Mercurial > ift6266
changeset 315:df5273caad58
branch merge
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Thu, 01 Apr 2010 14:29:48 -0400 |
parents | 2937f2a421aa (current diff) e301a2f32665 (diff) |
children | 60e82846a10d |
files | |
diffstat | 2 files changed, 18 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/nist_sda.py Thu Apr 01 14:28:50 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/nist_sda.py Thu Apr 01 14:29:48 2010 -0400 @@ -106,44 +106,44 @@ if finetune_choice == 0: print('\n\n\tfinetune with NIST\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1) channel.save() if finetune_choice == 1: print('\n\n\tfinetune with P07\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() if finetune_choice == 2: print('\n\n\tfinetune with NIST followed by P07\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=21) - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) channel.save() if finetune_choice == 3: print('\n\n\tfinetune with NIST only on the logistic regression on top (but validation on P07).\n\ All hidden units output are input of the logistic regression\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1,special=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1) if finetune_choice==-1: print('\nSERIE OF 3 DIFFERENT FINETUNINGS') print('\n\n\tfinetune with NIST\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1) channel.save() print('\n\n\tfinetune with P07\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() print('\n\n\tfinetune with NIST (done earlier) followed by P07 (written here)\n\n') optimizer.reload_parameters('params_finetune_NIST.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) channel.save() print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\ All hidden units output are input of the logistic regression\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1,special=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1) channel.save() channel.save()
--- a/deep/stacked_dae/v_sylvain/nist_sda_retrieve.py Thu Apr 01 14:28:50 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/nist_sda_retrieve.py Thu Apr 01 14:29:48 2010 -0400 @@ -118,24 +118,24 @@ if finetune_choice == 0: print('\n\n\tfinetune with NIST\n\n') optimizer.reload_parameters(PATH+'params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1) channel.save() if finetune_choice == 1: print('\n\n\tfinetune with P07\n\n') optimizer.reload_parameters(PATH+'params_pretrain.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() if finetune_choice == 2: print('\n\n\tfinetune with NIST followed by P07\n\n') optimizer.reload_parameters(PATH+'params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=21) - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) channel.save() if finetune_choice == 3: print('\n\n\tfinetune with NIST only on the logistic regression on top (but validation on P07).\n\ All hidden units output are input of the logistic regression\n\n') optimizer.reload_parameters(PATH+'params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1,special=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1) if finetune_choice==-1: @@ -143,23 +143,23 @@ print('\n\n\tfinetune with NIST\n\n') sys.stdout.flush() optimizer.reload_parameters(PATH+'params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1) channel.save() print('\n\n\tfinetune with P07\n\n') sys.stdout.flush() optimizer.reload_parameters(PATH+'params_pretrain.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() print('\n\n\tfinetune with NIST (done earlier) followed by P07 (written here)\n\n') sys.stdout.flush() optimizer.reload_parameters('params_finetune_NIST.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) channel.save() print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\ All hidden units output are input of the logistic regression\n\n') sys.stdout.flush() optimizer.reload_parameters(PATH+'params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1,special=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1) channel.save() channel.save()