Mercurial > ift6266
changeset 219:cde71d24f235
Merge
author | fsavard |
---|---|
date | Wed, 10 Mar 2010 20:14:20 -0500 |
parents | 4c137f16b013 (current diff) de3aef84714a (diff) |
children | e172ef73cdc5 |
files | |
diffstat | 2 files changed, 16 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/datasets/ftfile.py Wed Mar 10 20:13:45 2010 -0500 +++ b/datasets/ftfile.py Wed Mar 10 20:14:20 2010 -0500 @@ -193,12 +193,19 @@ if valid_data is None: total_valid_size = sum(FTFile(td).size for td in test_data) valid_size = total_valid_size/len(train_data) - self._train = FTData(train_data, train_lbl, size=-valid_size) - self._valid = FTData(train_data, train_lbl, skip=-valid_size) + self._train = FTData(train_data, train_lbl, size=-valid_size, + inscale=inscale, outscale=outscale, indtype=indtype, + outdtype=outdtype) + self._valid = FTData(train_data, train_lbl, skip=-valid_size, + inscale=inscale, outscale=outscale, indtype=indtype, + outdtype=outdtype) else: - self._train = FTData(train_data, train_lbl) - self._valid = FTData(valid_data, valid_lbl) - self._test = FTData(test_data, test_lbl) + self._train = FTData(train_data, train_lbl,inscale=inscale, + outscale=outscale, indtype=indtype, outdtype=outdtype) + self._valid = FTData(valid_data, valid_lbl,inscale=inscale, + outscale=outscale, indtype=indtype, outdtype=outdtype) + self._test = FTData(test_data, test_lbl,inscale=inscale, + outscale=outscale, indtype=indtype, outdtype=outdtype) def _return_it(self, batchsize, bufsize, ftdata): return izip(DataIterator(ftdata.open_inputs(), batchsize, bufsize),
--- a/deep/convolutional_dae/stacked_convolutional_dae.py Wed Mar 10 20:13:45 2010 -0500 +++ b/deep/convolutional_dae/stacked_convolutional_dae.py Wed Mar 10 20:14:20 2010 -0500 @@ -56,7 +56,7 @@ self.b = theano.shared(value = initial_b, name = "b") - initial_b_prime= numpy.zeros((filter_shape[1],)) + initial_b_prime= numpy.zeros((filter_shape[1],),dtype=theano.config.floatX) self.W_prime=T.dtensor4('W_prime') @@ -64,7 +64,7 @@ self.x = input - self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x + self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape, image_shape=image_shape, border_mode='valid') @@ -135,7 +135,7 @@ self.conv_n_layers = len(conv_hidden_layers_sizes) self.mlp_n_layers = len(mlp_hidden_layers_sizes) - self.x = T.dmatrix('x') # the data is presented as rasterized images + self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of for i in xrange( self.conv_n_layers ): @@ -156,7 +156,7 @@ self.layers += [layer] self.params += layer.params - + da_layer = dA_conv(corruption_level = corruption_levels[0], input = layer_input, shared_W = layer.W, shared_b = layer.b,