__): newimage = N.reshape(image,(image.shape[0],self.__nx__,self.__ny__)) for i in range(image.shape[0]): newimage[i,:,:] = self.transform_1_image(newimage[i,:,:]) return N.reshape(newimage,image.shape) - else: + if image.ndim == 1: newimage = N.reshape(image,(self.__nx__,self.__ny__)) newimage = self.transform_1_image(newimage) return N.reshape(newimage,image.shape) + assert False #should never go there