Mercurial > ift6266
changeset 158:d1bb6e06497a
nouveau répertoire régression logistique
author | Myriam Cote <cotemyri@iro.umontreal.ca> |
---|---|
date | Thu, 25 Feb 2010 09:04:40 -0500 |
parents | 3346fcd3818b |
children | e81241cfc2de |
files | baseline_algorithms/log_reg/log_reg.py |
diffstat | 1 files changed, 437 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/baseline_algorithms/log_reg/log_reg.py Thu Feb 25 09:04:40 2010 -0500 @@ -0,0 +1,437 @@ +""" +This tutorial introduces logistic regression using Theano and stochastic +gradient descent. + +Logistic regression is a probabilistic, linear classifier. It is parametrized +by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is +done by projecting data points onto a set of hyperplanes, the distance to +which is used to determine a class membership probability. + +Mathematically, this can be written as: + +.. math:: + P(Y=i|x, W,b) &= softmax_i(W x + b) \\ + &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} + + +The output of the model or prediction is then done by taking the argmax of +the vector whose i'th element is P(Y=i|x). + +.. math:: + + y_{pred} = argmax_i P(Y=i|x,W,b) + + +This tutorial presents a stochastic gradient descent optimization method +suitable for large datasets, and a conjugate gradient optimization method +that is suitable for smaller datasets. + + +References: + + - textbooks: "Pattern Recognition and Machine Learning" - + Christopher M. Bishop, section 4.3.2 + +""" +__docformat__ = 'restructedtext en' + +import numpy, time, cPickle, gzip + +import theano +import theano.tensor as T + + +class LogisticRegression(object): + """Multi-class Logistic Regression Class + + The logistic regression is fully described by a weight matrix :math:`W` + and bias vector :math:`b`. Classification is done by projecting data + points onto a set of hyperplanes, the distance to which is used to + determine a class membership probability. + """ + + + def __init__( self, input, n_in, n_out ): + """ Initialize the parameters of the logistic regression + + :type input: theano.tensor.TensorType + :param input: symbolic variable that describes the input of the + architecture (one minibatch) + + :type n_in: int + :param n_in: number of input units, the dimension of the space in + which the datapoints lie + + :type n_out: int + :param n_out: number of output units, the dimension of the space in + which the labels lie + + """ + + # initialize with 0 the weights W as a matrix of shape (n_in, n_out) + self.W = theano.shared( value = numpy.zeros(( n_in, n_out ), dtype = theano.config.floatX ), + name =' W') + # initialize the baises b as a vector of n_out 0s + self.b = theano.shared( value = numpy.zeros(( n_out, ), dtype = theano.config.floatX ), + name = 'b') + + + # compute vector of class-membership probabilities in symbolic form + self.p_y_given_x = T.nnet.softmax( T.dot( input, self.W ) + self.b ) + + # compute prediction as class whose probability is maximal in + # symbolic form + self.y_pred=T.argmax( self.p_y_given_x, axis =1 ) + + # parameters of the model + self.params = [ self.W, self.b ] + + + def negative_log_likelihood( self, y ): + """Return the mean of the negative log-likelihood of the prediction + of this model under a given target distribution. + + .. math:: + + \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = + \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ + \ell (\theta=\{W,b\}, \mathcal{D}) + + :type y: theano.tensor.TensorType + :param y: corresponds to a vector that gives for each example the + correct label + + Note: we use the mean instead of the sum so that + the learning rate is less dependent on the batch size + """ + # y.shape[0] is (symbolically) the number of rows in y, i.e., number of examples (call it n) in the minibatch + # T.arange(y.shape[0]) is a symbolic vector which will contain [0,1,2,... n-1] + # T.log(self.p_y_given_x) is a matrix of Log-Probabilities (call it LP) with one row per example and one column per class + # LP[T.arange(y.shape[0]),y] is a vector v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., LP[n-1,y[n-1]]] + # and T.mean(LP[T.arange(y.shape[0]),y]) is the mean (across minibatch examples) of the elements in v, + # i.e., the mean log-likelihood across the minibatch. + return -T.mean( T.log( self.p_y_given_x )[ T.arange( y.shape[0] ), y ] ) + + + def errors( self, y ): + """Return a float representing the number of errors in the minibatch + over the total number of examples of the minibatch ; zero one + loss over the size of the minibatch + + :type y: theano.tensor.TensorType + :param y: corresponds to a vector that gives for each example the + correct label + """ + + # check if y has same dimension of y_pred + if y.ndim != self.y_pred.ndim: + raise TypeError( 'y should have the same shape as self.y_pred', + ( 'y', target.type, 'y_pred', self.y_pred.type ) ) + # check if y is of the correct datatype + if y.dtype.startswith('int'): + # the T.neq operator returns a vector of 0s and 1s, where 1 + # represents a mistake in prediction + return T.mean( T.neq( self.y_pred, y ) ) + else: + raise NotImplementedError() + +def shared_dataset( data_xy ): + """ Function that loads the dataset into shared variables + + The reason we store our dataset in shared variables is to allow + Theano to copy it into the GPU memory (when code is run on GPU). + Since copying data into the GPU is slow, copying a minibatch everytime + is needed (the default behaviour if the data is not in a shared + variable) would lead to a large decrease in performance. + """ + data_x, data_y = data_xy + shared_x = theano.shared( numpy.asarray( data_x, dtype = theano.config.floatX ) ) + shared_y = theano.shared( numpy.asarray( data_y, dtype = theano.config.floatX ) ) + # When storing data on the GPU it has to be stored as floats + # therefore we will store the labels as ``floatX`` as well + # (``shared_y`` does exactly that). But during our computations + # we need them as ints (we use labels as index, and if they are + # floats it doesn't make sense) therefore instead of returning + # ``shared_y`` we will have to cast it to int. This little hack + # lets ous get around this issue + return shared_x, T.cast( shared_y, 'int32' ) + +def load_data_pkl_gz( dataset ): + ''' Loads the dataset + + :type dataset: string + :param dataset: the path to the dataset (here MNIST) + ''' + + #-------------------------------------------------------------------------------------------------------------------- + # Load Data + #-------------------------------------------------------------------------------------------------------------------- + + + print '... loading data' + + # Load the dataset + f = gzip.open(dataset,'rb') + train_set, valid_set, test_set = cPickle.load(f) + f.close() + + test_set_x, test_set_y = shared_dataset( test_set ) + valid_set_x, valid_set_y = shared_dataset( valid_set ) + train_set_x, train_set_y = shared_dataset( train_set ) + + rval = [ ( train_set_x, train_set_y ), ( valid_set_x,valid_set_y ), ( test_set_x, test_set_y ) ] + return rval + +##def load_data_ft( verbose = False,\ +## data_path = '/data/lisa/data/nist/by_class/'\ +## train_data = 'all/all_train_data.ft',\ +## train_labels = 'all/all_train_labels.ft',\ +## test_data = 'all/all_test_data.ft',\ +## test_labels = 'all/all_test_labels.ft'): +## +## train_data_file = open(data_path + train_data) +## train_labels_file = open(data_path + train_labels) +## test_labels_file = open(data_path + test_data) +## test_data_file = open(data_path + test_labels) +## +## raw_train_data = ft.read( train_data_file) +## raw_train_labels = ft.read(train_labels_file) +## raw_test_data = ft.read( test_labels_file) +## raw_test_labels = ft.read( test_data_file) +## +## f.close() +## g.close() +## i.close() +## h.close() +## +## +## test_set_x, test_set_y = shared_dataset(test_set) +## valid_set_x, valid_set_y = shared_dataset(valid_set) +## train_set_x, train_set_y = shared_dataset(train_set) +## +## rval = [(train_set_x, train_set_y), (valid_set_x,valid_set_y), (test_set_x, test_set_y)] +## return rval +## #create a validation set the same size as the test size +## #use the end of the training array for this purpose +## #discard the last remaining so we get a %batch_size number +## test_size=len(raw_test_labels) +## test_size = int(test_size/batch_size) +## test_size*=batch_size +## train_size = len(raw_train_data) +## train_size = int(train_size/batch_size) +## train_size*=batch_size +## validation_size =test_size +## offset = train_size-test_size +## if verbose == True: +## print 'train size = %d' %train_size +## print 'test size = %d' %test_size +## print 'valid size = %d' %validation_size +## print 'offset = %d' %offset +## +## + +#-------------------------------------------------------------------------------------------------------------------- +# MAIN +#-------------------------------------------------------------------------------------------------------------------- + +def log_reg( learning_rate = 0.13, nb_max_examples =1000000, batch_size = 50, \ + dataset_name = 'mnist.pkl.gz', image_size = 28 * 28, nb_class = 10, \ + patience = 5000, patience_increase = 2, improvement_threshold = 0.995): + + """ + Demonstrate stochastic gradient descent optimization of a log-linear + model + + This is demonstrated on MNIST. + + :type learning_rate: float + :param learning_rate: learning rate used (factor for the stochastic + gradient) + + :type nb_max_examples: int + :param nb_max_examples: maximal number of epochs to run the optimizer + + :type batch_size: int + :param batch_size: size of the minibatch + + :type dataset_name: string + :param dataset: the path of the MNIST dataset file from + http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz + + :type image_size: int + :param image_size: size of the input image in pixels (width * height) + + :type nb_class: int + :param nb_class: number of classes + + :type patience: int + :param patience: look as this many examples regardless + + :type patience_increase: int + :param patience_increase: wait this much longer when a new best is found + + :type improvement_threshold: float + :param improvement_threshold: a relative improvement of this much is considered significant + + + """ + datasets = load_data_pkl_gz( dataset_name ) + + train_set_x, train_set_y = datasets[0] + valid_set_x, valid_set_y = datasets[1] + test_set_x , test_set_y = datasets[2] + + # compute number of minibatches for training, validation and testing + n_train_batches = train_set_x.value.shape[0] / batch_size + n_valid_batches = valid_set_x.value.shape[0] / batch_size + n_test_batches = test_set_x.value.shape[0] / batch_size + + #-------------------------------------------------------------------------------------------------------------------- + # Build actual model + #-------------------------------------------------------------------------------------------------------------------- + + print '... building the model' + + # allocate symbolic variables for the data + index = T.lscalar( ) # index to a [mini]batch + x = T.matrix('x') # the data is presented as rasterized images + y = T.ivector('y') # the labels are presented as 1D vector of + # [int] labels + + # construct the logistic regression class + + classifier = LogisticRegression( input = x, n_in = image_size, n_out = nb_class ) + + # the cost we minimize during training is the negative log likelihood of + # the model in symbolic format + cost = classifier.negative_log_likelihood( y ) + + # compiling a Theano function that computes the mistakes that are made by + # the model on a minibatch + test_model = theano.function( inputs = [ index ], + outputs = classifier.errors( y ), + givens = { + x:test_set_x[ index * batch_size: ( index + 1 ) * batch_size ], + y:test_set_y[ index * batch_size: ( index + 1 ) * batch_size ] } ) + + validate_model = theano.function( inputs = [ index ], + outputs = classifier.errors( y ), + givens = { + x:valid_set_x[ index * batch_size: ( index + 1 ) * batch_size ], + y:valid_set_y[ index * batch_size: ( index + 1 ) * batch_size ] } ) + + # compute the gradient of cost with respect to theta = ( W, b ) + g_W = T.grad( cost = cost, wrt = classifier.W ) + g_b = T.grad( cost = cost, wrt = classifier.b ) + + # specify how to update the parameters of the model as a dictionary + updates = { classifier.W: classifier.W - learning_rate * g_W,\ + classifier.b: classifier.b - learning_rate * g_b} + + # compiling a Theano function `train_model` that returns the cost, but in + # the same time updates the parameter of the model based on the rules + # defined in `updates` + train_model = theano.function( inputs = [ index ], + outputs = cost, + updates = updates, + givens = { + x: train_set_x[ index * batch_size: ( index + 1 ) * batch_size ], + y: train_set_y[ index * batch_size: ( index + 1 ) * batch_size ] } ) + + #-------------------------------------------------------------------------------------------------------------------- + # Train model + #-------------------------------------------------------------------------------------------------------------------- + + print '... training the model' + # early-stopping parameters + patience = 5000 # look as this many examples regardless + patience_increase = 2 # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min( n_train_batches, patience * 0.5 ) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch + + best_params = None + best_validation_loss = float('inf') + test_score = 0. + start_time = time.clock() + + done_looping = False + n_epochs = nb_max_examples / train_set_x.value.shape[0] + epoch = 0 + + while ( epoch < n_epochs ) and ( not done_looping ): + + epoch = epoch + 1 + for minibatch_index in xrange( n_train_batches ): + + minibatch_avg_cost = train_model( minibatch_index ) + # iteration number + iter = epoch * n_train_batches + minibatch_index + + if ( iter + 1 ) % validation_frequency == 0: + # compute zero-one loss on validation set + validation_losses = [ validate_model( i ) for i in xrange( n_valid_batches ) ] + this_validation_loss = numpy.mean( validation_losses ) + + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + ( epoch, minibatch_index + 1,n_train_batches, \ + this_validation_loss*100. ) ) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max( patience, iter * patience_increase ) + + best_validation_loss = this_validation_loss + # test it on the test set + + test_losses = [test_model(i) for i in xrange(n_test_batches)] + test_score = numpy.mean(test_losses) + + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % \ + (epoch, minibatch_index+1, n_train_batches,test_score*100.)) + + if patience <= iter : + done_looping = True + break + + end_time = time.clock() + print(('Optimization complete with best validation score of %f %%,' + 'with test performance %f %%') % + ( best_validation_loss * 100., test_score * 100.)) + print ('The code ran for %f minutes' % ((end_time-start_time) / 60.)) + + ###### return validation_error, test_error, nb_exemples, time + +if __name__ == '__main__': + log_reg() + + +def jobman_log_reg(state, channel): + (validation_error, test_error, nb_exemples, time) = log_reg( learning_rate = state.learning_rate,\ + nb_max_examples = state.nb_max_examples,\ + batch_size = state.batch_size,\ + dataset_name = state.dataset_name, \ + image_size = state.image_size, \ + nb_class = state.nb_class ) + + state.validation_error = validation_error + state.test_error = test_error + state.nb_exemples = nb_exemples + state.time = time + return channel.COMPLETE + + + + + +