Mercurial > ift6266
changeset 312:bd6085d77706
Avoir exactement le meme jeu de donnees pour pre-train et finetune
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Thu, 01 Apr 2010 14:25:40 -0400 |
parents | 8b31280129a9 |
children | e301a2f32665 |
files | deep/stacked_dae/v_sylvain/nist_sda.py |
diffstat | 1 files changed, 9 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/nist_sda.py Thu Apr 01 13:44:30 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/nist_sda.py Thu Apr 01 14:25:40 2010 -0400 @@ -106,44 +106,44 @@ if finetune_choice == 0: print('\n\n\tfinetune with NIST\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1) channel.save() if finetune_choice == 1: print('\n\n\tfinetune with P07\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() if finetune_choice == 2: print('\n\n\tfinetune with NIST followed by P07\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=21) - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) channel.save() if finetune_choice == 3: print('\n\n\tfinetune with NIST only on the logistic regression on top (but validation on P07).\n\ All hidden units output are input of the logistic regression\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1,special=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1) if finetune_choice==-1: print('\nSERIE OF 3 DIFFERENT FINETUNINGS') print('\n\n\tfinetune with NIST\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1) channel.save() print('\n\n\tfinetune with P07\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() print('\n\n\tfinetune with NIST (done earlier) followed by P07 (written here)\n\n') optimizer.reload_parameters('params_finetune_NIST.txt') - optimizer.finetune(datasets.nist_P07(min_file=nb_file),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) + optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) channel.save() print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\ All hidden units output are input of the logistic regression\n\n') optimizer.reload_parameters('params_pretrain.txt') - optimizer.finetune(datasets.nist_all(),datasets.nist_P07(min_file=nb_file),max_finetune_epoch_NIST,ind_test=1,special=1) + optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1) channel.save() channel.save()