Mercurial > ift6266
changeset 144:c958941c1b9d
merge
author | XavierMuller |
---|---|
date | Tue, 23 Feb 2010 18:16:55 -0500 |
parents | f341a4efb44a (current diff) bb26c12bb9f6 (diff) |
children | 8ceaaf812891 |
files | |
diffstat | 23 files changed, 1850 insertions(+), 212 deletions(-) [+] |
line wrap: on
line diff
--- a/pycaptcha/Captcha/Visual/Text.py Tue Feb 23 18:08:11 2010 -0500 +++ b/pycaptcha/Captcha/Visual/Text.py Tue Feb 23 18:16:55 2010 -0500 @@ -18,7 +18,7 @@ If any of the given files are directories, all *.ttf found in that directory will be added. """ - extensions = [".ttf"] + extensions = [".ttf", ".TTF"] basePath = "fonts" # arguments variables a modifier pour mettre le chemin vers les fontes. @@ -39,7 +39,7 @@ return (fileName, size) # Predefined font factories -defaultFontFactory = FontFactory(25, "vera", "others") +defaultFontFactory = FontFactory(25, "allfonts") #defaultFontFactory = FontFactory((30, 40), "vera") class TextLayer(Visual.Layer):
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pycaptcha/Captcha/data/fonts/allfonts Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,1 @@ +/Tmp/allfonts \ No newline at end of file
--- a/pycaptcha/Captcha/data/words/characters Tue Feb 23 18:08:11 2010 -0500 +++ b/pycaptcha/Captcha/data/words/characters Tue Feb 23 18:16:55 2010 -0500 @@ -1,26 +1,62 @@ -q -w +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F +G +H +I +J +K +L +M +N +O +P +Q +R +S +T +U +V +W +X +Y +Z +a +b +c +d e -r -t -y -u -i -o -p -a -s -d f g h +i j k l -z -x -c +m +n +o +p +q +r +s +t +u v -b -n -m +w +x +y +z
--- a/pycaptcha/Facade.py Tue Feb 23 18:08:11 2010 -0500 +++ b/pycaptcha/Facade.py Tue Feb 23 18:16:55 2010 -0500 @@ -30,4 +30,4 @@ return a else : - return (a, g,solutions) + return (a, g.solutions)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/fonts_test.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,19 @@ +#!/usr/bin/python + +import os +import ImageFont, ImageDraw, Image + +dir1 = "/data/lisa/data/ift6266h10/allfonts/" +#dir1 = "/Tmp/allfonts/" + +img = Image.new("L", (132,132)) +draw = ImageDraw.Draw(img) +L = [chr(ord('0')+x) for x in range(10)] + [chr(ord('A')+x) for x in range(26)] + [chr(ord('a')+x) for x in range(26)] + +for f in os.listdir(dir1): + try: + font = ImageFont.truetype(dir1+f, 25) + for l in L: + draw.text((60,60), l, font=font, fill="white") + except: + print dir1+f
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/imgbg_test.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,15 @@ +#!/usr/bin/python + +import Image, cPickle + +f=open('/Tmp/image_net/filelist.pkl') +image_files = cPickle.load(f) +f.close() + +for i in range(len(image_files)): + filename = '/Tmp/image_net/' + image_files[i] + try: + image = Image.open(filename).convert('L') + except: + print filename +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/launch_generate100.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,12 @@ +#!/usr/bin/env python + +import os +dir1 = "/data/lisa/data/ift6266h10/" + +for i,s in enumerate(['valid','test']): + for c in [0.3,0.5,0.7,1]: + l = str(c).replace('.','') + os.system("dbidispatch --condor --os=fc9 --machine=brams0c.iro.umontreal.ca ./run_pipeline.sh -o %sdata/P%s_%s_data.ft -p %sdata/P%s_%s_params -x %sdata/P%s_%s_labels.ft -f %s%s_data.ft -l %s%s_labels.ft -c %socr_%s_data.ft -d %socr_%s_labels.ft -m 0.3 -z 0.1 -a 0.1 -b 0.25 -g 0.25 -s %d" % (dir1, l, s, dir1, l, s, dir1, l, s, dir1, s, dir1, s, dir1, s, dir1, s, [20000,80000][i])) + +for i in range(100): + os.system("dbidispatch --condor --os=fc9 --machine=brams0c.iro.umontreal.ca ./run_pipeline.sh -o %sdata/P07_train%d_data.ft -p %sdata/P07_train%d_params -x %sdata/P07_train%d_labels.ft -f %strain_data.ft -l %strain_labels.ft -c %socr_train_data.ft -d %socr_train_labels.ft -m 0.7 -z 0.1 -a 0.1 -b 0.25 -g 0.25 -s 819200" % (dir1, i, dir1, i, dir1, i, dir1, dir1, dir1, dir1))
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/ocr_divide.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,40 @@ +#!/usr/bin/env python + +''' +creation des ensembles train, valid et test OCR +ensemble valid est trainorig[:20000] +ensemble test est trainorig[20000:40000] +ensemble train est trainorig[40000:] +trainorig est deja shuffled +''' + +from pylearn.io import filetensor as ft +import numpy, os + +dir1 = '/data/lisa/data/ocr_breuel/filetensor/' +dir2 = "/data/lisa/data/ift6266h10/" + +f = open(dir1 + 'unlv-corrected-2010-02-01-shuffled.ft') +d = ft.read(f) +f = open(dir2 + "ocr_valid_data.ft", 'wb') +ft.write(f, d[:20000]) +f = open(dir2 + "ocr_test_data.ft", 'wb') +ft.write(f, d[20000:40000]) +f = open(dir2 + "ocr_train_data.ft", 'wb') +ft.write(f, d[40000:]) + +f = open(dir1 + 'unlv-corrected-2010-02-01-labels-shuffled.ft') +d = ft.read(f) +f = open(dir2 + "ocr_valid_labels.ft", 'wb') +ft.write(f, d[:20000]) +f = open(dir2 + "ocr_test_labels.ft", 'wb') +ft.write(f, d[20000:40000]) +f = open(dir2 + "ocr_train_labels.ft", 'wb') +ft.write(f, d[40000:]) + +for i in ["train", "valid", "test"]: + os.chmod(dir2 + "ocr_" + i + "_data.ft", 0744) + os.chmod(dir2 + "ocr_" + i + "_labels.ft", 0744) + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/stacked_dae/mnist_sda.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,44 @@ +#!/usr/bin/python +# coding: utf-8 + +# Parameterize call to sgd_optimization for MNIST + +import numpy +import theano +import time +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams + +from sgd_optimization import SdaSgdOptimizer +import cPickle, gzip +from jobman import DD + +MNIST_LOCATION = '/u/savardf/datasets/mnist.pkl.gz' + +def sgd_optimization_mnist(learning_rate=0.1, pretraining_epochs = 2, \ + pretrain_lr = 0.1, training_epochs = 5, \ + dataset='mnist.pkl.gz'): + # Load the dataset + f = gzip.open(dataset,'rb') + # this gives us train, valid, test (each with .x, .y) + dataset = cPickle.load(f) + f.close() + + n_ins = 28*28 + n_outs = 10 + + hyperparameters = DD({'finetuning_lr':learning_rate, + 'pretraining_lr':pretrain_lr, + 'pretraining_epochs_per_layer':pretraining_epochs, + 'max_finetuning_epochs':training_epochs, + 'hidden_layers_sizes':[100], + 'corruption_levels':[0.2], + 'minibatch_size':20}) + + optimizer = SdaSgdOptimizer(dataset, hyperparameters, n_ins, n_outs) + optimizer.pretrain() + optimizer.finetune() + +if __name__ == '__main__': + sgd_optimization_mnist(dataset=MNIST_LOCATION) +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/stacked_dae/nist_sda.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,264 @@ +#!/usr/bin/python +# coding: utf-8 + +import numpy +import theano +import time +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams +import copy + +import sys +import os.path + +from sgd_optimization import SdaSgdOptimizer + +from jobman import DD +import jobman, jobman.sql +from pylearn.io import filetensor + +from utils import produit_croise_jobs + +TEST_CONFIG = False + +NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' + +JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_db/' +REDUCE_TRAIN_TO = None +MAX_FINETUNING_EPOCHS = 1000 +if TEST_CONFIG: + JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/' + REDUCE_TRAIN_TO = 1000 + MAX_FINETUNING_EPOCHS = 2 + +JOBDB_JOBS = JOBDB + 'fsavard_sda1_jobs' +JOBDB_RESULTS = JOBDB + 'fsavard_sda1_results' +EXPERIMENT_PATH = "ift6266.scripts.stacked_dae.nist_sda.jobman_entrypoint" + +# There used to be +# 'finetuning_lr': [0.00001, 0.0001, 0.001, 0.01, 0.1] +# and +# 'num_hidden_layers':[1,2,3] +# but this is now handled by a special mechanism in SgdOptimizer +# to reuse intermediate results (for the same training of lower layers, +# we can test many finetuning_lr) +JOB_VALS = {'pretraining_lr': [0.1, 0.01, 0.001],#, 0.0001], + 'pretraining_epochs_per_layer': [10,20], + 'hidden_layers_sizes': [300,800], + 'corruption_levels': [0.1,0.2], + 'minibatch_size': [20], + 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS]} +FINETUNING_LR_VALS = [0.1, 0.01, 0.001]#, 0.0001] +NUM_HIDDEN_LAYERS_VALS = [1,2,3] + +# Just useful for tests... minimal number of epochs +DEFAULT_HP_NIST = DD({'finetuning_lr':0.01, + 'pretraining_lr':0.01, + 'pretraining_epochs_per_layer':1, + 'max_finetuning_epochs':1, + 'hidden_layers_sizes':[1000], + 'corruption_levels':[0.2], + 'minibatch_size':20}) + +def jobman_entrypoint(state, channel): + state = copy.copy(state) + + print "Will load NIST" + nist = NIST(20) + print "NIST loaded" + + rtt = None + if state.has_key('reduce_train_to'): + rtt = state['reduce_train_to'] + elif REDUCE_TRAIN_TO: + rtt = REDUCE_TRAIN_TO + + if rtt: + print "Reducing training set to ", rtt, " examples" + nist.reduce_train_set(rtt) + + train,valid,test = nist.get_tvt() + dataset = (train,valid,test) + + n_ins = 32*32 + n_outs = 62 # 10 digits, 26*2 (lower, capitals) + + db = jobman.sql.db(JOBDB_RESULTS) + optimizer = SdaSgdOptimizer(dataset, state, n_ins, n_outs,\ + input_divider=255.0, job_tree=True, results_db=db, \ + experiment=EXPERIMENT_PATH, \ + finetuning_lr_to_try=FINETUNING_LR_VALS, \ + num_hidden_layers_to_try=NUM_HIDDEN_LAYERS_VALS) + optimizer.train() + + return channel.COMPLETE + +def estimate_pretraining_time(job): + job = DD(job) + # time spent on pretraining estimated as O(n^2) where n=num hidens + # no need to multiply by num_hidden_layers, as results from num=1 + # is reused for num=2, or 3, so in the end we get the same time + # as if we were training 3 times a single layer + # constants: + # - 20 mins to pretrain a layer with 1000 units (per 1 epoch) + # - 12 mins to finetune (per 1 epoch) + # basically the job_tree trick gives us a 5 times speedup on the + # pretraining time due to reusing for finetuning_lr + # and gives us a second x2 speedup for reusing previous layers + # to explore num_hidden_layers + return (job.pretraining_epochs_per_layer * 20 / (1000.0*1000) \ + * job.hidden_layer_sizes * job.hidden_layer_sizes) + +def estimate_total_time(): + jobs = produit_croise_jobs(JOB_VALS) + sumtime = 0.0 + sum_without = 0.0 + for job in jobs: + sumtime += estimate_pretraining_time(job) + # 12 mins per epoch * 30 epochs + # 5 finetuning_lr per pretraining combination + sum_without = (12*20*len(jobs) + sumtime*2) * len(FINETUNING_LR_VALS) + sumtime += len(FINETUNING_LR_VALS) * len(jobs) * 12 * 20 + print "num jobs=", len(jobs) + print "estimate", sumtime/60, " hours" + print "estimate without tree optimization", sum_without/60, "ratio", sumtime / sum_without + +def jobman_insert_nist(): + jobs = produit_croise_jobs(JOB_VALS) + + db = jobman.sql.db(JOBDB_JOBS) + for job in jobs: + job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) + jobman.sql.insert_dict(job, db) + + print "inserted" + +class NIST: + def __init__(self, minibatch_size, basepath=None, reduce_train_to=None): + global NIST_ALL_LOCATION + + self.minibatch_size = minibatch_size + self.basepath = basepath and basepath or NIST_ALL_LOCATION + + self.set_filenames() + + # arrays of 2 elements: .x, .y + self.train = [None, None] + self.test = [None, None] + + self.load_train_test() + + self.valid = [[], []] + self.split_train_valid() + if reduce_train_to: + self.reduce_train_set(reduce_train_to) + + def get_tvt(self): + return self.train, self.valid, self.test + + def set_filenames(self): + self.train_files = ['all_train_data.ft', + 'all_train_labels.ft'] + + self.test_files = ['all_test_data.ft', + 'all_test_labels.ft'] + + def load_train_test(self): + self.load_data_labels(self.train_files, self.train) + self.load_data_labels(self.test_files, self.test) + + def load_data_labels(self, filenames, pair): + for i, fn in enumerate(filenames): + f = open(os.path.join(self.basepath, fn)) + pair[i] = filetensor.read(f) + f.close() + + def reduce_train_set(self, max): + self.train[0] = self.train[0][:max] + self.train[1] = self.train[1][:max] + + if max < len(self.test[0]): + for ar in (self.test, self.valid): + ar[0] = ar[0][:max] + ar[1] = ar[1][:max] + + def split_train_valid(self): + test_len = len(self.test[0]) + + new_train_x = self.train[0][:-test_len] + new_train_y = self.train[1][:-test_len] + + self.valid[0] = self.train[0][-test_len:] + self.valid[1] = self.train[1][-test_len:] + + self.train[0] = new_train_x + self.train[1] = new_train_y + +def test_load_nist(): + print "Will load NIST" + + import time + t1 = time.time() + nist = NIST(20) + t2 = time.time() + + print "NIST loaded. time delta = ", t2-t1 + + tr,v,te = nist.get_tvt() + + print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0]) + + raw_input("Press any key") + +# hp for hyperparameters +def sgd_optimization_nist(hp=None, dataset_dir='/data/lisa/data/nist'): + global DEFAULT_HP_NIST + hp = hp and hp or DEFAULT_HP_NIST + + print "Will load NIST" + + import time + t1 = time.time() + nist = NIST(20, reduce_train_to=100) + t2 = time.time() + + print "NIST loaded. time delta = ", t2-t1 + + train,valid,test = nist.get_tvt() + dataset = (train,valid,test) + + print train[0][15] + print type(train[0][1]) + + + print "Lengths train, valid, test: ", len(train[0]), len(valid[0]), len(test[0]) + + n_ins = 32*32 + n_outs = 62 # 10 digits, 26*2 (lower, capitals) + + optimizer = SdaSgdOptimizer(dataset, hp, n_ins, n_outs, input_divider=255.0) + optimizer.train() + +if __name__ == '__main__': + + import sys + + args = sys.argv[1:] + + if len(args) > 0 and args[0] == 'load_nist': + test_load_nist() + + elif len(args) > 0 and args[0] == 'jobman_insert': + jobman_insert_nist() + elif len(args) > 0 and args[0] == 'test_job_tree': + # dont forget to comment out sql.inserts and make reduce_train_to=100 + print "TESTING JOB TREE" + chanmock = {'COMPLETE':0} + hp = copy.copy(DEFAULT_HP_NIST) + hp.update({'reduce_train_to':100}) + jobman_entrypoint(hp, chanmock) + elif len(args) > 0 and args[0] == 'estimate': + estimate_total_time() + else: + sgd_optimization_nist() +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/stacked_dae/sgd_optimization.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,270 @@ +#!/usr/bin/python +# coding: utf-8 + +# Generic SdA optimization loop, adapted from the deeplearning.net tutorial + +import numpy +import theano +import time +import theano.tensor as T +import copy +import sys + +from jobman import DD +import jobman, jobman.sql + +from stacked_dae import SdA + +def shared_dataset(data_xy): + data_x, data_y = data_xy + #shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) + #shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) + #shared_y = T.cast(shared_y, 'int32') + shared_x = theano.shared(data_x) + shared_y = theano.shared(data_y) + return shared_x, shared_y + +class SdaSgdOptimizer: + def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0,\ + job_tree=False, results_db=None,\ + experiment="",\ + num_hidden_layers_to_try=[1,2,3], \ + finetuning_lr_to_try=[0.1, 0.01, 0.001, 0.0001, 0.00001]): + + self.dataset = dataset + self.hp = copy.copy(hyperparameters) + self.n_ins = n_ins + self.n_outs = n_outs + self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX) + + self.job_tree = job_tree + self.results_db = results_db + self.experiment = experiment + if self.job_tree: + assert(not results_db is None) + # these hp should not be there, so we insert default values + # we use 3 hidden layers as we'll iterate through 1,2,3 + self.hp.finetuning_lr = 0.1 # dummy value, will be replaced anyway + cl = self.hp.corruption_levels + nh = self.hp.hidden_layers_sizes + self.hp.corruption_levels = [cl,cl,cl] + self.hp.hidden_layers_sizes = [nh,nh,nh] + + self.num_hidden_layers_to_try = num_hidden_layers_to_try + self.finetuning_lr_to_try = finetuning_lr_to_try + + self.printout_frequency = 1000 + + self.rng = numpy.random.RandomState(1234) + + self.init_datasets() + self.init_classifier() + + def init_datasets(self): + print "init_datasets" + train_set, valid_set, test_set = self.dataset + self.test_set_x, self.test_set_y = shared_dataset(test_set) + self.valid_set_x, self.valid_set_y = shared_dataset(valid_set) + self.train_set_x, self.train_set_y = shared_dataset(train_set) + + # compute number of minibatches for training, validation and testing + self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size + self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size + self.n_test_batches = self.test_set_x.value.shape[0] / self.hp.minibatch_size + + def init_classifier(self): + print "Constructing classifier" + # construct the stacked denoising autoencoder class + self.classifier = SdA( \ + train_set_x= self.train_set_x, \ + train_set_y = self.train_set_y,\ + batch_size = self.hp.minibatch_size, \ + n_ins= self.n_ins, \ + hidden_layers_sizes = self.hp.hidden_layers_sizes, \ + n_outs = self.n_outs, \ + corruption_levels = self.hp.corruption_levels,\ + rng = self.rng,\ + pretrain_lr = self.hp.pretraining_lr, \ + finetune_lr = self.hp.finetuning_lr,\ + input_divider = self.input_divider ) + + def train(self): + self.pretrain() + if not self.job_tree: + # if job_tree is True, finetuning was already performed + self.finetune() + + def pretrain(self): + print "STARTING PRETRAINING" + + printout_acc = 0.0 + last_error = 0.0 + + start_time = time.clock() + ## Pre-train layer-wise + for i in xrange(self.classifier.n_layers): + # go through pretraining epochs + for epoch in xrange(self.hp.pretraining_epochs_per_layer): + # go through the training set + for batch_index in xrange(self.n_train_batches): + c = self.classifier.pretrain_functions[i](batch_index) + + printout_acc += c / self.printout_frequency + if (batch_index+1) % self.printout_frequency == 0: + print batch_index, "reconstruction cost avg=", printout_acc + last_error = printout_acc + printout_acc = 0.0 + + print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c + + self.job_splitter(i+1, time.clock()-start_time, last_error) + + end_time = time.clock() + + print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) + + # Save time by reusing intermediate results + def job_splitter(self, current_pretraining_layer, pretraining_time, last_error): + + state_copy = None + original_classifier = None + + if self.job_tree and current_pretraining_layer in self.num_hidden_layers_to_try: + for lr in self.finetuning_lr_to_try: + sys.stdout.flush() + sys.stderr.flush() + + state_copy = copy.copy(self.hp) + + self.hp.update({'num_hidden_layers':current_pretraining_layer, \ + 'finetuning_lr':lr,\ + 'pretraining_time':pretraining_time,\ + 'last_reconstruction_error':last_error}) + + original_classifier = self.classifier + print "ORIGINAL CLASSIFIER MEANS",original_classifier.get_params_means() + self.classifier = SdA.copy_reusing_lower_layers(original_classifier, current_pretraining_layer, new_finetuning_lr=lr) + + self.finetune() + + self.insert_finished_job() + + print "NEW CLASSIFIER MEANS AFTERWARDS",self.classifier.get_params_means() + print "ORIGINAL CLASSIFIER MEANS AFTERWARDS",original_classifier.get_params_means() + self.classifier = original_classifier + self.hp = state_copy + + def insert_finished_job(self): + job = copy.copy(self.hp) + job[jobman.sql.STATUS] = jobman.sql.DONE + job[jobman.sql.EXPERIMENT] = self.experiment + + # don,t try to store arrays in db + job['hidden_layers_sizes'] = job.hidden_layers_sizes[0] + job['corruption_levels'] = job.corruption_levels[0] + + print "Will insert finished job", job + jobman.sql.insert_dict(jobman.flatten(job), self.results_db) + + def finetune(self): + print "STARTING FINETUNING" + + index = T.lscalar() # index to a [mini]batch + minibatch_size = self.hp.minibatch_size + + # create a function to compute the mistakes that are made by the model + # on the validation set, or testing set + test_model = theano.function([index], self.classifier.errors, + givens = { + self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, + self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + + validate_model = theano.function([index], self.classifier.errors, + givens = { + self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, + self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + + + # early-stopping parameters + patience = 10000 # look as this many examples regardless + patience_increase = 2. # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min(self.n_train_batches, patience/2) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch + + best_params = None + best_validation_loss = float('inf') + test_score = 0. + start_time = time.clock() + + done_looping = False + epoch = 0 + + printout_acc = 0.0 + + if not self.hp.has_key('max_finetuning_epochs'): + self.hp.max_finetuning_epochs = 1000 + + while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(self.n_train_batches): + + cost_ij = self.classifier.finetune(minibatch_index) + iter = epoch * self.n_train_batches + minibatch_index + + printout_acc += cost_ij / float(self.printout_frequency * minibatch_size) + if (iter+1) % self.printout_frequency == 0: + print iter, "cost avg=", printout_acc + printout_acc = 0.0 + + if (iter+1) % validation_frequency == 0: + + validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1, self.n_train_batches, \ + this_validation_loss*100.)) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) + + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter + + # test it on the test set + test_losses = [test_model(i) for i in xrange(self.n_test_batches)] + test_score = numpy.mean(test_losses) + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, self.n_train_batches, + test_score*100.)) + + + if patience <= iter : + done_looping = True + break + + end_time = time.clock() + self.hp.update({'finetuning_time':end_time-start_time,\ + 'best_validation_error':best_validation_loss,\ + 'test_score':test_score, + 'num_finetuning_epochs':epoch}) + print(('Optimization complete with best validation score of %f %%,' + 'with test performance %f %%') % + (best_validation_loss * 100., test_score*100.)) + print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/stacked_dae/stacked_convolutional_dae.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,415 @@ +import numpy +import theano +import time +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams +import theano.sandbox.softsign + +from theano.tensor.signal import downsample +from theano.tensor.nnet import conv +import gzip +import cPickle + + +class LogisticRegression(object): + + def __init__(self, input, n_in, n_out): + + self.W = theano.shared( value=numpy.zeros((n_in,n_out), + dtype = theano.config.floatX) ) + + self.b = theano.shared( value=numpy.zeros((n_out,), + dtype = theano.config.floatX) ) + + self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) + + + self.y_pred=T.argmax(self.p_y_given_x, axis=1) + + self.params = [self.W, self.b] + + def negative_log_likelihood(self, y): + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + + def MSE(self, y): + return -T.mean(abs((self.p_y_given_x)[T.arange(y.shape[0]),y]-y)**2) + + def errors(self, y): + if y.ndim != self.y_pred.ndim: + raise TypeError('y should have the same shape as self.y_pred', + ('y', target.type, 'y_pred', self.y_pred.type)) + + + if y.dtype.startswith('int'): + return T.mean(T.neq(self.y_pred, y)) + else: + raise NotImplementedError() + + +class SigmoidalLayer(object): + def __init__(self, rng, input, n_in, n_out): + + self.input = input + + W_values = numpy.asarray( rng.uniform( \ + low = -numpy.sqrt(6./(n_in+n_out)), \ + high = numpy.sqrt(6./(n_in+n_out)), \ + size = (n_in, n_out)), dtype = theano.config.floatX) + self.W = theano.shared(value = W_values) + + b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) + self.b = theano.shared(value= b_values) + + self.output = T.tanh(T.dot(input, self.W) + self.b) + self.params = [self.W, self.b] + +class dA_conv(object): + + def __init__(self, corruption_level = 0.1, input = None, shared_W = None,\ + shared_b = None, filter_shape = None, image_shape = None, poolsize = (2,2)): + + theano_rng = RandomStreams() + + fan_in = numpy.prod(filter_shape[1:]) + fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) + + center = theano.shared(value = 1, name="center") + scale = theano.shared(value = 2, name="scale") + + if shared_W != None and shared_b != None : + self.W = shared_W + self.b = shared_b + else: + initial_W = numpy.asarray( numpy.random.uniform( \ + low = -numpy.sqrt(6./(fan_in+fan_out)), \ + high = numpy.sqrt(6./(fan_in+fan_out)), \ + size = filter_shape), dtype = theano.config.floatX) + initial_b = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX) + + + self.W = theano.shared(value = initial_W, name = "W") + self.b = theano.shared(value = initial_b, name = "b") + + + initial_b_prime= numpy.zeros((filter_shape[1],)) + + self.W_prime=T.dtensor4('W_prime') + + self.b_prime = theano.shared(value = initial_b_prime, name = "b_prime") + + self.x = input + + self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x + + conv1_out = conv.conv2d(self.tilde_x, self.W, \ + filter_shape=filter_shape, \ + image_shape=image_shape, border_mode='valid') + + + self.y = T.tanh(conv1_out + self.b.dimshuffle('x', 0, 'x', 'x')) + + + da_filter_shape = [ filter_shape[1], filter_shape[0], filter_shape[2],\ + filter_shape[3] ] + da_image_shape = [ image_shape[0],filter_shape[0],image_shape[2]-filter_shape[2]+1, \ + image_shape[3]-filter_shape[3]+1 ] + initial_W_prime = numpy.asarray( numpy.random.uniform( \ + low = -numpy.sqrt(6./(fan_in+fan_out)), \ + high = numpy.sqrt(6./(fan_in+fan_out)), \ + size = da_filter_shape), dtype = theano.config.floatX) + self.W_prime = theano.shared(value = initial_W_prime, name = "W_prime") + + #import pdb;pdb.set_trace() + + conv2_out = conv.conv2d(self.y, self.W_prime, \ + filter_shape = da_filter_shape, image_shape = da_image_shape ,\ + border_mode='full') + + self.z = (T.tanh(conv2_out + self.b_prime.dimshuffle('x', 0, 'x', 'x'))+center) / scale + + scaled_x = (self.x + center) / scale + + self.L = - T.sum( scaled_x*T.log(self.z) + (1-scaled_x)*T.log(1-self.z), axis=1 ) + + self.cost = T.mean(self.L) + + self.params = [ self.W, self.b, self.b_prime ] + + + +class LeNetConvPoolLayer(object): + def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2,2)): + assert image_shape[1]==filter_shape[1] + self.input = input + + W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX) + self.W = theano.shared(value = W_values) + + b_values = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX) + self.b = theano.shared(value= b_values) + + conv_out = conv.conv2d(input, self.W, + filter_shape=filter_shape, image_shape=image_shape) + + + fan_in = numpy.prod(filter_shape[1:]) + fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize) + + W_bound = numpy.sqrt(6./(fan_in + fan_out)) + self.W.value = numpy.asarray( + rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), + dtype = theano.config.floatX) + + + pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True) + + self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) + self.params = [self.W, self.b] + + +class SdA(): + def __init__(self, input, n_ins_conv, n_ins_mlp, train_set_x, train_set_y, batch_size, \ + conv_hidden_layers_sizes, mlp_hidden_layers_sizes, corruption_levels, \ + rng, n_out, pretrain_lr, finetune_lr): + + self.layers = [] + self.pretrain_functions = [] + self.params = [] + self.conv_n_layers = len(conv_hidden_layers_sizes) + self.mlp_n_layers = len(mlp_hidden_layers_sizes) + + index = T.lscalar() # index to a [mini]batch + self.x = T.dmatrix('x') # the data is presented as rasterized images + self.y = T.ivector('y') # the labels are presented as 1D vector of + + + + for i in xrange( self.conv_n_layers ): + + filter_shape=conv_hidden_layers_sizes[i][0] + image_shape=conv_hidden_layers_sizes[i][1] + max_poolsize=conv_hidden_layers_sizes[i][2] + + if i == 0 : + layer_input=self.x.reshape((batch_size,1,28,28)) + else: + layer_input=self.layers[-1].output + + layer = LeNetConvPoolLayer(rng, input=layer_input, \ + image_shape=image_shape, \ + filter_shape=filter_shape,poolsize=max_poolsize) + print 'Convolutional layer '+str(i+1)+' created' + + self.layers += [layer] + self.params += layer.params + + da_layer = dA_conv(corruption_level = corruption_levels[0],\ + input = layer_input, \ + shared_W = layer.W, shared_b = layer.b,\ + filter_shape = filter_shape , image_shape = image_shape ) + + + gparams = T.grad(da_layer.cost, da_layer.params) + + updates = {} + for param, gparam in zip(da_layer.params, gparams): + updates[param] = param - gparam * pretrain_lr + + + update_fn = theano.function([index], da_layer.cost, \ + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size]} ) + + self.pretrain_functions += [update_fn] + + for i in xrange( self.mlp_n_layers ): + if i == 0 : + input_size = n_ins_mlp + else: + input_size = mlp_hidden_layers_sizes[i-1] + + if i == 0 : + if len( self.layers ) == 0 : + layer_input=self.x + else : + layer_input = self.layers[-1].output.flatten(2) + else: + layer_input = self.layers[-1].output + + layer = SigmoidalLayer(rng, layer_input, input_size, + mlp_hidden_layers_sizes[i] ) + + self.layers += [layer] + self.params += layer.params + + + print 'MLP layer '+str(i+1)+' created' + + self.logLayer = LogisticRegression(input=self.layers[-1].output, \ + n_in=mlp_hidden_layers_sizes[-1], n_out=n_out) + self.params += self.logLayer.params + + cost = self.logLayer.negative_log_likelihood(self.y) + + gparams = T.grad(cost, self.params) + updates = {} + + for param,gparam in zip(self.params, gparams): + updates[param] = param - gparam*finetune_lr + + self.finetune = theano.function([index], cost, + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size], + self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) + + + self.errors = self.logLayer.errors(self.y) + + + +def sgd_optimization_mnist( learning_rate=0.1, pretraining_epochs = 2, \ + pretrain_lr = 0.01, training_epochs = 1000, \ + dataset='mnist.pkl.gz'): + + f = gzip.open(dataset,'rb') + train_set, valid_set, test_set = cPickle.load(f) + f.close() + + + def shared_dataset(data_xy): + data_x, data_y = data_xy + shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) + shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) + return shared_x, T.cast(shared_y, 'int32') + + + test_set_x, test_set_y = shared_dataset(test_set) + valid_set_x, valid_set_y = shared_dataset(valid_set) + train_set_x, train_set_y = shared_dataset(train_set) + + batch_size = 500 # size of the minibatch + + + n_train_batches = train_set_x.value.shape[0] / batch_size + n_valid_batches = valid_set_x.value.shape[0] / batch_size + n_test_batches = test_set_x.value.shape[0] / batch_size + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + x = T.matrix('x') # the data is presented as rasterized images + y = T.ivector('y') # the labels are presented as 1d vector of + # [int] labels + layer0_input = x.reshape((batch_size,1,28,28)) + + + # Setup the convolutional layers with their DAs(add as many as you want) + corruption_levels = [ 0.2, 0.2, 0.2] + rng = numpy.random.RandomState(1234) + ker1=2 + ker2=2 + conv_layers=[] + conv_layers.append([[ker1,1,5,5], [batch_size,1,28,28], [2,2] ]) + conv_layers.append([[ker2,ker1,5,5], [batch_size,ker1,12,12], [2,2] ]) + + # Setup the MLP layers of the network + mlp_layers=[500] + + network = SdA(input = layer0_input, n_ins_conv = 28*28, n_ins_mlp = ker2*4*4, \ + train_set_x = train_set_x, train_set_y = train_set_y, batch_size = batch_size, + conv_hidden_layers_sizes = conv_layers, \ + mlp_hidden_layers_sizes = mlp_layers, \ + corruption_levels = corruption_levels , n_out = 10, \ + rng = rng , pretrain_lr = pretrain_lr , finetune_lr = learning_rate ) + + test_model = theano.function([index], network.errors, + givens = { + network.x: test_set_x[index*batch_size:(index+1)*batch_size], + network.y: test_set_y[index*batch_size:(index+1)*batch_size]}) + + validate_model = theano.function([index], network.errors, + givens = { + network.x: valid_set_x[index*batch_size:(index+1)*batch_size], + network.y: valid_set_y[index*batch_size:(index+1)*batch_size]}) + + + + start_time = time.clock() + for i in xrange(len(network.layers)-len(mlp_layers)): + for epoch in xrange(pretraining_epochs): + for batch_index in xrange(n_train_batches): + c = network.pretrain_functions[i](batch_index) + print 'pre-training convolution layer %i, epoch %d, cost '%(i,epoch),c + + patience = 10000 # look as this many examples regardless + patience_increase = 2. # WAIT THIS MUCH LONGER WHEN A NEW BEST IS + # FOUND + improvement_threshold = 0.995 # a relative improvement of this much is + + validation_frequency = min(n_train_batches, patience/2) + + + best_params = None + best_validation_loss = float('inf') + test_score = 0. + start_time = time.clock() + + done_looping = False + epoch = 0 + + while (epoch < training_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(n_train_batches): + + cost_ij = network.finetune(minibatch_index) + iter = epoch * n_train_batches + minibatch_index + + if (iter+1) % validation_frequency == 0: + + validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1, n_train_batches, \ + this_validation_loss*100.)) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) + + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter + + # test it on the test set + test_losses = [test_model(i) for i in xrange(n_test_batches)] + test_score = numpy.mean(test_losses) + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, n_train_batches, + test_score*100.)) + + + if patience <= iter : + done_looping = True + break + + end_time = time.clock() + print(('Optimization complete with best validation score of %f %%,' + 'with test performance %f %%') % + (best_validation_loss * 100., test_score*100.)) + print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) + + + + + + +if __name__ == '__main__': + sgd_optimization_mnist() +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/stacked_dae/stacked_dae.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,287 @@ +#!/usr/bin/python +# coding: utf-8 + +import numpy +import theano +import time +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams +import copy + +from utils import update_locals + +class LogisticRegression(object): + def __init__(self, input, n_in, n_out): + # initialize with 0 the weights W as a matrix of shape (n_in, n_out) + self.W = theano.shared( value=numpy.zeros((n_in,n_out), + dtype = theano.config.floatX) ) + # initialize the baises b as a vector of n_out 0s + self.b = theano.shared( value=numpy.zeros((n_out,), + dtype = theano.config.floatX) ) + # compute vector of class-membership probabilities in symbolic form + self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) + + # compute prediction as class whose probability is maximal in + # symbolic form + self.y_pred=T.argmax(self.p_y_given_x, axis=1) + + # list of parameters for this layer + self.params = [self.W, self.b] + + def negative_log_likelihood(self, y): + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + + def errors(self, y): + # check if y has same dimension of y_pred + if y.ndim != self.y_pred.ndim: + raise TypeError('y should have the same shape as self.y_pred', + ('y', target.type, 'y_pred', self.y_pred.type)) + + # check if y is of the correct datatype + if y.dtype.startswith('int'): + # the T.neq operator returns a vector of 0s and 1s, where 1 + # represents a mistake in prediction + return T.mean(T.neq(self.y_pred, y)) + else: + raise NotImplementedError() + + +class SigmoidalLayer(object): + def __init__(self, rng, input, n_in, n_out): + self.input = input + + W_values = numpy.asarray( rng.uniform( \ + low = -numpy.sqrt(6./(n_in+n_out)), \ + high = numpy.sqrt(6./(n_in+n_out)), \ + size = (n_in, n_out)), dtype = theano.config.floatX) + self.W = theano.shared(value = W_values) + + b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) + self.b = theano.shared(value= b_values) + + self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b) + self.params = [self.W, self.b] + + + +class dA(object): + def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\ + input = None, shared_W = None, shared_b = None): + self.n_visible = n_visible + self.n_hidden = n_hidden + + # create a Theano random generator that gives symbolic random values + theano_rng = RandomStreams() + + if shared_W != None and shared_b != None : + self.W = shared_W + self.b = shared_b + else: + # initial values for weights and biases + # note : W' was written as `W_prime` and b' as `b_prime` + + # W is initialized with `initial_W` which is uniformely sampled + # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) + # the output of uniform if converted using asarray to dtype + # theano.config.floatX so that the code is runable on GPU + initial_W = numpy.asarray( numpy.random.uniform( \ + low = -numpy.sqrt(6./(n_hidden+n_visible)), \ + high = numpy.sqrt(6./(n_hidden+n_visible)), \ + size = (n_visible, n_hidden)), dtype = theano.config.floatX) + initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX) + + + # theano shared variables for weights and biases + self.W = theano.shared(value = initial_W, name = "W") + self.b = theano.shared(value = initial_b, name = "b") + + + initial_b_prime= numpy.zeros(n_visible) + # tied weights, therefore W_prime is W transpose + self.W_prime = self.W.T + self.b_prime = theano.shared(value = initial_b_prime, name = "b'") + + # if no input is given, generate a variable representing the input + if input == None : + # we use a matrix because we expect a minibatch of several examples, + # each example being a row + self.x = T.dmatrix(name = 'input') + else: + self.x = input + # Equation (1) + # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs + # note : first argument of theano.rng.binomial is the shape(size) of + # random numbers that it should produce + # second argument is the number of trials + # third argument is the probability of success of any trial + # + # this will produce an array of 0s and 1s where 1 has a + # probability of 1 - ``corruption_level`` and 0 with + # ``corruption_level`` + self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x + # Equation (2) + # note : y is stored as an attribute of the class so that it can be + # used later when stacking dAs. + self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b) + # Equation (3) + self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) + # Equation (4) + # note : we sum over the size of a datapoint; if we are using minibatches, + # L will be a vector, with one entry per example in minibatch + self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) + # note : L is now a vector, where each element is the cross-entropy cost + # of the reconstruction of the corresponding example of the + # minibatch. We need to compute the average of all these to get + # the cost of the minibatch + self.cost = T.mean(self.L) + + self.params = [ self.W, self.b, self.b_prime ] + + + + +class SdA(object): + def __init__(self, train_set_x, train_set_y, batch_size, n_ins, + hidden_layers_sizes, n_outs, + corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0): + update_locals(self, locals()) + + self.layers = [] + self.pretrain_functions = [] + self.params = [] + self.n_layers = len(hidden_layers_sizes) + + self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX) + + if len(hidden_layers_sizes) < 1 : + raiseException (' You must have at least one hidden layer ') + + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + self.x = T.matrix('x') # the data is presented as rasterized images + self.y = T.ivector('y') # the labels are presented as 1D vector of + # [int] labels + + for i in xrange( self.n_layers ): + # construct the sigmoidal layer + + # the size of the input is either the number of hidden units of + # the layer below or the input size if we are on the first layer + if i == 0 : + input_size = n_ins + else: + input_size = hidden_layers_sizes[i-1] + + # the input to this layer is either the activation of the hidden + # layer below or the input of the SdA if you are on the first + # layer + if i == 0 : + layer_input = self.x + else: + layer_input = self.layers[-1].output + + layer = SigmoidalLayer(rng, layer_input, input_size, + hidden_layers_sizes[i] ) + # add the layer to the + self.layers += [layer] + self.params += layer.params + + # Construct a denoising autoencoder that shared weights with this + # layer + dA_layer = dA(input_size, hidden_layers_sizes[i], \ + corruption_level = corruption_levels[0],\ + input = layer_input, \ + shared_W = layer.W, shared_b = layer.b) + + # Construct a function that trains this dA + # compute gradients of layer parameters + gparams = T.grad(dA_layer.cost, dA_layer.params) + # compute the list of updates + updates = {} + for param, gparam in zip(dA_layer.params, gparams): + updates[param] = param - gparam * pretrain_lr + + # create a function that trains the dA + update_fn = theano.function([index], dA_layer.cost, \ + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.input_divider}) + # collect this function into a list + self.pretrain_functions += [update_fn] + + + # We now need to add a logistic layer on top of the MLP + self.logLayer = LogisticRegression(\ + input = self.layers[-1].output,\ + n_in = hidden_layers_sizes[-1], n_out = n_outs) + + self.params += self.logLayer.params + # construct a function that implements one step of finetunining + + # compute the cost, defined as the negative log likelihood + cost = self.logLayer.negative_log_likelihood(self.y) + # compute the gradients with respect to the model parameters + gparams = T.grad(cost, self.params) + # compute list of updates + updates = {} + for param,gparam in zip(self.params, gparams): + updates[param] = param - gparam*finetune_lr + + self.finetune = theano.function([index], cost, + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.input_divider, + self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) + + # symbolic variable that points to the number of errors made on the + # minibatch given by self.x and self.y + + self.errors = self.logLayer.errors(self.y) + + @classmethod + def copy_reusing_lower_layers(cls, obj, num_hidden_layers, new_finetuning_lr=None): + assert(num_hidden_layers <= obj.n_layers) + + if not new_finetuning_lr: + new_finetuning_lr = obj.finetune_lr + + new_sda = cls(train_set_x= obj.train_set_x, \ + train_set_y = obj.train_set_y,\ + batch_size = obj.batch_size, \ + n_ins= obj.n_ins, \ + hidden_layers_sizes = obj.hidden_layers_sizes[:num_hidden_layers], \ + n_outs = obj.n_outs, \ + corruption_levels = obj.corruption_levels[:num_hidden_layers],\ + rng = obj.rng,\ + pretrain_lr = obj.pretrain_lr, \ + finetune_lr = new_finetuning_lr, \ + input_divider = obj.input_divider ) + + # new_sda.layers contains only the hidden layers actually + for i, layer in enumerate(new_sda.layers): + original_layer = obj.layers[i] + for p1,p2 in zip(layer.params, original_layer.params): + p1.value = p2.value.copy() + + return new_sda + + def get_params_copy(self): + return copy.deepcopy(self.params) + + def set_params_from_copy(self, copy): + # We don't want to replace the var, as the functions have pointers in there + # We only want to replace values. + for i, p in enumerate(self.params): + p.value = copy[i].value + + def get_params_means(self): + s = [] + for p in self.params: + s.append(numpy.mean(p.value)) + return s + +if __name__ == '__main__': + import sys + args = sys.argv[1:] +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/stacked_dae/utils.py Tue Feb 23 18:16:55 2010 -0500 @@ -0,0 +1,57 @@ +#!/usr/bin/python + +from jobman import DD + +# from pylearn codebase +def update_locals(obj, dct): + if 'self' in dct: + del dct['self'] + obj.__dict__.update(dct) + +def produit_croise_jobs(val_dict): + job_list = [DD()] + all_keys = val_dict.keys() + + for key in all_keys: + possible_values = val_dict[key] + new_job_list = [] + for val in possible_values: + for job in job_list: + to_insert = job.copy() + to_insert.update({key: val}) + new_job_list.append(to_insert) + job_list = new_job_list + + return job_list + +def test_produit_croise_jobs(): + vals = {'a': [1,2], 'b': [3,4,5]} + print produit_croise_jobs(vals) + + +# taken from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python +"""Simple module for getting amount of memory used by a specified user's +processes on a UNIX system. +It uses UNIX ps utility to get the memory usage for a specified username and +pipe it to awk for summing up per application memory usage and return the total. +Python's Popen() from subprocess module is used for spawning ps and awk. + +""" + +import subprocess + +class MemoryMonitor(object): + + def __init__(self, username): + """Create new MemoryMonitor instance.""" + self.username = username + + def usage(self): + """Return int containing memory used by user's processes.""" + self.process = subprocess.Popen("ps -u %s -o rss | awk '{sum+=$1} END {print sum}'" % self.username, + shell=True, + stdout=subprocess.PIPE, + ) + self.stdout_list = self.process.communicate()[0].split('\n') + return int(self.stdout_list[0]) +
--- a/transformations/BruitGauss.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/BruitGauss.py Tue Feb 23 18:16:55 2010 -0500 @@ -35,39 +35,39 @@ self.regenerate_parameters(complexity) def get_settings_names(self): - return ['nb_chng','sigma_gauss','grandeur','effectuer'] + return ['nb_chng','sigma_gauss','grandeur'] def regenerate_parameters(self, complexity): - self.nb_chng=3+int(numpy.random.rand()*self.nb_chngmax*complexity) + self.effectuer =numpy.random.binomial(1,0.25) ##### On a 25% de faire un bruit ##### + - if float(complexity) > 0: + if self.effectuer and complexity > 0: + self.nb_chng=3+int(numpy.random.rand()*self.nb_chngmax*complexity) self.sigma_gauss=2.0 + numpy.random.rand()*self.sigmamax*complexity self.grandeur=12+int(numpy.random.rand()*self.grandeurmax*complexity) - self.effectuer =numpy.random.binomial(1,0.25) ##### On a 25% de faire un bruit ##### + #creation du noyau gaussien + self.gauss=numpy.zeros((self.grandeur,self.grandeur)) + x0 = y0 = self.grandeur/2.0 + for i in xrange(self.grandeur): + for j in xrange(self.grandeur): + self.gauss[i,j]=numpy.exp(-((i-x0)**2 + (j-y0)**2) / self.sigma_gauss**2) + #creation de la fenetre de moyennage + self.moy=numpy.zeros((self.grandeur,self.grandeur)) + x0 = y0 = self.grandeur/2 + for i in xrange(0,self.grandeur): + for j in xrange(0,self.grandeur): + self.moy[i,j]=((numpy.sqrt(2*(self.grandeur/2.0)**2) -\ + numpy.sqrt(numpy.abs(i-self.grandeur/2.0)**2+numpy.abs(j-self.grandeur/2.0)**2))/numpy.sqrt((self.grandeur/2.0)**2))**5 else: - self.effectuer = 0 self.sigma_gauss = 1 # eviter division par 0 self.grandeur=1 - #Un peu de paranoia ici, mais on ne sait jamais + self.nb_chng = 0 + self.effectuer = 0 - #creation du noyau gaussien - self.gauss=numpy.zeros((self.grandeur,self.grandeur)) - x0 = y0 = self.grandeur/2.0 - for i in xrange(self.grandeur): - for j in xrange(self.grandeur): - self.gauss[i,j]=numpy.exp(-((i-x0)**2 + (j-y0)**2) / self.sigma_gauss**2) - #creation de la fenetre de moyennage - self.moy=numpy.zeros((self.grandeur,self.grandeur)) - x0 = y0 = self.grandeur/2 - for i in xrange(0,self.grandeur): - for j in xrange(0,self.grandeur): - self.moy[i,j]=((numpy.sqrt(2*(self.grandeur/2.0)**2) - numpy.sqrt(numpy.abs(i-self.grandeur/2.0)**2+numpy.abs(j-self.grandeur/2.0)**2))/\ - numpy.sqrt((self.grandeur/2.0)**2))**5 - return self._get_current_parameters() def _get_current_parameters(self): - return [self.nb_chng,self.sigma_gauss,self.grandeur,self.effectuer] + return [self.nb_chng,self.sigma_gauss,self.grandeur] def transform_image(self, image):
--- a/transformations/Occlusion.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/Occlusion.py Tue Feb 23 18:16:55 2010 -0500 @@ -11,7 +11,7 @@ Le fichier /data/lisa/data/ift6266h10/echantillon_occlusion.ft (sur le reseau DIRO) est necessaire. -Il y a 20% de chance d'avoir une occlusion quelconque. +Il y a 30% de chance d'avoir une occlusion quelconque. Sylvain Pannetier Lebeuf dans le cadre de IFT6266, hiver 2010 @@ -61,10 +61,10 @@ return ['haut','bas','gauche','droite','x_arrivee','y_arrivee','endroit','rajout','appliquer'] def regenerate_parameters(self, complexity): - self.haut=min(15,int(numpy.abs(numpy.random.normal(int(7*complexity),2)))) - self.bas=min(15,int(numpy.abs(numpy.random.normal(int(7*complexity),2)))) - self.gauche=min(15,int(numpy.abs(numpy.random.normal(int(7*complexity),2)))) - self.droite=min(15,int(numpy.abs(numpy.random.normal(int(7*complexity),2)))) + self.haut=min(15,int(numpy.abs(numpy.random.normal(int(8*complexity),2)))) + self.bas=min(15,int(numpy.abs(numpy.random.normal(int(8*complexity),2)))) + self.gauche=min(15,int(numpy.abs(numpy.random.normal(int(8*complexity),2)))) + self.droite=min(15,int(numpy.abs(numpy.random.normal(int(8*complexity),2)))) if self.haut+self.bas+self.gauche+self.droite==0: #Tres improbable self.haut=1 self.bas=1 @@ -75,8 +75,8 @@ self.x_arrivee=int(numpy.abs(numpy.random.normal(0,2))) #Complexity n'entre pas en jeu, pas besoin self.y_arrivee=int(numpy.random.normal(0,3)) - self.rajout=numpy.random.randint(0,self.longueur) #les bouts de quelle lettre - self.appliquer=numpy.random.binomial(1,0.2) ##### 20 % du temps, on met une occlusion ##### + self.rajout=numpy.random.randint(0,self.longueur-1) #les bouts de quelle lettre + self.appliquer=numpy.random.binomial(1,0.4) ##### 40 % du temps, on met une occlusion ##### if complexity == 0: #On ne fait rien dans ce cas self.applique=0 @@ -151,4 +151,4 @@ if __name__ == '__main__': import pylab import scipy - _test(0.5) \ No newline at end of file + _test(0.5)
--- a/transformations/PoivreSel.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/PoivreSel.py Tue Feb 23 18:16:55 2010 -0500 @@ -23,7 +23,7 @@ class PoivreSel(): def __init__(self): - self.proportion_bruit=0.1 #Le pourcentage des pixels qui seront bruites + self.proportion_bruit=0.08 #Le pourcentage des pixels qui seront bruites self.nb_chng=10 #Le nombre de pixels changes. Seulement pour fin de calcul self.effectuer=1 #Vaut 1 si on effectue et 0 sinon.
--- a/transformations/Rature.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/Rature.py Tue Feb 23 18:16:55 2010 -0500 @@ -2,15 +2,12 @@ # coding: utf-8 ''' -Ajout de rature sur le caractère. La rature peut etre horizontale, verticale -(dans ces deux cas, l'amplacement de la bande est aleatoire) ou sur la diagonale -(et anti-diagonale). +Ajout d'une rature sur le caractère. La rature est en fait un 1 qui recoit une +rotation et qui est ensuite appliqué sur le caractère. Un grossissement, puis deux +erosions sont effectuees sur le 1 afin qu'il ne soit plus reconnaissable. +Il y a des chances d'avoir plus d'une seule rature ! -La largeur de la bande ainsi que sa clarté sont definies a l'aide de complexity -et d'une composante aleatoire. -clarte: 0=blanc et 1=noir - -Il y a 15% d'effectuer une rature +Il y a 15% d'effectuer une rature. Ce fichier prend pour acquis que les images sont donnees une a la fois sous forme de numpy.array de 1024 (32 x 32) valeurs entre 0 et 1. @@ -19,95 +16,203 @@ ''' -import numpy +import numpy, Image, random +import scipy.ndimage.morphology +from pylearn.io import filetensor as ft class Rature(): def __init__(self): - self.largeur=2 #Largeur de la bande - self.deplacement=0 #Deplacement par rapport au milieu - self.orientation=0 #0=horizontal, 1=vertical, 2=oblique - self.clarte=0.5 #Clarte de la ligne appliquee - self.faire=1 #Si ==1, on applique une rature + self.angle=0 #Angle en degre de la rotation (entre 0 et 180) + self.numero=0 #Le numero du 1 choisi dans la banque de 1 + self.gauche=-1 #Le numero de la colonne la plus a gauche contenant le 1 + self.droite=-1 + self.haut=-1 + self.bas=-1 + self.faire=1 #1=on effectue et 0=fait rien + + self.crop_haut=0 + self.crop_gauche=0 #Ces deux valeurs sont entre 0 et 31 afin de definir + #l'endroit ou sera pris le crop dans l'image du 1 + + self.largeur_bande=-1 #La largeur de la bande + self.smooth=-1 #La largeur de la matrice carree servant a l'erosion + self.nb_ratures=-1 #Le nombre de ratures appliques + self.fini=0 #1=fini de mettre toutes les couches 0=pas fini + self.complexity=0 #Pour garder en memoire la complexite si plusieurs couches sont necessaires + + f3 = open('/data/lisa/data/ift6266h10/un_rature.ft') #Doit etre sur le reseau DIRO. + #f3 = open('/home/sylvain/Dropbox/Msc/IFT6266/donnees/un_rature.ft') + #Il faut arranger le path sinon + w=ft.read(f3) + f3.close() + self.d=(w.astype('float'))/255 + + self.patch=self.d[0].reshape((32,32)) #La patch de rature qui sera appliquee sur l'image def get_settings_names(self): - return ['orientation','deplacement','clarte','faire'] + return ['angle','numero','faire','crop_haut','crop_gauche','largeur_bande','smooth','nb_ratures'] - def regenerate_parameters(self, complexity): - #Il faut choisir parmis vertical, horizontal et diagonal. - #La methode n'est pas exacte, mais un peu plus rapide que generer un int. - #Complexity n'a rien a voir avec ce choix + def regenerate_parameters(self, complexity,next_rature = False): - choix=numpy.random.random() - if choix <0.34: - self.orientation=0 - elif choix <0.67: - self.orientation=1 - else: - self.orientation=2 + self.numero=random.randint(0,4999) #Ces bornes sont inclusives ! + self.fini=0 + self.complexity=complexity + + if float(complexity) > 0: + + self.gauche=self.droite=self.haut=self.bas=-1 #Remet tout a -1 + + self.angle=int(numpy.random.normal(90,100*complexity)) + + self.faire=numpy.random.binomial(1,0.15) ##### 15% d'effectuer une rature ##### + if next_rature: + self.faire = 1 + #self.faire=1 #Pour tester seulement - if float(complexity) > 0: - self.largeur=min(32,max(1,int(numpy.ceil(complexity*5)*numpy.random.normal(1,float(complexity)/2)))) - self.clarte=min(1,max(0,complexity*numpy.random.normal(1,float(complexity)/2))) - self.faire=numpy.random.binomial(1,0.15) ##### 15% d'effectuer une rature ##### + self.crop_haut=random.randint(0,17) + self.crop_gauche=random.randint(0,17) + if complexity <= 0.25 : + self.smooth=6 + elif complexity <= 0.5: + self.smooth=5 + elif complexity <= 0.75: + self.smooth=4 + else: + self.smooth=3 + + p = numpy.random.rand() + if p < 0.5: + self.nb_ratures= 1 + else: + if p < 0.8: + self.nb_ratures = 2 + else: + self.nb_ratures = 3 + + #Creation de la "patch" de rature qui sera appliquee sur l'image + if self.faire == 1: + self.get_size() + self.get_image_rot() #On fait la "patch" + else: - self.largeur=0 - self.clarte=0 - self.faire=0 #On ne fait rien !!! + self.faire=0 #On ne fait rien si complexity=0 !! return self._get_current_parameters() + + + def get_image_rot(self): + image2=(self.d[self.numero].reshape((32,32))[self.haut:self.bas,self.gauche:self.droite]) + + im = Image.fromarray(numpy.asarray(image2*255,dtype='uint8')) + + #La rotation et le resize sont de belle qualite afin d'avoir une image nette + im2 = im.rotate(self.angle,Image.BICUBIC,expand=False) + im3=im2.resize((50,50),Image.ANTIALIAS) + + grosse=numpy.asarray(numpy.asarray(im3)/255.0,dtype='float32') + crop=grosse[self.haut:self.haut+32,self.gauche:self.gauche+32] + + self.get_patch(crop) + + def get_patch(self,crop): + smooting = numpy.ones((self.smooth,self.smooth)) + #Il y a deux erosions afin d'avoir un beau resultat. Pas trop large et + #pas trop mince + trans=scipy.ndimage.morphology.grey_erosion\ + (crop,size=smooting.shape,structure=smooting,mode='wrap') + trans1=scipy.ndimage.morphology.grey_erosion\ + (trans,size=smooting.shape,structure=smooting,mode='wrap') + + + patch_img=Image.fromarray(numpy.asarray(trans1*255,dtype='uint8')) + + patch_img2=patch_img.crop((4,4,28,28)).resize((32,32)) #Pour contrer les effets de bords ! + + trans2=numpy.asarray(numpy.asarray(patch_img2)/255.0,dtype='float32') + + + #Tout ramener entre 0 et 1 + trans2=trans2-trans2.min() #On remet tout positif + trans2=trans2/trans2.max() + + #La rayure a plus de chance d'etre en bas ou oblique le haut a 10h + if random.random() <= 0.5: #On renverse la matrice dans ce cas + for i in xrange(0,32): + self.patch[i,:]=trans2[31-i,:] + else: + self.patch=trans2 + + + + + def get_size(self): + image=self.d[self.numero].reshape((32,32)) + + #haut + for i in xrange(0,32): + for j in xrange(0,32): + if(image[i,j]) != 0: + if self.haut == -1: + self.haut=i + break + if self.haut > -1: + break + + #bas + for i in xrange(31,-1,-1): + for j in xrange(0,32): + if(image[i,j]) != 0: + if self.bas == -1: + self.bas=i + break + if self.bas > -1: + break + + #gauche + for i in xrange(0,32): + for j in xrange(0,32): + if(image[j,i]) != 0: + if self.gauche == -1: + self.gauche=i + break + if self.gauche > -1: + break + + #droite + for i in xrange(31,-1,-1): + for j in xrange(0,32): + if(image[j,i]) != 0: + if self.droite == -1: + self.droite=i + break + if self.droite > -1: + break + def _get_current_parameters(self): - return [self.orientation,self.largeur,self.clarte,self.faire] + return [self.angle,self.numero,self.faire,self.crop_haut,self.crop_gauche,self.largeur_bande,self.smooth,self.nb_ratures] def transform_image(self, image): - if self.faire == 0: + if self.faire == 0: #Rien faire !! return image - if self.orientation == 0: - return self._horizontal(image) - elif self.orientation == 1: - return self._vertical(image) - else: - return self._oblique(image) - - def _horizontal(self,image): - self.deplacement=numpy.random.normal(0,5) - #On s'assure de rester dans l'image - if self.deplacement < -16: #Si on recule trop - self.deplacement = -16 - if self.deplacement+self.largeur > 16: #Si on avance trop - self.deplacement=16-self.largeur - for i in xrange(0,self.largeur): - for j in xrange(0,32): - image[i+15+self.deplacement,j]=min(1,max(image[i+15+self.deplacement,j],self.clarte)) - return image - - def _vertical(self,image): - self.deplacement=numpy.random.normal(0,5) - #On s'assure de rester dans l'image - if self.deplacement < -16: #Si on recule trop - self.deplacement = -16 - if self.deplacement+self.largeur > 16: #Si on avance trop - self.deplacement=16-self.largeur - for i in xrange(0,self.largeur): - for j in xrange(0,32): - image[j,i+15+self.deplacement]=min(1,max(image[j,i+15+self.deplacement],self.clarte)) - return image - - def _oblique(self,image): - decision=numpy.random.random() - D=numpy.zeros((32,32)) #La matrice qui sera additionnee - for i in xrange(int(-numpy.floor(self.largeur/2)),int(numpy.ceil((self.largeur+1)/2))): - D+=numpy.eye(32,32,i) - if decision<0.5: #On met tout sur l'anti-diagonale - D = D[:,::-1] - D*=self.clarte + if self.fini == 0: #S'il faut rajouter des couches + patch_temp=self.patch + for w in xrange(1,self.nb_ratures): + self.regenerate_parameters(self.complexity,1) + for i in xrange(0,32): + for j in xrange(0,32): + patch_temp[i,j]=max(patch_temp[i,j],self.patch[i,j]) + self.fini=1 + self.patch=patch_temp + for i in xrange(0,32): for j in xrange(0,32): - image[i,j]=min(1,max(image[i,j],D[i,j])) + image[i,j]=max(image[i,j],self.patch[i,j]) + self.patch*=0 #Remise a zero de la patch (pas necessaire) return image @@ -116,27 +221,29 @@ def _load_image(): f = open('/home/sylvain/Dropbox/Msc/IFT6266/donnees/lower_test_data.ft') #Le jeu de donnees est en local. d = ft.read(f) - w=numpy.asarray(d[1]) + w=numpy.asarray(d[0:1000]) return (w/255.0).astype('float') def _test(complexite): img=_load_image() transfo = Rature() - pylab.imshow(img.reshape((32,32))) - pylab.show() - print transfo.get_settings_names() - print transfo.regenerate_parameters(complexite) - img=img.reshape((32,32)) - - img_trans=transfo.transform_image(img) - - pylab.imshow(img_trans.reshape((32,32))) - pylab.show() + for i in xrange(0,10): + img2=img[random.randint(0,1000)] + pylab.imshow(img2.reshape((32,32))) + pylab.show() + print transfo.get_settings_names() + print transfo.regenerate_parameters(complexite) + img2=img2.reshape((32,32)) + + img2_trans=transfo.transform_image(img2) + + pylab.imshow(img2_trans.reshape((32,32))) + pylab.show() if __name__ == '__main__': from pylearn.io import filetensor as ft import pylab - _test(0.8) + _test(1)
--- a/transformations/affine_transform.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/affine_transform.py Tue Feb 23 18:16:55 2010 -0500 @@ -19,11 +19,11 @@ self.rng = numpy.random.RandomState() self.complexity = complexity params = self.rng.uniform(size=6) -.5 - self.a = 1. + params[0]*.4*complexity - self.b = 0. + params[1]*.4*complexity + self.a = 1. + params[0]*.6*complexity + self.b = 0. + params[1]*.6*complexity self.c = params[2]*8.*complexity - self.d = 0. + params[3]*.4*complexity - self.e = 1. + params[4]*.4*complexity + self.d = 0. + params[3]*.6*complexity + self.e = 1. + params[4]*.6*complexity self.f = params[5]*8.*complexity @@ -44,12 +44,12 @@ self.complexity = complexity params = self.rng.uniform(size=6) -.5 - self.a = 1. + params[0]*.4*complexity - self.b = 0. + params[1]*.4*complexity - self.c = params[2]*8.*complexity - self.d = 0. + params[3]*.4*complexity - self.e = 1. + params[4]*.4*complexity - self.f = params[5]*8.*complexity + self.a = 1. + params[0]*.8*complexity + self.b = 0. + params[1]*.8*complexity + self.c = params[2]*9.*complexity + self.d = 0. + params[3]*.8*complexity + self.e = 1. + params[4]*.8*complexity + self.f = params[5]*9.*complexity return self._get_current_parameters()
--- a/transformations/pipeline.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/pipeline.py Tue Feb 23 18:16:55 2010 -0500 @@ -55,6 +55,7 @@ from add_background_image import AddBackground from affine_transform import AffineTransformation from ttf2jpg import ttf2jpg +from pycaptcha.Facade import generateCaptcha if DEBUG: from visualizer import Visualizer @@ -102,7 +103,7 @@ self.res_data = numpy.empty((total, num_px), dtype=numpy.uint8) # +1 to store complexity - self.params = numpy.empty((total, self.num_params_stored+1)) + self.params = numpy.empty((total, self.num_params_stored+len(self.modules))) self.res_labels = numpy.empty(total, dtype=numpy.int32) def run(self, img_iterator, complexity_iterator): @@ -113,20 +114,26 @@ for img_no, (img, label) in enumerate(img_iterator): sys.stdout.flush() - complexity = complexity_iterator.next() - + global_idx = img_no img = img.reshape(img_size) - param_idx = 1 - # store complexity along with other params - self.params[global_idx, 0] = complexity + param_idx = 0 + mod_idx = 0 for mod in self.modules: # This used to be done _per batch_, - # ie. out of the "for img" loop + # ie. out of the "for img" loop + complexity = complexity_iterator.next() + #better to do a complexity sampling for each transformations in order to have more variability + #otherwise a lot of images similar to the source are generated (i.e. when complexity is close to 0 (1/8 of the time)) + #we need to save the complexity of each transformations and the sum of these complexity is a good indicator of the overall + #complexity + self.params[global_idx, mod_idx] = complexity + mod_idx += 1 + p = mod.regenerate_parameters(complexity) - self.params[global_idx, param_idx:param_idx+len(p)] = p + self.params[global_idx, param_idx+len(self.modules):param_idx+len(p)+len(self.modules)] = p param_idx += len(p) img = mod.transform_image(img) @@ -213,13 +220,15 @@ ocr_img = ft.read(nist.ocr_data) ocr_labels = ft.read(nist.ocr_labels) ttf = ttf2jpg() + L = [chr(ord('0')+x) for x in range(10)] + [chr(ord('A')+x) for x in range(26)] + [chr(ord('a')+x) for x in range(26)] for i in xrange(num_img): r = numpy.random.rand() if r <= prob_font: yield ttf.generate_image() - elif r <= prob_font + prob_captcha: - pass #get captcha + elif r <=prob_font + prob_captcha: + (arr, charac) = generateCaptcha(0,1) + yield arr.astype(numpy.float32)/255, L.index(charac[0]) elif r <= prob_font + prob_captcha + prob_ocr: j = numpy.random.randint(len(ocr_labels)) yield ocr_img[j].astype(numpy.float32)/255, ocr_labels[j] @@ -259,7 +268,7 @@ -d, --ocrlabel-file: path to filetensor (.ft) labels file (OCR labels) -a, --prob-font: probability of using a raw font image -b, --prob-captcha: probability of using a captcha image - -e, --prob-ocr: probability of using an ocr image + -g, --prob-ocr: probability of using an ocr image ''' # See run_pipeline.py @@ -291,7 +300,8 @@ reload_mode = False try: - opts, args = getopt.getopt(get_argv(), "rm:z:o:p:x:s:f:l:c:d:a:b:e:", ["reload","max-complexity=", "probability-zero=", "output-file=", "params-output-file=", "labels-output-file=", "stop-after=", "data-file=", "label-file=", "ocr-file=", "ocrlabel-file=", "prob-font=", "prob-captcha=", "prob-ocr="]) + opts, args = getopt.getopt(get_argv(), "rm:z:o:p:x:s:f:l:c:d:a:b:g:", ["reload","max-complexity=", "probability-zero=", "output-file=", "params-output-file=", "labels-output-file=", +"stop-after=", "data-file=", "label-file=", "ocr-file=", "ocrlabel-file=", "prob-font=", "prob-captcha=", "prob-ocr="]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" @@ -328,7 +338,7 @@ prob_font = float(a) elif o in ('-b', "--prob-captcha"): prob_captcha = float(a) - elif o in ('-e', "--prob-ocr"): + elif o in ('-g', "--prob-ocr"): prob_ocr = float(a) else: assert False, "unhandled option"
--- a/transformations/testtransformations.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/testtransformations.py Tue Feb 23 18:16:55 2010 -0500 @@ -1,12 +1,15 @@ #!/usr/bin/env python + from pylearn.io import filetensor as ft import copy import pygame import time import numpy as N +from ttf2jpg import ttf2jpg + #from gimpfu import * @@ -28,24 +31,77 @@ MODULE_INSTANCES = [Slant(),Thick(),AffineTransformation(),LocalElasticDistorter(),GIMP1(),Rature(),Occlusion(), PermutPixel(),DistorsionGauss(),AddBackground(), PoivreSel(), BruitGauss(), Contrast()] ###---------------------complexity associated to each of them -complexity = [0.6,0.6,0.6,0.6,0.6,0.3,0.3,0.5,0.5,0.5,0.3,0.3,0.5] -complexity = [0.5]*len(MODULE_INSTANCES) +complexity = 0.7 +#complexity = [0.5]*len(MODULE_INSTANCES) #complexity = [0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.] +n=100 + +def createimage(path,d): + for i in range(n): + screen.fill(0) + a=d[i,:] + off1=4*32 + off2=0 + for u in range(n): + b=N.asarray(N.reshape(a,(32,32))) + c=N.asarray([N.reshape(a*255.0,(32,32))]*3).T + new=pygame.surfarray.make_surface(c) + new=pygame.transform.scale2x(new) + new=pygame.transform.scale2x(new) + #new.set_palette(anglcolorpalette) + screen.blit(new,(0,0)) + exemple.blit(new,(0,0)) + + offset = 4*32 + offset2 = 0 + ct = 0 + ctmp = N.random.rand()*complexity + print u + for j in MODULE_INSTANCES: + #max dilation + #ctmp = N.random.rand()*complexity[ct] + ctmp = N.random.rand()*complexity + #print j.get_settings_names(), j.regenerate_parameters(ctmp) + th=j.regenerate_parameters(ctmp) + + b=j.transform_image(b) + c=N.asarray([b*255]*3).T + new=pygame.surfarray.make_surface(c) + new=pygame.transform.scale2x(new) + new=pygame.transform.scale2x(new) + if u==0: + #new.set_palette(anglcolorpalette) + screen.blit(new,(offset,offset2)) + font = pygame.font.SysFont('liberationserif',18) + text = font.render('%s '%(int(ctmp*100.0)/100.0) + j.__module__,0,(255,255,255),(0,0,0)) + #if j.__module__ == 'Rature': + # text = font.render('%s,%s'%(th[-1],int(ctmp*100.0)/100.0) + j.__module__,0,(255,255,255),(0,0,0)) + screen.blit(text,(offset,offset2+4*32)) + if ct == len(MODULE_INSTANCES)/2-1: + offset = 0 + offset2 = 4*32+20 + else: + offset += 4*32 + ct+=1 + exemple.blit(new,(off1,off2)) + if off1 != 9*4*32: + off1+=4*32 + else: + off1=0 + off2+=4*32 + pygame.image.save(exemple,path+'/perimages/%s.PNG'%i) + pygame.image.save(screen,path+'/exemples/%s.PNG'%i) + nbmodule = len(MODULE_INSTANCES) -datapath = '/data/lisa/data/nist/by_class/' -f = open(datapath+'lower/lower_train_data.ft') -d = ft.read(f) - -d = d[0:1000,:]/255.0 - pygame.surfarray.use_arraytype('numpy') #pygame.display.init() screen = pygame.Surface((4*(nbmodule+1)/2*32,2*(4*32+20)),depth=32) +exemple = pygame.Surface((N.ceil(N.sqrt(n))*4*32,N.ceil(N.sqrt(n))*4*32),depth=32) anglcolorpalette=[(x,x,x) for x in xrange(0,256)] #pygame.Surface.set_palette(anglcolorpalette) @@ -53,43 +109,48 @@ pygame.font.init() -for i in range(1000): - a=d[i,:] - b=N.asarray(N.reshape(a,(32,32))) - c=N.asarray([N.reshape(a*255.0,(32,32))]*3).T - new=pygame.surfarray.make_surface(c) - new=pygame.transform.scale2x(new) - new=pygame.transform.scale2x(new) - #new.set_palette(anglcolorpalette) - screen.blit(new,(0,0)) - - offset = 4*32 - offset2 = 0 - ct = 0 - for j in MODULE_INSTANCES: - #max dilation - - #random - print j.get_settings_names(), j.regenerate_parameters(N.random.rand()*complexity[ct]) +d = N.zeros((n,1024)) + +datapath = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-shuffled.ft' +f = open(datapath) +d = ft.read(f) +d = d[0:n,:]/255.0 +createimage('/u/glorotxa/transf/OCR',d) + + + +datapath = '/data/lisa/data/nist/by_class/' +f = open(datapath+'digits_reshuffled/digits_reshuffled_train_data.ft') +d = ft.read(f) +d = d[0:n,:]/255.0 +createimage('/u/glorotxa/transf/NIST_digits',d) + + - b=j.transform_image(b) - c=N.asarray([b*255]*3).T - - new=pygame.surfarray.make_surface(c) - new=pygame.transform.scale2x(new) - new=pygame.transform.scale2x(new) - #new.set_palette(anglcolorpalette) - screen.blit(new,(offset,offset2)) - font = pygame.font.SysFont('liberationserif',18) - text = font.render(j.__module__,0,(255,255,255),(0,0,0)) - screen.blit(text,(offset,offset2+4*32)) - if ct == len(MODULE_INSTANCES)/2-1: - offset = 0 - offset2 = 4*32+20 - else: - offset += 4*32 - ct+=1 - pygame.image.save(screen,'/u/glorotxa/exemples/%s.PNG'%i) - #raw_input('Press Enter') +datapath = '/data/lisa/data/nist/by_class/' +f = open(datapath+'upper/upper_train_data.ft') +d = ft.read(f) +d = d[0:n,:]/255.0 +createimage('/u/glorotxa/transf/NIST_upper',d) + +from Facade import * + +for i in range(n): + d[i,:]=N.asarray(N.reshape(generateCaptcha(0.8,0),(1,1024))/255.0,dtype='float32') + +createimage('/u/glorotxa/transf/capcha',d) + + +for i in range(n): + myttf2jpg = ttf2jpg() + d[i,:]=N.reshape(myttf2jpg.generate_image()[0],(1,1024)) +createimage('/u/glorotxa/transf/fonts',d) + +datapath = '/data/lisa/data/nist/by_class/' +f = open(datapath+'lower/lower_train_data.ft') +d = ft.read(f) +d = d[0:n,:]/255.0 +createimage('/u/glorotxa/transf/NIST_lower',d) + #pygame.display.quit()
--- a/transformations/thick.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/thick.py Tue Feb 23 18:16:55 2010 -0500 @@ -21,7 +21,7 @@ #---------- private attributes self.__nx__ = 32 #xdim of the images self.__ny__ = 32 #ydim of the images - self.__erodemax__ = 9 #nb of index max of erode structuring elements + self.__erodemax__ = 5 #nb of index max of erode structuring elements self.__dilatemax__ = 9 #nb of index max of dilation structuring elements self.__structuring_elements__ = [N.asarray([[1,1]]),N.asarray([[1],[1]]),\ N.asarray([[1,1],[1,1]]),N.asarray([[0,1,0],[1,1,1],[0,1,0]]),\
--- a/transformations/ttf2jpg.py Tue Feb 23 18:08:11 2010 -0500 +++ b/transformations/ttf2jpg.py Tue Feb 23 18:16:55 2010 -0500 @@ -15,7 +15,7 @@ def __init__(self, font_file = ''): self.w = 32 self.h = 32 - self.font_dir = '/data/lisa/data/ift6266h10/fonts/windows7/' + self.font_dir = '/Tmp/allfonts/' self.font_file = font_file self.image_dir = './images/' self.pattern = '*.ttf' @@ -26,6 +26,8 @@ self.char_list.append(chr(ord('A') + i) ) for i in range(0,26): self.char_list.append(chr(ord('a') + i) ) + files = os.listdir(self.font_dir) + self.font_files = fnmatch.filter(files, '*.ttf') + fnmatch.filter(files, '*.TTF') # get font name def get_settings_names(self): @@ -42,10 +44,8 @@ # set a random font for character generation def set_random_font(self): - files = os.listdir(self.font_dir) - font_files = fnmatch.filter(files, self.pattern) - i = random.randint(0, len(font_files) - 1) - self.font_file = self.font_dir + font_files[i] + i = random.randint(0, len(self.font_files) - 1) + self.font_file = self.font_dir + self.font_files[i] # return a picture array of "text" with font "font_file" def create_image(self, text):