Mercurial > ift6266
changeset 369:d81284e13d77
modified to run experiments with PNIST
author | goldfinger |
---|---|
date | Sat, 24 Apr 2010 11:32:26 -0400 |
parents | d391ad815d89 |
children | 543ae35e387e 1e99dc965b5b |
files | deep/rbm/rbm.py |
diffstat | 1 files changed, 206 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/deep/rbm/rbm.py Fri Apr 23 12:12:03 2010 -0400 +++ b/deep/rbm/rbm.py Sat Apr 24 11:32:26 2010 -0400 @@ -5,22 +5,30 @@ to those without visible-visible and hidden-hidden connections. """ - import numpy, time, cPickle, gzip, PIL.Image import theano import theano.tensor as T import os +import pdb +import numpy +import pylab +import time +import theano.tensor.nnet +import pylearn +import ift6266 +import theano,pylearn.version,ift6266 +from pylearn.io import filetensor as ft +from ift6266 import datasets from theano.tensor.shared_randomstreams import RandomStreams from utils import tile_raster_images from logistic_sgd import load_data - class RBM(object): """Restricted Boltzmann Machine (RBM) """ - def __init__(self, input=None, n_visible=784, n_hidden=1000, \ + def __init__(self, input=None, n_visible=32*32, n_hidden=500, \ W = None, hbias = None, vbias = None, numpy_rng = None, theano_rng = None): """ @@ -89,6 +97,7 @@ self.hbias = hbias self.vbias = vbias self.theano_rng = theano_rng + # **** WARNING: It is not a good idea to put things in this list # other than shared variables created in this function. self.params = [self.W, self.hbias, self.vbias] @@ -131,7 +140,7 @@ v1_mean, v1_sample = self.sample_v_given_h(h1_sample) return [h1_mean, h1_sample, v1_mean, v1_sample] - def cd(self, lr = 0.1, persistent=None): + def cd(self, lr = 0.1, persistent=None, k=1): """ This functions implements one step of CD-1 or PCD-1 @@ -156,9 +165,16 @@ else: chain_start = persistent - # perform actual negative phase + # perform actual negative phase (the CD-1) [nv_mean, nv_sample, nh_mean, nh_sample] = self.gibbs_hvh(chain_start) + #perform CD-k + if k-1>0: + for i in range(k-1): + [nv_mean, nv_sample, nh_mean, nh_sample] = self.gibbs_hvh(nh_sample) + + + # determine gradients on RBM parameters g_vbias = T.sum( self.input - nv_mean, axis = 0)/self.batch_size g_hbias = T.sum( ph_mean - nh_mean, axis = 0)/self.batch_size @@ -224,3 +240,188 @@ +def test_rbm(b_size = 25, nhidden = 1000, kk = 1, persistance = 0, + dataset= 0): + """ + Demonstrate *** + + This is demonstrated on MNIST. + + :param learning_rate: learning rate used for training the RBM + + :param training_epochs: number of epochs used for training + + :param dataset: path the the pickled dataset + + """ + + learning_rate=0.1 + + if data_set==0: + datasets=datasets.nist_all() + elif data_set==1: + datasets=datasets.nist_P07() + elif data_set==2: + datasets=datasets.PNIST07() + + + # revoir la recuperation des donnees +## dataset = load_data(dataset) +## +## train_set_x, train_set_y = datasets[0] +## test_set_x , test_set_y = datasets[2] +## training_epochs = 10 # a determiner + + batch_size = b_size # size of the minibatch + + # compute number of minibatches for training, validation and testing + #n_train_batches = train_set_x.value.shape[0] / batch_size + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + x = T.matrix('x') # the data is presented as rasterized images + + rng = numpy.random.RandomState(123) + theano_rng = RandomStreams( rng.randint(2**30)) + + + # construct the RBM class + rbm = RBM( input = x, n_visible=32*32, \ + n_hidden = nhidden, numpy_rng = rng, theano_rng = theano_rng) + + + # initialize storage fot the persistent chain (state = hidden layer of chain) + if persistance == 1: + persistent_chain = theano.shared(numpy.zeros((batch_size, 500))) + # get the cost and the gradient corresponding to one step of CD + cost, updates = rbm.cd(lr=learning_rate, persistent=persistent_chain, k= kk) + + else: + # get the cost and the gradient corresponding to one step of CD + #persistance_chain = None + cost, updates = rbm.cd(lr=learning_rate, persistent=None, k= kk) + + ################################# + # Training the RBM # + ################################# + dirname = 'data=%i'%dataset + ' persistance=%i'%persistance + ' n_hidden=%i'%n_hidden + 'batch_size=i%'%b_size + os.makedirs(dirname) + os.chdir(dirname) + + # it is ok for a theano function to have no output + # the purpose of train_rbm is solely to update the RBM parameters + train_rbm = theano.function([x], cost, + updates = updates, + ) + + plotting_time = 0.0 + start_time = time.clock() + bufsize = 1000 + + # go through training epochs + costs = [] + for epoch in xrange(training_epochs): + + # go through the training set + mean_cost = [] + for mini_x, mini_y in datasets.train(b_size): + mean_cost += [train_rbm(mini_x)] +## learning_rate = learning_rate - 0.0001 +## learning_rate = learning_rate/(tau+( epoch*batch_index*batch_size)) + + #learning_rate = learning_rate/10 + + costs.append(numpy.mean(mean_cost)) + + # Plot filters after each training epoch + plotting_start = time.clock() + # Construct image from the weight matrix + image = PIL.Image.fromarray(tile_raster_images( X = rbm.W.value.T, + img_shape = (32,32),tile_shape = (10,10), + tile_spacing=(1,1))) + image.save('filters_at_epoch_%i.png'%epoch) + plotting_stop = time.clock() + plotting_time += (plotting_stop - plotting_start) + + end_time = time.clock() + + pretraining_time = (end_time - start_time) - plotting_time + + + + + + + ################################# + # Sampling from the RBM # + ################################# + + # find out the number of test samples + number_of_test_samples = 1000 + + test_set_x, test_y = datasets.test(100*b_size) + # pick random test examples, with which to initialize the persistent chain + test_idx = rng.randint(number_of_test_samples - b_size) + persistent_vis_chain = theano.shared(test_set_x.value[test_idx:test_idx+b_size]) + + # define one step of Gibbs sampling (mf = mean-field) + [hid_mf, hid_sample, vis_mf, vis_sample] = rbm.gibbs_vhv(persistent_vis_chain) + + # the sample at the end of the channel is returned by ``gibbs_1`` as + # its second output; note that this is computed as a binomial draw, + # therefore it is formed of ints (0 and 1) and therefore needs to + # be converted to the same dtype as ``persistent_vis_chain`` + vis_sample = T.cast(vis_sample, dtype=theano.config.floatX) + + # construct the function that implements our persistent chain + # we generate the "mean field" activations for plotting and the actual samples for + # reinitializing the state of our persistent chain + sample_fn = theano.function([], [vis_mf, vis_sample], + updates = { persistent_vis_chain:vis_sample}) + + # sample the RBM, plotting every `plot_every`-th sample; do this + # until you plot at least `n_samples` + n_samples = 10 + # run minibatch size chains for gibbs samples (number of negative particles) + plot_every = b_size + + for idx in xrange(n_samples): + + # do `plot_every` intermediate samplings of which we do not care + for jdx in xrange(plot_every): + vis_mf, vis_sample = sample_fn() + + # construct image + image = PIL.Image.fromarray(tile_raster_images( + X = vis_mf, + img_shape = (32,32), + tile_shape = (10,10), + tile_spacing = (1,1) ) ) + #print ' ... plotting sample ', idx + image.save('sample_%i_step_%i.png'%(idx,idx*jdx)) + + #save the model + model = [rbm.W, rbm.vbias, rbm.hbias] + f = fopen('params.txt', 'w') + pickle.dump(model, f) + f.close() + #os.chdir('./..') + return numpy.mean(costs), pretraining_time/360 + + +def experiment(state, channel): + + (mean_cost, time_execution) = test_rbm(b_size = state.b_size,\ + nhidden = state.ndidden,\ + kk = state.kk,\ + persistance = state.persistance,\ + dataset = state.dataset) + + state.mean_costs = mean_costs + state.time_execution = time_execution + pylearn.version.record_versions(state,[theano,ift6266,pylearn]) + return channel.COMPLETE + +if __name__ == '__main__': + + test_rbm()