Mercurial > ift6266
changeset 587:b1be957dd1be
Added mlj_submission to group every file needed for that.
line wrap: on
line diff
--- a/writeup/mlj_submission.tex Wed Sep 29 21:06:47 2010 -0400 +++ b/writeup/mlj_submission.tex Thu Sep 30 17:51:02 2010 -0400 @@ -1,12 +1,18 @@ -\documentclass{article} % For LaTeX2e +\RequirePackage{fix-cm} % from template + +%\documentclass{article} % For LaTeX2e +\documentclass[smallcondensed]{svjour3} % onecolumn (ditto) + \usepackage{times} \usepackage{wrapfig} -\usepackage{amsthm,amsmath,bbm} +%\usepackage{amsthm} % not to be used with springer tools +\usepackage{amsmath} +\usepackage{bbm} \usepackage[psamsfonts]{amssymb} -\usepackage{algorithm,algorithmic} +%\usepackage{algorithm,algorithmic} % not used after all \usepackage[utf8]{inputenc} \usepackage{graphicx,subfigure} -\usepackage[numbers]{natbib} +\usepackage{natbib} % was [numbers]{natbib} \addtolength{\textwidth}{10mm} \addtolength{\evensidemargin}{-5mm} @@ -16,8 +22,8 @@ \title{Deep Self-Taught Learning for Handwritten Character Recognition} \author{ +Yoshua Bengio \and Frédéric Bastien \and -Yoshua Bengio \and Arnaud Bergeron \and Nicolas Boulanger-Lewandowski \and Thomas Breuel \and @@ -35,6 +41,30 @@ Guillaume Sicard } \date{September 30th, submission to MLJ special issue on learning from multi-label data} +\journalname{Machine Learning Journal} +\institute{Frédéric Bastien \and \\ + Yoshua Bengio \and \\ + Arnaud Bergeron \and \\ + Nicolas Boulanger-Lewandowski \and \\ + Youssouf Chherawala \and \\ + Moustapha Cisse \and \\ + Myriam Côté \and \\ + Dumitru Erhan \and \\ + Jeremy Eustache \and \\ + Xavier Glorot \and \\ + Xavier Muller \and \\ + Sylvain Pannetier-Lebeuf \and \\ + Razvan Pascanu \and \\ + Salah Rifai \and \\ + Francois Savard \and \\ + Guillaume Sicard \at + Dept. IRO, Universite de Montreal, C.P. 6128, Montreal, QC, H3C 3J7, Canada\\ + \email{yoshua.bengio@umontreal.ca} + \and + Thomas Breuel \at + Department of Computer Science, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany +} + \begin{document} @@ -46,14 +76,14 @@ Recent theoretical and empirical work in statistical machine learning has demonstrated the importance of learning algorithms for deep architectures, i.e., function classes obtained by composing multiple non-linear transformations. Self-taught learning (exploiting unlabeled examples or examples from other distributions) has already been applied to deep learners, but mostly to show the advantage of unlabeled examples. Here we explore the advantage brought by {\em out-of-distribution examples}. For this purpose we developed a powerful generator of stochastic variations and noise processes for character images, including not only affine transformations but also slant, local elastic deformations, changes in thickness, background images, grey level changes, contrast, occlusion, and various types of noise. The out-of-distribution examples are obtained from these highly distorted images or by including examples of object classes different from those in the target test set. We show that {\em deep learners benefit more from out-of-distribution examples than a corresponding shallow learner}, at least in the area of handwritten character recognition. In fact, we show that they beat previously published results and reach human-level performance on both handwritten digit classification and 62-class handwritten character recognition. \end{abstract} %\vspace*{-3mm} - + Keywords: self-taught learning, multi-task learning, out-of-distribution examples, deep learning, handwriting recognition. \section{Introduction} %\vspace*{-1mm} {\bf Deep Learning} has emerged as a promising new area of research in -statistical machine learning (see~\citet{Bengio-2009} for a review). +statistical machine learning (see \citet{Bengio-2009} for a review). Learning algorithms for deep architectures are centered on the learning of useful representations of data, which are better suited to the task at hand, and are organized in a hierarchy with multiple levels. @@ -62,7 +92,7 @@ different representation of the raw visual input. In fact, it was found recently that the features learnt in deep architectures resemble those observed in the first two of these stages (in areas V1 and V2 -of visual cortex)~\citep{HonglakL2008}, and that they become more and +of visual cortex) \citep{HonglakL2008}, and that they become more and more invariant to factors of variation (such as camera movement) in higher layers~\citep{Goodfellow2009}. Learning a hierarchy of features increases the @@ -1013,7 +1043,7 @@ does not allow the model to go from the poorer basins of attraction discovered by the purely supervised shallow models to the kind of better basins associated with deep learning and self-taught learning. - + A Flash demo of the recognizer (where both the MLP and the SDA can be compared) can be executed on-line at {\tt http://deep.host22.com}. @@ -1099,9 +1129,10 @@ %\afterpage{\clearpage} \clearpage { +\bibliographystyle{spbasic} % basic style, author-year citations \bibliography{strings,strings-short,strings-shorter,ift6266_ml,specials,aigaion-shorter} %\bibliographystyle{plainnat} -\bibliographystyle{unsrtnat} +%\bibliographystyle{unsrtnat} %\bibliographystyle{apalike} }
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/aigaion-shorter.bib Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,4830 @@ +%Aigaion2 BibTeX export from LISA - Publications +%Tuesday 01 June 2010 10:46:52 AM +@INPROCEEDINGS{Attardi+al-2009, + author = {Attardi, Giuseppe and Dell'Orletta, Felice and Simi, Maria and Turian, Joseph}, + keywords = {classifier, dependency parsing, natural language, parser, perceptron}, + title = {Accurate Dependency Parsing with a Stacked Multilayer Perceptron}, + booktitle = {Proceeding of Evalita 2009}, + series = {LNCS}, + year = {2009}, + publisher = {Springer}, + abstract = {Abstract. DeSR is a statistical transition-based dependency parser which learns from annotated corpora which actions to perform for building parse trees while scanning a sentence. We describe recent improvements to the parser, in particular stacked parsing, exploiting a beam search strategy and using a Multilayer Perceptron classifier. For the Evalita 2009 Dependency Parsing task DesR was configured to use a combination of stacked parsers. The stacked combination achieved the best accuracy scores in both the main and pilot subtasks. The contribution to the result of various choices is analyzed, in particular for taking advantage of the peculiar features of the TUT Treebank.} +} + +@INPROCEEDINGS{Bengio+al-2009, + author = {Bengio, Yoshua and Louradour, Jerome and Collobert, Ronan and Weston, Jason}, + title = {Curriculum Learning}, + year = {2009}, + crossref = {ICML09-shorter}, + abstract = {Humans and animals learn much better when the examples are not randomly presented but organized in a meaningful order which illustrates gradually more concepts, and more complex ones. Here, we formalize such training strategies in the context of machine learning, and call them 'curriculum learning'. In the context of recent research studying the difficulty of training in the presence of non-convex training criteria (for deep deterministic and stochastic neural networks), we explore curriculum learning in various set-ups. The experiments show that significant improvements in generalization can be achieved by using a particular curriculum, i.e., the selection and order of training examples. We hypothesize that curriculum learning has both an effect on the speed of convergence of the training process to a minimum and, in the case of non-convex criteria, on the quality of the local minima obtained: curriculum learning can be seen as a particular form of continuation method (a general strategy for global optimization of non-convex functions).} +} + +@TECHREPORT{Bengio+al-2009-TR, + author = {Bengio, Yoshua and Louradour, Jerome and Collobert, Ronan and Weston, Jason}, + title = {Curriculum Learning}, + number = {1330}, + year = {2009}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Humans and animals learn much better when the examples are not randomly presented but organized in a meaningful order which illustrates gradually more concepts, and gradually more complex ones. Here, we formalize such training strategies in the context of machine learning, and call them 'curriculum learning'. In the context of recent research studying the difficulty of training in the presence of non-convex training criteria (for deep deterministic and stochastic neural networks), we explore curriculum learning in various set-ups. The experiments show that significant improvements in generalization can be achieved. We hypothesize that curriculum learning has both an effect on the speed of convergence of the training process to a minimum and, in the case of non-convex criteria, on the quality of the local minima obtained: curriculum learning can be seen as a particular form of continuation method (a general strategy for global optimization of non-convex functions).} +} + +@MISC{Bengio+al-patent-2000, + author = {Bengio, Yoshua and Bottou, {L{\'{e}}on} and {LeCun}, Yann}, + title = {Module for constructing trainable modular network in which each module outputs and inputs data structured as a graph}, + year = {2000}, + howpublished = {U.S. Patent 6,128,606, October 3} +} + +@MISC{Bengio+al-patent-2001, + author = {Bengio, Yoshua and Bottou, {L{\'{e}}on} and G. Howard, Paul}, + title = {Z-Coder : a fast adaptive binary arithmetic coder}, + year = {2001}, + howpublished = {U.S. Patent 6,188,334, February 13, 2001, along with patents 6,225,925, 6,281,817, and 6,476,740} +} + +@MISC{Bengio+al-patent-94, + author = {Bengio, Yoshua and {LeCun}, Yann and Nohl, Craig and Burges, Chris}, + title = {Visitor Registration System Using Automatic Handwriting Recognition}, + year = {1994}, + howpublished = {Patent submitted in the U.S.A. in October 1994, submission number 1-16-18-1} +} + +@INCOLLECTION{Bengio+al-spectral-2006, + author = {Bengio, Yoshua and Delalleau, Olivier and Le Roux, Nicolas and Paiement, Jean-Fran{\c c}ois and Vincent, Pascal and Ouimet, Marie}, + editor = {Guyon, Isabelle and Gunn, Steve and Nikravesh, Masoud and Zadeh, Lofti}, + title = {Spectral Dimensionality Reduction}, + booktitle = {Feature Extraction, Foundations and Applications}, + year = {2006}, + publisher = {Springer}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/eigenfn_chapter.pdf}, + abstract = {In this chapter, we study and put under a common framework a number +of non-linear dimensionality reduction methods, such as Locally Linear Embedding, +Isomap, Laplacian eigenmaps and kernel {PCA}, which are based +on performing an eigen-decomposition (hence the name "spectral"). That +framework also includes classical methods such as {PCA} and metric multidimensional +scaling ({MDS}). It also includes the data transformation step used +in spectral clustering. We show that in all of these cases the learning algorithm +estimates the principal eigenfunctions of an operator that depends on +the unknown data density and on a kernel that is not necessarily positive +semi-definite. This helps to generalize some of these algorithms so as to predict +an embedding for out-of-sample examples without having to retrain the +model. It also makes it more transparent what these algorithm are minimizing +on the empirical data and gives a corresponding notion of generalization +error.}, +cat={B},topics={HighDimensional,Kernel,Unsupervised}, +} + +@INCOLLECTION{Bengio+al-ssl-2006, + author = {Bengio, Yoshua and Delalleau, Olivier and Le Roux, Nicolas}, + editor = {Chapelle, Olivier and {Sch{\"{o}}lkopf}, Bernhard and Zien, Alexander}, + title = {Label Propagation and Quadratic Criterion}, + booktitle = {Semi-Supervised Learning}, + year = {2006}, + pages = {193--216}, + publisher = {{MIT} Press}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_ssl.pdf}, + abstract = {Various graph-based algorithms for semi-supervised learning have been proposed in +the recent literature. They rely on the idea of building a graph whose nodes are +data points (labeled and unlabeled) and edges represent similarities between points. +Known labels are used to propagate information through the graph in order to label +all nodes. In this chapter, we show how these different algorithms can be cast into +a common framework where one minimizes a quadratic cost criterion whose closed-form solution is found by solving a linear system of size n (total number of data +points). The cost criterion naturally leads to an extension of such algorithms to +the inductive setting, where one obtains test samples one at a time: the derived +induction formula can be evaluated in O(n) time, which is much more efficient +than solving again exactly the linear system (which in general costs O(kn2) time +for a sparse graph where each data point has k neighbors). We also use this inductive +formula to show that when the similarity between points satisfies a locality property, +then the algorithms are plagued by the curse of dimensionality, with respect to the +dimensionality of an underlying manifold.}, +cat={B},topics={Unsupervised}, +} + +@TECHREPORT{Bengio+al-treecurse-2007, + author = {Bengio, Yoshua and Delalleau, Olivier and Simard, Clarence}, + title = {Decision Trees do not Generalize to New Variations}, + number = {1304}, + year = {2007}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+al-tr1304.pdf} +} + +@INPROCEEDINGS{Bengio+Bengio96, + author = {Bengio, Samy and Bengio, Yoshua}, + editor = {Xu, L.}, + title = {An {EM} Algorithm for Asynchronous Input/Output Hidden {M}arkov Models}, + booktitle = {International Conference On Neural Information Processing}, + year = {1996}, + pages = {328--334}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/iconip96.pdf}, + abstract = {In learning tasks in which input sequences are mapped to output sequences, it is often the case that the input and output sequences are not synchronous. For example, in speech recognition, acoustic sequences are longer than phoneme sequences. Input/Output Hidden {Markov} Models have already been proposed to represent the distribution of an output sequence given an input sequence of the same length. We extend here this model to the case of asynchronous sequences_ and show an Expectation-Maximization algorithm for training such models.}, +topics={Markov},cat={C}, +} + +@INCOLLECTION{Bengio+chapter2007, + author = {Bengio, Yoshua and {LeCun}, Yann}, + editor = {Bottou, {L{\'{e}}on} and Chapelle, Olivier and DeCoste, D. and Weston, J.}, + title = {Scaling Learning Algorithms towards {AI}}, + booktitle = {Large Scale Kernel Machines}, + year = {2007}, + publisher = {MIT Press}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+lecun_chapter2007.pdf}, + abstract = {One long-term goal of machine learning research is to produce methods that +are applicable to highly complex tasks, such as perception (vision, audition), reasoning, +intelligent control, and other artificially intelligent behaviors. We argue +that in order to progress toward this goal, the Machine Learning community must +endeavor to discover algorithms that can learn highly complex functions, with minimal +need for prior knowledge, and with minimal human intervention. We present +mathematical and empirical evidence suggesting that many popular approaches +to non-parametric learning, particularly kernel methods, are fundamentally limited +in their ability to learn complex high-dimensional functions. Our analysis +focuses on two problems. First, kernel machines are shallow architectures, in +which one large layer of simple template matchers is followed by a single layer +of trainable coefficients. We argue that shallow architectures can be very inefficient +in terms of required number of computational elements and examples. Second, +we analyze a limitation of kernel machines with a local kernel, linked to the +curse of dimensionality, that applies to supervised, unsupervised (manifold learning) +and semi-supervised kernel machines. Using empirical results on invariant +image recognition tasks, kernel methods are compared with deep architectures, in +which lower-level features or concepts are progressively combined into more abstract +and higher-level representations. We argue that deep architectures have the +potential to generalize in non-local ways, i.e., beyond immediate neighbors, and +that this is crucial in order to make progress on the kind of complex tasks required +for artificial intelligence.}, +cat={B},topics={HighDimensional}, +} + +@ARTICLE{Bengio+Delalleau-2009, + author = {Bengio, Yoshua and Delalleau, Olivier}, + title = {Justifying and Generalizing Contrastive Divergence}, + journal = {Neural Computation}, + volume = {21}, + number = {6}, + year = {2009}, + pages = {1601--1621}, + abstract = {We study an expansion of the log-likelihood in undirected graphical models such as the Restricted {Boltzmann} Machine (RBM), where each term in the expansion is associated with a sample in a Gibbs chain alternating between two random variables (the visible vector and the hidden vector, in RBMs). We are particularly interested in estimators of the gradient of the log-likelihood obtained through this expansion. We show that its residual term converges to zero, justifying the use of a truncation, i.e. running only a short Gibbs chain, which is the main idea behind the Contrastive Divergence (CD) estimator of the log-likelihood gradient. By truncating even more, we obtain a stochastic reconstruction error, related through a mean-field approximation to the reconstruction error often used to train autoassociators and stacked auto-associators. The derivation is not specific to the particular parametric forms used in RBMs, and only requires convergence of the Gibbs chain. We present theoretical and empirical evidence linking the number of Gibbs steps $k$ and the magnitude of the RBM parameters to the bias in the CD estimator. These experiments also suggest that the sign of the CD estimator is correct most of the time, even when the bias is large, so that CD-$k$ is a good descent direction even for small $k$.} +} + +@TECHREPORT{Bengio+Delalleau-TR2007, + author = {Bengio, Yoshua and Delalleau, Olivier}, + keywords = {Contrastive Divergence, Restricted {Boltzmann} Machine}, + title = {Justifying and Generalizing Contrastive Divergence}, + number = {1311}, + year = {2007}, + institution = {D{\'{e}}partement d'Informatique et Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {We study an expansion of the log-likelihood in undirected graphical models such as the Restricted {Boltzmann} Machine (RBM), where each term in the expansion is associated with a sample in a Gibbs chain alternating between two random variables (the visible vector and the hidden vector, in RBMs). We are particularly interested in estimators of the gradient of the log-likelihood obtained through this expansion. We show that its terms converge to zero, justifying the use of a truncation, i.e. running only a short Gibbs chain, which is the main idea behind the Contrastive Divergence approximation of the log-likelihood gradient. By truncating even more, we obtain a stochastic reconstruction error, related through a mean-field approximation to the reconstruction error often used to train autoassociators and stacked auto-associators. The derivation is not specific to the particular parametric forms used in RBMs, and only requires convergence of the Gibbs chain.} +} + +@INPROCEEDINGS{Bengio+DeMori88, + author = {Bengio, Yoshua and De Mori, Renato}, + title = {Use of neural networks for the recognition of place of articulation}, + booktitle = {International Conference on Acoustics, Speech and Signal Processing}, + year = {1988}, + pages = {103--106}, +topics={Speech},cat={C}, +} + +@INPROCEEDINGS{Bengio+DeMori89, + author = {Bengio, Yoshua and Cardin, Regis and Cosi, Piero and De Mori, Renato}, + title = {Speech coding with multi-layer networks}, + booktitle = {International Conference on Acoustics, Speech and Signal Processing}, + year = {1989}, + pages = {164--167}, +topics={Speech},cat={C}, +} + +@INCOLLECTION{Bengio+DeMori90a, + author = {Bengio, Yoshua and De Mori, Renato}, + editor = {Sethi, I. K. and Jain, A. K.}, + title = {Connectionist models and their application to automatic speech recognition}, + booktitle = {Artificial Neural Networks and Statistical Pattern Recognition: Old and New Connections}, + year = {1990}, + pages = {175--192}, + publisher = {Elsevier, Machine Intelligence and Pattern Recognition Series}, +topics={Speech},cat={B}, +} + +@ARTICLE{Bengio+Frasconi-jair95, + author = {Bengio, Yoshua and Frasconi, Paolo}, + title = {Diffusion of Context and Credit Information in {M}arkovian Models}, + journal = {Journal of Artificial Intelligence Research}, + volume = {3}, + year = {1995}, + pages = {249--270}, + abstract = {This paper studies the problem of ergodicity of transition probability matrices in {Markovian} models, such as hidden {Markov} models ({HMM}s), and how it makes very difficult the task of learning to represent long-term context for sequential data. This phenomenon hurts the forward propagation of long-term context information, as well as learning a hidden state representation to represent long-term context, which depends on propagating credit information backwards in time. Using results from {Markov} chain theory, we show that this problem of diffusion of context and credit is reduced when the transition probabilities approach 0 or 1, i.e., the transition probability matrices are sparse and the model essentially deterministic. The results found in this paper apply to learning approaches based on continuous optimization, such as gradient descent and the Baum-Welch algorithm.}, +topics={Markov,LongTerm},cat={J}, +} + +@INPROCEEDINGS{Bengio+Frasconi-nips7-diffuse, + author = {Bengio, Yoshua and Frasconi, Paolo}, + title = {Diffusion of Credit in {M}arkovian Models}, + year = {1995}, + pages = {553--560}, + crossref = {NIPS7-shorter}, + abstract = {This paper studies the problem of diffusion in {Markovian} models, such as hidden {Markov} models ({HMM}s) and how it makes very difficult the task of learning of long-term dependencies in sequences. Using results from {Markov} chain theory, we show that the problem of diffusion is reduced if the transition probabilities approach 0 or 1. Under this condition, standard {HMM}s have very limited modeling capabilities, but input/output {HMM}s can still perform interesting computations.}, +topics={Markov},cat={C}, +} + +@INPROCEEDINGS{Bengio+Frasconi-nips7-iohmms, + author = {Bengio, Yoshua and Frasconi, Paolo}, + title = {An Input/Output {HMM} Architecture}, + year = {1995}, + pages = {427--434}, + crossref = {NIPS7-shorter}, + abstract = {We introduce a recurrent architecture having a modular structure and we formulate a training procedure based on the {EM} algorithm. The resulting model has similarities to hidden {Markov} models, but supports recurrent networks processing style and allows to exploit the supervised learning paradigm while using maximum likelihood estimation.}, +topics={Markov},cat={C}, +} + +@INPROCEEDINGS{Bengio+Frasconi-nips94, + author = {Bengio, Yoshua and Frasconi, Paolo}, + title = {Credit Assignment through Time: Alternatives to Backpropagation}, + year = {1994}, + pages = {75--82}, + crossref = {NIPS6-shorter}, + abstract = {Learning to recognize or predict sequences using long-term context has many applications. However, practical and theoretical problems are found in training recurrent neural networks to perform tasks in which input/output dependencies span long intervals. Starting from a mathematical analysis of the problem, we consider and compare alternative algorithms and architectures on tasks for which the span of the input/output dependencies can be controlled. Results on the new algorithms show performance qualitatively superior to that obtained with backpropagation.}, +topics={LongTerm},cat={C}, +} + +@ARTICLE{Bengio+Pouliot90, + author = {Bengio, Yoshua and Pouliot, Yannick}, + title = {Efficient recognition of immunoglobulin domains from amino-acid sequences using a neural network}, + journal = {Computer Applications in the Biosciences}, + volume = {6}, + number = {2}, + year = {1990}, + pages = {319--324}, +topics={Bioinformatic,PriorKnowledge},cat={J}, +} + +@INPROCEEDINGS{Bengio+Senecal-2003, + author = {Bengio, Yoshua and S{\'{e}}n{\'{e}}cal, Jean-S{\'{e}}bastien}, + title = {Quick Training of Probabilistic Neural Nets by Importance Sampling}, + booktitle = {Proceedings of the conference on Artificial Intelligence and Statistics (AISTATS)}, + year = {2003}, + abstract = {Our previous work on statistical language modeling introduced the use of probabilistic feedforward neural networks to help dealing with the curse of dimensionality. Training this model by maximum likelihood however requires for each example to perform as many network passes as there are words in the vocabulary. Inspired by the contrastive divergence model, we propose and evaluate sampling-based methods which require network passes only for the observed "positive example'' and a few sampled negative example words. A very significant speed-up is obtained with an adaptive importance sampling.} +} + +@ARTICLE{Bengio+Senecal-2008, + author = {Bengio, Yoshua and S{\'{e}}n{\'{e}}cal, Jean-S{\'{e}}bastien}, + keywords = {Energy-based models, fast training, importance sampling, language modeling, Monte Carlo methods, probabilistic neural networks}, + title = {Adaptive Importance Sampling to Accelerate Training of a Neural Probabilistic Language Model}, + journal = {IEEE Transactions on Neural Networks}, + volume = {19}, + number = {4}, + year = {2008}, + pages = {713--722}, + abstract = {Previous work on statistical language modeling has shown that it is possible to train a feedforward neural network to approximate probabilities over sequences of words, resulting in significant error reduction when compared to standard baseline models based on -grams. However, training the neural network model with the maximum-likelihood criterion requires computations proportional to the number of words in the vocabulary. In this paper, we introduce adaptive importance sampling as a way to accelerate training of the model. The idea is to use an adaptive n-gram model to track the conditional distributions produced by the neural network. We show that a very significant speedup can be obtained on standard problems.} +} + +@INCOLLECTION{Bengio-2007, + author = {Bengio, Yoshua}, + editor = {Cisek, Paul and Kalaska, John and Drew, Trevor}, + title = {On the Challenge of Learning Complex Functions}, + booktitle = {Computational Neuroscience: Theoretical Insights into Brain Function}, + series = {Progress in Brain Research}, + year = {2007}, + publisher = {Elsevier}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/PBR_chapter.pdf}, + abstract = {A common goal of computational neuroscience and of artificial intelligence +research based on statistical learning algorithms is the discovery and +understanding of computational principles that could explain what we +consider adaptive intelligence, in animals as well as in machines. This +chapter focuses on what is required for the learning of complex behaviors. We +believe it involves the learning of highly varying functions, in a +mathematical sense. We bring forward two types of arguments which convey +the message that many currently popular machine learning approaches to +learning flexible functions have fundamental limitations that render them +inappropriate for learning highly varying functions. The first issue +concerns the representation of such functions with what we call shallow model +architectures. We discuss limitations of shallow architectures, such as +so-called kernel machines, boosting algorithms, and one-hidden-layer artificial neural +networks. The second issue is more focused and concerns kernel machines +with a local kernel (the type used most often in practice), +that act like a collection of template matching units. We present +mathematical results on such computational architectures showing that they +have a limitation similar to those already proved for older non-parametric +methods, and connected to the so-called curse of dimensionality. Though it has long +been believed that efficient learning in deep architectures is difficult, +recently proposed computational principles for learning in deep architectures +may offer a breakthrough.} +} + +@ARTICLE{Bengio-2009, + author = {Bengio, Yoshua}, + title = {Learning deep architectures for {AI}}, + journal = {Foundations and Trends in Machine Learning}, + volume = {2}, + number = {1}, + year = {2009}, + pages = {1--127}, + note = {Also published as a book. Now Publishers, 2009.}, + abstract = {Theoretical results suggest that in order to learn the kind of +complicated functions that can represent high-level abstractions (e.g. in +vision, language, and other AI-level tasks), one may need {\insist deep +architectures}. Deep architectures are composed of multiple levels of non-linear +operations, such as in neural nets with many hidden layers or in complicated +propositional formulae re-using many sub-formulae. Searching the +parameter space of deep architectures is a difficult task, but +learning algorithms such as those for Deep Belief Networks have recently been proposed +to tackle this problem with notable success, beating the state-of-the-art +in certain areas. This paper discusses the motivations and principles regarding +learning algorithms for deep architectures, in particular those exploiting as +building blocks unsupervised learning of single-layer models such as Restricted {Boltzmann} Machines, +used to construct deeper models such as Deep Belief Networks.} +} + +@TECHREPORT{Bengio-96-TR, + author = {Bengio, Yoshua}, + title = {Using a Financial Training Criterion Rather than a Prediction Criterion}, + number = {\#1019}, + year = {1996}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengioy_TR1019.pdf}, + abstract = {The application of this work is to decision taking with financial time-series, using learning algorithms. The traditional approach is to train a model using a rediction criterion, such as minimizing the squared error between predictions and actual values of a dependent variable, or maximizing the likelihood of a conditional model of the dependent variable. We find here with noisy time-series that better results can be obtained when the model is directly trained in order to optimize the financial criterion of interest. Experiments were performed on portfolio selection with 35 Canadian stocks.}, +topics={Finance,Discriminant},cat={T}, +} + +@BOOK{bengio-book96, + author = {Bengio, Yoshua}, + title = {Neural Networks for Speech and Sequence Recognition}, + year = {1996}, + publisher = {International Thompson Computer Press}, +topics={Speech},cat={B}, +} + +@TECHREPORT{Bengio-convex-05, + author = {Bengio, Yoshua and Le Roux, Nicolas and Vincent, Pascal and Delalleau, Olivier and Marcotte, Patrice}, + title = {Convex neural networks}, + number = {1263}, + year = {2005}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1263.pdf}, + abstract = {Convexity has recently received a lot of attention in the machine learning community, and the lack of convexity has been seen as a major disadvantage of many learning algorithms, such as multi-layer artificial neural networks. We how that training multi-layer neural networks in which the number of hidden units is learned can be viewed as a convex optimization problem. This problem involves an infinite number of variables, but can be solved by incrementally inserting a hidden unit at a time, each time finding a linear classifiers that minimizes a weighted sum of errors.}, +topics={Boosting},cat={T}, +} + +@ARTICLE{Bengio-decision-trees10, + author = {Bengio, Yoshua and Delalleau, Olivier and Simard, Clarence}, + title = {Decision Trees do not Generalize to New Variations}, + journal = {Computational Intelligence}, + year = {2010}, + note = {To appear} +} + +@ARTICLE{bengio-demori89, + author = {Bengio, Yoshua and De Mori, Renato}, + title = {Use of multilayer networks for the recognition of phonetic features and phonemes}, + journal = {Computational Intelligence}, + volume = {5}, + year = {1989}, + pages = {134--141}, +topics={Speech},cat={J}, +} + +@ARTICLE{Bengio-eigen-NC2004, + author = {Bengio, Yoshua and Delalleau, Olivier and Le Roux, Nicolas and Paiement, Jean-Fran{\c c}ois and Vincent, Pascal and Ouimet, Marie}, + title = {Learning eigenfunctions links spectral embedding and kernel {PCA}}, + journal = {Neural Computation}, + volume = {16}, + number = {10}, + year = {2004}, + pages = {2197--2219}, + abstract = {In this paper, we show a direct relation between spectral embedding methods and kernel {PCA}, and how both are special cases of a more general learning problem, that of learning the principal eigenfunctions of an operator defined from a kernel and the unknown data generating density. Whereas spectral embedding methods only provided coordinates for the training points, the analysis justifies a simple extension to out-of-sample examples (the Nystr{\"{o}}m formula) for Multi-Dimensional Scaling, spectral clustering, Laplacian eigenmaps, Locally Linear Embedding ({LLE}) and Isomap. The analysis provides, for all such spectral embedding methods, the definition of a loss function, whose empirical average is minimized by the traditional algorithms. The asymptotic expected value of that loss defines a generalization performance and clarifies what these algorithms are trying to learn. Experiments with {LLE}, Isomap, spectral clustering and {MDS} show that this out-of-sample embedding formula generalizes well, with a level of error comparable to the effect of small perturbations of the training set on the embedding.}, +topics={HighDimensional,Kernel,Unsupervised},cat={J}, +} + +@INPROCEEDINGS{Bengio-Gingras-nips8, + author = {Bengio, Yoshua and Gingras, Fran{\c c}ois}, + title = {Recurrent Neural Networks for Missing or Asynchronous Data}, + year = {1996}, + pages = {395--401}, + crossref = {NIPS8-shorter}, + abstract = {In this paper we propose recurrent neural networks with feedback into the input units for handling two types of data analysis problems. On the one hand, this scheme can be used for static data when some of the input variables are missing. On the other hand, it can also be used for sequential data, when some of the input variables are missing or are available at different frequencies. Unlike in the case of probabilistic models (e.g. Gaussian) of the missing variables, the network does not attempt to model the distribution of the missing variables given the observed variables. Instead it is a more discriminant approach that fills in the missing variables for the sole purpose of minimizing a learning criterion (e.g., to minimize an output error).}, +topics={Finance,Missing},cat={C}, +} + +@ARTICLE{Bengio-Grandvalet-JMLR-04, + author = {Bengio, Yoshua and Grandvalet, Yves}, + title = {No Unbiased Estimator of the Variance of K-Fold Cross-Validation}, + volume = {5}, + year = {2004}, + pages = {1089--1105}, + journal = {Journal of Machine Learning Research}, + abstract = {Most machine learning researchers perform quantitative experiments to estimate generalization error and compare the performance of different algorithms (in particular, their proposed algorithm). In order to be able to draw statistically convincing conclusions, it is important to estimate the uncertainty of such estimates. This paper studies the very commonly used K-fold cross-validation estimator of generalization performance. The main theorem shows that there exists no universal (valid under all distributions) unbiased estimator of the variance of K-fold cross-validation. The analysis that accompanies this result is based on the eigen-decomposition of the covariance matrix of errors, which has only three different eigenvalues corresponding to three degrees of freedom of the matrix and three components of the total variance. This analysis helps to better understand the nature of the problem and how it can make naive estimators (that dont take into account the error correlations due to the overlap between training and test sets) grossly underestimate variance. This is confirmed by numerical experiments in which the three components of the variance are compared when the difficulty of the learning problem and the number of folds are varied.}, +topics={Comparative},cat={J}, +} + +@TECHREPORT{bengio-hyper-TR99, + author = {Bengio, Yoshua}, + title = {Continuous Optimization of Hyper-Parameters}, + number = {1144}, + year = {1999}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/hyperTR.pdf}, + abstract = {Many machine learning algorithms can be formulated as the minimization of a training criterion which involves (1) training errors on each training example and (2) some hyper-parameters, which are kept fixed during this minimization. When there is only a single hyper-parameter one can easily explore how its value aects a model selection criterion (that is not the same as the training criterion, and is used to select hyper-parameters). In this paper we present a methodology to select many hyper-parameters that is based on the computation of the gradient of a model selection criterion with respect to the hyper-parameters. We first consider the case of a training criterion that is quadratic in the parameters. In that case, the gradient of the selection criterion with respect to the hyper-parameters is efficiently computed by back-propagating through a Cholesky decomposition. In the more general case, we show that the implicit function theorem can be used to derive a formula for the hyper-parameter gradient, but this formula requires the computation of second derivatives of the training criterion}, +topics={ModelSelection},cat={T}, +} + +@INPROCEEDINGS{Bengio-icnn93, + author = {Bengio, Yoshua and Frasconi, Paolo and Simard, Patrice}, + title = {The problem of learning long-term dependencies in recurrent networks}, + booktitle = {IEEE International Conference on Neural Networks}, + year = {1993}, + pages = {1183--1195}, + publisher = {IEEE Press}, + note = {(invited paper)}, +topics={LongTerm},cat={C}, +} + +@ARTICLE{Bengio-ijprai93, + author = {Bengio, Yoshua}, + title = {A Connectionist Approach to Speech Recognition}, + journal = {International Journal on Pattern Recognition and Artificial Intelligence}, + volume = {7}, + number = {4}, + year = {1993}, + pages = {647--668}, + abstract = {The task discussed in this paper is that of learning to map input sequences to output sequences. In particular, problems of phoneme recognition in continuous speech are considered, but most of the discussed techniques could be applied to other tasks, such as the recognition of sequences of handwritten characters. The systems considered in this paper are based on connectionist models, or artificial neural networks, sometimes combined with statistical techniques for recognition of sequences of patterns, stressing the integration of prior knowledge and learning. Different architectures for sequence and speech recognition are reviewed, including recurrent networks as well as hybrid systems involving hidden {Markov} models.}, +topics={PriorKnowledge,Speech},cat={J}, +} + +@TECHREPORT{Bengio-iohmms-TR99, + author = {Bengio, Yoshua and Lauzon, Vincent-Philippe and Ducharme, R{\'{e}}jean}, + title = {Experiments on the Application of {IOHMM}s to Model Financial Returns Series}, + number = {1146}, + year = {1999}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/iohmms-returnsTR.pdf}, + abstract = {Input/Output Hidden {Markov} Models ({IOHMM}s) are conditional hidden {Markov} models in which the emission (and possibly the transition) probabilities can be conditionned on an input sequence. For example, these conditional distributions can be linear, logistic, or non-linear (using for example multi-layer neural networks). We compare the generalization performance of several models which are special cases of Input/Output Hidden {Markov} Models on financial time-series prediction tasks: an unconditional Gaussian, a conditional linear Gaussian, a mixture of Gaussians, a mixture of conditional linear Gaussians, a hidden {Markov} model, and various {IOHMM}s. The experiments are performed on modeling the returns of market and sector indices. Note that the unconditional Gaussian estimates the first moment with the historical average. The results show that, although for the first moment the historical average gives the best results, for the higher moments, the {IOHMM}s yielded significantly better performance, as measured by the out-of-sample likelihood.}, +topics={Markov},cat={T}, +} + +@ARTICLE{bengio-lauzon-ducharme:2000, + author = {Bengio, Yoshua and Lauzon, Vincent-Philippe and Ducharme, R{\'{e}}jean}, + title = {Experiments on the Application of {IOHMM}s to Model Financial Returns Series}, + journal = {IEEE Transaction on Neural Networks}, + volume = {12}, + number = {1}, + year = {2001}, + pages = {113--123}, + abstract = {Input/Output Hidden {Markov} Models ({IOHMM}s) are conditional hidden {Markov} models in which the emission (and possibly the transition) probabilities can be conditioned on an input sequence. For example, these conditional distributions can be logistic, or non-linear (using for example multi-layer neural networks). We compare generalization performance of several models which are special cases of Input/Output Hidden {Markov} Models on financial time-series prediction tasks: an unconditional Gaussian, a conditional linear Gaussian, a mixture of Gaussians, a mixture of conditional linear Gaussians, a hidden {Markov} model, and various {IOHMM}s. The experiments compare these models on predicting the conditional density of returns of market sector indices. Note that the unconditional Gaussian estimates the first moment the historical average. The results show that_ although for the first moment the historical average gives the best results, for the higher moments, the {IOHMM}s significantly better performance, as estimated by the out-of-sample likelihood.}, +topics={Markov,Finance},cat={J}, +} + +@INPROCEEDINGS{bengio-lecun-94, + author = {Bengio, Yoshua and {LeCun}, Yann}, + title = {Word normalization for on-line handwritten word recognition}, + booktitle = {Proc. of the International Conference on Pattern Recognition}, + volume = {II}, + year = {1994}, + pages = {409--413}, + publisher = {IEEE}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/icpr-norm.ps}, + abstract = {We introduce a new approach to normalizing words written with an electronic stylus that applies to all styles of handwriting (upper case, lower case, printed, cursive, or mixed). A geometrical model of the word spatial structure is fitted to the pen trajectory using the {EM} algorithm. The fitting process maximizes the likelihood of the trajectory given the model and a set a priors on its parameters. The method was evaluated and integrated to a recognition system that combines neural networks and hidden {Markov} models.}, +topics={PriorKnowledge,Speech},cat={C}, +} + +@TECHREPORT{Bengio-localfailure-TR-2005, + author = {Bengio, Yoshua and Delalleau, Olivier and Le Roux, Nicolas}, + title = {The Curse of Dimensionality for Local Kernel Machines}, + number = {1258}, + year = {2005}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/tr1258.pdf}, + abstract = {We present a series of theoretical arguments supporting the claim that a large class of modern learning algorithms based on local kernels are sensitive to the curse of dimensionality. These include local manifold learning algorithms such as Isomap and {LLE}, support vector classifiers with Gaussian or other local kernels, and graph-based semisupervised learning algorithms using a local similarity function. These algorithms are shown to be local in the sense that crucial properties of the learned function at x depend mostly on the neighbors of x in the training set. This makes them sensitive to the curse of dimensionality, well studied for classical non-parametric statistical learning. There +is a large class of data distributions for which non-local solutions could be expressed compactly and potentially be learned with few examples, but which will require a large number of local bases and therefore a large number of training examples when using a local learning algorithm.}, +topics={HighDimensional,Kernel,Unsupervised},cat={T}, +} + +@INPROCEEDINGS{Bengio-nips-2006, + author = {Bengio, Yoshua and Lamblin, Pascal and Popovici, Dan and Larochelle, Hugo}, + title = {Greedy Layer-Wise Training of Deep Networks}, + year = {2007}, + pages = {153--160}, + crossref = {NIPS19-shorter}, + abstract = {Complexity theory of circuits strongly suggests that deep architectures can be +much more efficient (sometimes exponentially) than shallow architectures, +in terms of computational elements required to represent some functions. +Deep multi-layer neural networks have many levels of non-linearities +allowing them to compactly represent highly non-linear and +highly-varying functions. However, until recently it was not clear how +to train such deep networks, since gradient-based +optimization starting from random initialization appears to often get stuck +in poor solutions. Hinton et al. recently introduced +a greedy layer-wise unsupervised learning algorithm for Deep Belief +Networks (DBN), a generative model with many layers of hidden causal +variables. In the context of the above optimization problem, +we study this algorithm empirically and explore variants to +better understand its success and extend it to cases where the inputs are +continuous or where the structure of the input distribution is not +revealing enough about the variable to be predicted in a supervised task. +Our experiments also confirm the hypothesis that the greedy +layer-wise unsupervised training strategy mostly helps the +optimization, by initializing weights in a region near a +good local minimum, giving rise to internal distributed representations +that are high-level abstractions of the input, bringing better generalization.} +} + +@INPROCEEDINGS{Bengio-nips10, + author = {Bengio, Yoshua and Bengio, Samy and Isabelle, Jean-Fran{\c c}ois and Singer, Yoram}, + title = {Shared Context Probabilistic Transducers}, + year = {1998}, + crossref = {NIPS10-shorter}, + abstract = {Recently, a model for supervised learning of probabilistic transducers represented by suffix trees was introduced. However, this algorithm tends to build very large trees, requiring very large amounts of computer memory. In this paper, we propose a new, more compact, transducer model in which one shares the parameters of distributions associated to contexts yielding similar conditional output distributions. We illustrate the advantages of the proposed algorithm with comparative experiments on inducing a noun phrase recognizer.}, +topics={HighDimensional},cat={C}, +} + +@TECHREPORT{Bengio-NLMP-TR-2005, + author = {Bengio, Yoshua and Larochelle, Hugo}, + title = {Non-Local Manifold Parzen Windows}, + number = {1264}, + year = {2005}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/NLMP-techreport.pdf}, + abstract = {In order to escape from the curse of dimensionality, we claim that one can learn non-local functions, in the sense that the value and shape of the learned function at x must be inferred using examples that may be far from x. With this objective, we present a non-local non-parametric density estimator. It builds upon previously proposed Gaussian mixture models with regularized covariance matrices to take into account the local shape of the manifold. It also builds upon recent work on non-local estimators of the tangent plane of a manifold, which are able to generalize in places with little training data, unlike traditional, local, non-parametric models.}, +topics={HighDimensional,Kernel,Unsupervised},cat={T}, +} + +@INPROCEEDINGS{Bengio-nncm96, + author = {Bengio, Yoshua}, + editor = {Weigend, A.S. and Abu-Mostafa, Y.S. and Refenes, A. -P. N.}, + title = {Training A Neural Network with a Financial Criterion Rather than a Prediction Criterion}, + booktitle = {Proceedings of the Fourth International Conference on Neural Networks in the Capital Markets ({NNCM}-96)}, + year = {1997}, + pages = {433--443}, + publisher = {World Scientific}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/nncm.pdf}, + abstract = {A common approach to quantitative decision taking with financial time-series is to train a model using a prediction criterion (e.g., squared error). We find on a portfolio selection problem that better results can be obtained when the model is directly trained in order to optimize the financial criterion of interest, with a differentiable decision module.}, +topics={Finance,PriorKnowledge,Discriminant},cat={C}, +} + +@TECHREPORT{Bengio-NonStat-Hyper-TR, + author = {Bengio, Yoshua and Dugas, Charles}, + title = {Learning Simple Non-Stationarities with Hyper-Parameters}, + number = {1145}, + year = {1999}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/nonstatTR.pdf}, + abstract = {We consider sequential data that is sampled from an unknown process, so that the data are not necessarily i.i.d.. Most approaches to machine learning assume that data points are i.i.d.. Instead we consider a measure of generalization that does not make this assumption, and we consider in this context a recently proposed approach to optimizing hyper-parameters, based on the computation of the gradient of a model selection criterion with respect to hyper-parameters. Here we use hyper-parameters that control a function that gives different weights to different time steps in the historical data sequence. The approach is successfully applied to modeling thev olatility of stock returns one month ahead. Comparative experiments with more traditional methods are presented.}, +topics={ModelSelection,Finance},cat={T}, +} + +@ARTICLE{Bengio-scholarpedia-2007, + author = {Bengio, Yoshua}, + title = {Neural net language models}, + journal = {Scholarpedia}, + volume = {3}, + number = {1}, + year = {2008}, + pages = {3881}, + abstract = {A language model is a function, or an algorithm for learning such a function, that captures the salient statistical characteristics of the distribution of sequences of words in a natural language, typically allowing one to make probabilistic predictions of the next word given preceding ones. + +A neural network language model is a language model based on Neural Networks , exploiting their ability to learn distributed representations to reduce the impact of the curse of dimensionality. + +In the context of learning algorithms, the curse of dimensionality refers to the need for huge numbers of training examples when learning highly complex functions. When the number of input variables increases, the number of required examples can grow exponentially. The curse of dimensionality arises when a huge number of different combinations of values of the input variables must be discriminated from each other, and the learning algorithm needs at least one example per relevant combination of values. In the context of language models, the problem comes from the huge number of possible sequences of words, e.g., with a sequence of 10 words taken from a vocabulary of 100,000 there are 10^{50} possible sequences... + +A distributed representation of a symbol is a tuple (or vector) of features which characterize the meaning of the symbol, and are not mutually exclusive. If a human were to choose the features of a word, he might pick grammatical features like gender or plurality, as well as semantic features like animate" or invisible. With a neural network language model, one relies on the learning algorithm to discover these features, and the features are continuous-valued (making the optimization problem involved in learning much simpler). + +The basic idea is to learn to associate each word in the dictionary with a continuous-valued vector representation. Each word corresponds to a point in a feature space. One can imagine that each dimension of that space corresponds to a semantic or grammatical characteristic of words. The hope is that functionally similar words get to be closer to each other in that space, at least along some directions. A sequence of words can thus be transformed into a sequence of these learned feature vectors. The neural network learns to map that sequence of feature vectors to a prediction of interest, such as the probability distribution over the next word in the sequence. What pushes the learned word features to correspond to a form of semantic and grammatical similarity is that when two words are functionally similar, they can be replaced by one another in the same context, helping the neural network to compactly represent a function that makes good predictions on the training set, the set of word sequences used to train the model. + +The advantage of this distributed representation approach is that it allows the model to generalize well to sequences that are not in the set of training word sequences, but that are similar in terms of their features, i.e., their distributed representation. Because neural networks tend to map nearby inputs to nearby outputs, the predictions corresponding to word sequences with similar features are mapped to similar predictions. Because many different combinations of feature values are possible, a very large set of possible meanings can be represented compactly, allowing a model with a comparatively small number of parameters to fit a large training set.} +} + +@TECHREPORT{Bengio-TR1312, + author = {Bengio, Yoshua}, + title = {Learning deep architectures for AI}, + number = {1312}, + year = {2007}, + institution = {Dept. IRO, Universite de Montreal}, + note = {Preliminary version of journal article with the same title appearing in Foundations and Trends in Machine Learning (2009)}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf}, + abstract = {Theoretical results strongly suggest that in order to learn the kind of +complicated functions that can represent high-level abstractions (e.g. in +vision, language, and other AI-level tasks), one may need deep +architectures. Deep architectures are composed of multiple levels of non-linear +operations, such as in neural nets with many hidden layers. Searching the +parameter space of deep architectures is a difficult optimization task, but +learning algorithms such as those for Deep Belief Networks have recently been proposed +to tackle this problem with notable success, beating the state-of-the-art +in certain areas. This paper discusses the motivations and principles regarding +learning algorithms for deep architectures and in particular for those based +on unsupervised learning such as Deep Belief Networks, using as building +blocks single-layer models such as Restricted {Boltzmann} Machines.} +} + +@ARTICLE{Bengio-trnn94, + author = {Bengio, Yoshua and Simard, Patrice and Frasconi, Paolo}, + title = {Learning Long-Term Dependencies with Gradient Descent is Difficult}, + journal = {IEEE Transactions on Neural Networks}, + volume = {5}, + number = {2}, + year = {1994}, + pages = {157--166}, + abstract = {Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in the input/output sequences span long intervals. We show why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captures increases. These results expose a trade-off between efficient learning by gradient descent and latching on information for long periods. Based on an understanding of this problem, alternatives to standard gradient descent are considered.}, +optnote={(Special Issue on Recurrent Neural Networks)},topics={LongTerm},cat={J}, +} + +@INPROCEEDINGS{Bengio-wirn93, + author = {Bengio, Yoshua and Frasconi, Paolo and Gori, Marco and Soda, G.}, + editor = {Caianello, E.}, + title = {Recurrent Neural Networks for Adaptive Temporal Processing}, + booktitle = {Proc. of the 6th Italian Workshop on Neural Networks, WIRN-93}, + year = {1993}, + pages = {1183--1195}, + publisher = {World Scientific Publ.}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/rnn_review93.ps}, +topics={LongTerm},cat={C}, +} + +@ARTICLE{Bengio2000c, + author = {Bengio, Yoshua}, + title = {Gradient-Based Optimization of Hyperparameters}, + journal = {Neural Computation}, + volume = {12}, + number = {8}, + year = {2000}, + pages = {1889--1900}, + abstract = {Many machine learning algorithms can be formulated as the minimization of a training criterion which involves a hyper-parameter. This hyper-parameter is usually chosen by trial and error with a model selection criterion. In this paper we present a methodology to optimize several hyper-parameters, based on the computation of the gradient of a model selection criterion with respect to the hyper-parameters. In the case of a quadratic training criterion, the gradient of the selection criterion with respect to the hyper-parameters is efficiently computed by back-propagating through a Cholesky decomposition. In the more general case, we show that the implicit function theorem can be used to derive a formula for the hyper-parameter gradient involving second derivatives of the training criterion.}, +topics={ModelSelection},cat={J}, +} + +@ARTICLE{Bengio89a, + author = {Bengio, Yoshua and Cardin, Regis and De Mori, Renato and Merlo, Ettore}, + title = {Programmable execution of multi-layered networks for automatic speech recognition}, + journal = {Communications of the Association for Computing Machinery}, + volume = {32}, + number = {2}, + year = {1989}, + pages = {195--199}, +topics={Speech},cat={J}, +} + +@INPROCEEDINGS{Bengio89c, + author = {Bengio, Yoshua and Cosi, Piero and Cardin, Regis and De Mori, Renato}, + title = {Use of multi-layered networks for coding speech with phonetic features}, + year = {1989}, + pages = {224--231}, + crossref = {NIPS1-shorter}, + abstract = {Preliminary results on speaker-independant speech recognition are reported. A method that combines expertise on neural networks with expertise on speech recognition is used to build the recognition systems. For transient sounds, event-driven property extractors with variable resolution in the time and frequency domains are used. For sonorant speech, a model of the human auditory system is preferred to FFT as a front-end module.}, +topics={Speech},cat={C}, +} + +@INPROCEEDINGS{Bengio89d, + author = {De Mori, Renato and Bengio, Yoshua and Cosi, Piero}, + title = {On the generalization capability of multilayered networks in the extraction of speech properties}, + booktitle = {Proceedings of the International Joint Conference on Artificial Intelligence}, + year = {1989}, + pages = {1531--1536}, + publisher = {IEEE}, +topics={Speech},cat={C}, +} + +@INPROCEEDINGS{Bengio90, + author = {Bengio, Yoshua and Cardin, Regis and De Mori, Renato}, + title = {Speaker Independent Speech Recognition with Neural Networks and Speech Knowledge}, + year = {1990}, + pages = {218--225}, + crossref = {NIPS2-shorter}, + abstract = {We attempt to combine neural networks with knowledge from speech science to build a speaker independent speech recognition system. This knowledge is utilized in designing the preprocessing, input coding, output coding, output supervision and architectural constraints. To handle the temporal aspect of speech we combine delays, copies of activations of hidden and output units at the input level, and Back-Propagation for Sequences (BPS), a learning algorithm for networks with local self-loops. This strategy is demonstrated in several experiments, in particular a nasal discrimination task for which the application of a speech theory hypothesis dramatically improved generalization.}, +topics={PriorKnowledge,Speech},cat={C}, +} + +@INCOLLECTION{Bengio90b, + author = {Bengio, Yoshua}, + title = {Radial Basis Functions for speech recognition}, + booktitle = {Speech Recognition and Understanding: Recent Advances, Trends and Applications}, + year = {1990}, + pages = {293--298}, + publisher = {NATO Advanced Study Institute Series F: Computer and Systems Sciences}, +topics={Kernel,Speech},cat={B}, +} + +@INCOLLECTION{Bengio90c, + author = {Bengio, Yoshua and De Mori, Renato}, + editor = {{Fogelman Soulie}, F. and Herault, J.}, + title = {Speech coding with multilayer networks}, + booktitle = {Neurocomputing: Algorithms, Architectures and Applications}, + year = {1990}, + pages = {207--216}, + publisher = {NATO Advanced Study Institute Series F: Computer and Systems Sciences}, +topics={Speech},cat={B}, +} + +@INPROCEEDINGS{Bengio90e, + author = {Bengio, Yoshua and Pouliot, Yannick and Bengio, Samy and Agin, Patrick}, + title = {A neural network to detect homologies in proteins}, + year = {1990}, + pages = {423--430}, + crossref = {NIPS2-shorter}, + abstract = {In order to detect the presence and location of immunoglobulin (Ig) domains from amino acid sequences we built a system based on a neural network with one hidden layer trained with back propagation. The program was designed to efficiently identify proteins exhibiting such domains, characterized by a few localized conserved regions and a low overall homology. When the National Biomedical Research Foundation (NBRF) NEW protein sequence database was scanned to evaluate the program's performance, we obtained very low rates of false negatives coupled with a moderate rate of false positives.}, +topics={Bioinformatic,PriorKnowledge},cat={C}, +} + +@INPROCEEDINGS{Bengio90z, + author = {Bengio, Yoshua and De Mori, Renato and Gori, Marco}, + editor = {Caianello, E.}, + title = {Experiments on automatic speech recognition using BPS}, + booktitle = {Parallel Architectures and Neural Networks}, + year = {1990}, + pages = {223--232}, + publisher = {World Scientific Publ.}, +topics={Speech},cat={C}, +} + +@INPROCEEDINGS{Bengio91a, + author = {Bengio, Yoshua and De Mori, Renato and Flammia, Giovanni and Kompe, Ralf}, + title = {A comparative study of hybrid acoustic phonetic decoders based on artificial neural networks}, + booktitle = {Proceedings of EuroSpeech'91}, + year = {1991}, +topics={PriorKnowledge,Speech},cat={C}, +} + +@INPROCEEDINGS{Bengio91b, + author = {Bengio, Yoshua and De Mori, Renato and Flammia, Giovanni and Kompe, Ralf}, + title = {Global Optimization of a Neural Network - Hidden {M}arkov Model Hybrid}, + booktitle = {Proceedings of EuroSpeech'91}, + year = {1991}, +topics={Markov},cat={C}, +} + +@INPROCEEDINGS{Bengio91z, + author = {Bengio, Yoshua and De Mori, Renato and Flammia, Giovanni and Kompe, Ralf}, + title = {Phonetically motivated acoustic parameters for continuous speech recognition using artificial neural networks}, + booktitle = {Proceedings of EuroSpeech'91}, + year = {1991}, +cat={C}, +} + +@ARTICLE{Bengio92b, + author = {Bengio, Yoshua and De Mori, Renato and Flammia, Giovanni and Kompe, Ralf}, + title = {Phonetically motivated acoustic parameters for continuous speech recognition using artificial neural networks}, + journal = {Speech Communication}, + volume = {11}, + number = {2--3}, + year = {1992}, + pages = {261--271}, + note = {Special issue on neurospeech}, +topics={PriorKnowledge,Speech},cat={J}, +} + +@INPROCEEDINGS{Bengio92c, + author = {Bengio, Yoshua and De Mori, Renato and Flammia, Giovanni and Kompe, Ralf}, + title = {Neural Network - Gaussian Mixture Hybrid for Speech Recognition or Density Estimation}, + year = {1992}, + pages = {175--182}, + crossref = {NIPS4-shorter}, + abstract = {The subject of this paper is the integration of multi-layered Artificial Neural Networks ({ANN}) with probability density functions such as Gaussian mixtures found in continuous density hlidden {Markov} Models ({HMM}). In the first part of this paper we present an {ANN}/HMM hybrid in which all the parameters or the the system are simultaneously optimized with respect to a single criterion. In the second part of this paper, we study the relationship between the density of the inputs of the network and the density of the outputs of the networks. A rew experiments are presented to explore how to perform density estimation with {ANN}s.}, +topics={Speech},cat={C}, +} + +@INPROCEEDINGS{Bengio94d, + author = {Frasconi, Paolo and Bengio, Yoshua}, + title = {An {EM} Approach to Grammatical Inference: Input/Output {HMMs}}, + booktitle = {International Conference on Pattern Recognition (ICPR'94)}, + year = {1994}, + pages = {289--294}, +topics={Markov,LongTerm},cat={C}, +} + +@ARTICLE{Bengio96, + author = {Bengio, Yoshua and Frasconi, Paolo}, + title = {Input/{O}utput {HMM}s for Sequence Processing}, + journal = {IEEE Transactions on Neural Networks}, + volume = {7}, + number = {5}, + year = {1996}, + pages = {1231--1249}, + abstract = {We consider problems of sequence processing and propose a solution based on a discrete state model in order to represent past context. We introduce a recurrent connectionist architecture having a modular structure that associates a subnetwork to each state. The model has a statistical interpretation we call Input/Output Hidden {Markov} Model ({IOHMM}). It can be trained by the {EM} or {GEM} algorithms, considering state trajectories as missing data, which decouples temporal credit assignment and actual parameter estimation. +The model presents similarities to hidden {Markov} models ({HMM}s), but allows us to map input sequences to output sequences, using the same processing style as recurrent neural networks. {IOHMM}s are trained using a more discriminant learning paradigm than {HMM}s, while potentially taking advantage of the {EM} algorithm. +We demonstrate that {IOHMM}s are well suited for solving grammatical inference problems on a benchmark problem. Experimental results are presented for the seven Tomita grammars, showing that these adaptive models can attain excellent generalization.}, +topics={Markov},cat={J}, +} + +@TECHREPORT{Bengio96-hmmsTR, + author = {Bengio, Yoshua}, + title = {Markovian Models for Sequential Data}, + number = {1049}, + year = {1996}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/hmmsTR.pdf}, + abstract = {Hidden {Markov} Models ({HMM}s) are statistical models of sequential data that have been used successfully in many applications, especially for speech recognition. We first summarize the basics of {HMM}s, and then review several recent related learning algorithms and extensions of {HMM}s, including hybrids of {HMM}s with artificial neural networks, Input-Output {HMM}s, weighted transducers, variable-length {Markov} models and {Markov} switching state-space models. Finally, we discuss some of the challenges of future research in this area.}, +topics={Markov},cat={T}, +} + +@ARTICLE{Bengio97, + author = {Bengio, Yoshua}, + title = {Using a Financial Training Criterion Rather than a Prediction Criterion}, + journal = {International Journal of Neural Systems}, + volume = {8}, + number = {4}, + year = {1997}, + pages = {433--443}, + note = {Special issue on noisy time-series}, + abstract = {The application of this work is to decision taking with financial time-series, using learning algorithms. The traditional approach is to train a model using a prediction criterion, such as minimizing the squared error between predictions and actual values of a dependent variable, or maximizing the likelihood of a conditional model of the dependent variable. We find here with noisy time-series that better results can be obtained when the model is directly trained in order to maximize the financial criterion of interest, here gains and losses (including those due to transactions) incurred during trading. Experiments were performed on portfolio selection with 35 Canadian stocks.}, +topics={Finance,PriorKnowledge,Discriminant},cat={J}, +} + +@ARTICLE{Bengio99a, + author = {Bengio, Yoshua}, + title = {Markovian Models for Sequential Data}, + journal = {Neural Computing Surveys}, + volume = {2}, + year = {1999}, + pages = {129--162}, + abstract = {Hidden {Markov} Models ({HMM}s) are statistical models of sequential data that have been used successfully in many machine learning applications, especially for speech recognition. Furthermore? in the last few years, many new and promising probabilistic models related to {HMM}s have been proposed. We first summarize the basics of {HMM}s, arid then review several recent related learning algorithms and extensions of {HMM}s, including in particular hybrids of {HMM}s with artificial neural networks, Input-Output {HMM}s (which are conditional {HMM}s using neural networks to compute probabilities), weighted transducers, variable-length {Markov} models and {Markov} switching state-space models. Finally, we discuss some of the challenges of future research in this very active area.}, +topics={Markov},cat={J}, +} + +@ARTICLE{Bengio99b, + author = {Bengio, Samy and Bengio, Yoshua and Robert, Jacques and B{\'{e}}langer, Gilles}, + title = {Stochastic Learning of Strategic Equilibria for Auctions}, + journal = {Neural Computation}, + volume = {11}, + number = {5}, + year = {1999}, + pages = {1199--1209}, + abstract = {This paper presents a new application of stochastic adaptive learning algorithms to the computation of strategic equilibria in auctions. The proposed approach addresses the problems of tracking a moving target and balancing exploration (of action space) versus exploitation (of better modeled regions of action space). Neural networks are used to represent a stochastic decision model for each bidder. Experiments confirm the correctness and usefulness of the approach.}, +topics={Auction},cat={J}, +} + +@TECHREPORT{bengio:1990, + author = {Bengio, Yoshua}, + title = {Learning a Synaptic Learning Rule}, + number = {751}, + year = {1990}, + institution = {D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, +topics={BioRules},cat={T}, +} + +@INPROCEEDINGS{bengio:1990:snowbird, + author = {Bengio, Yoshua and R., De Mori}, + title = {Recurrent networks with Radial Basis Functions for speech recognition}, + booktitle = {1990 Neural Networks for Computing Conference}, + year = {1990}, +topics={Speech},cat={C}, +} + +@INPROCEEDINGS{bengio:1991:ijcnn, + author = {Bengio, Yoshua and Bengio, Samy and Cloutier, Jocelyn}, + title = {Learning a Synaptic Learning Rule}, + booktitle = {Proceedings of the International Joint Conference on Neural Networks}, + year = {1991}, + pages = {II--A969}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1991_ijcnn.ps}, + abstract = {This paper presents an original approach to neural modeling based on the idea of searching, with learning methods, for a synaptic learning rule which is biologically plausible, and yields networks that are able to learn to perform difficult tasks. The proposed method of automatically finding the learning rule relies on the idea of considering the synaptic modification rule as a parametric function. This function has local inputs and is the same in many neurons. The parameters that define this function can be estimated with known learning methods. For this optimization, we give particular attention to gradient descent and genetic algorithms. In both cases, estimation of this function consists of a joint global optimization of (a) the synaptic modification function, and (b) the networks that are learning to perform some tasks. The proposed methodology can be used as a tool to explore the missing pieces of the puzzle of neural networks learning. Both network architecture, and the learning function can be designed within constraints derived from biological knowledge.}, +addressfr={Seattle, USA},topics={BioRules},cat={C}, +} + +@INPROCEEDINGS{bengio:1991:nnc, + author = {Bengio, Yoshua and Bengio, Samy and Cloutier, Jocelyn}, + title = {Learning Synaptic Learning Rules}, + booktitle = {Neural Networks for Computing}, + year = {1991}, +addressfr={Snowbird, Utah, USA},topics={BioRules},cat={C}, +} + +@INPROCEEDINGS{bengio:1991:snowbird, + author = {Bengio, Yoshua and Bengio, Samy and Cloutier, Jocelyn}, + title = {Learning a Synaptic Learning Rule}, + booktitle = {1991 Neural Networks for Computing Conference}, + year = {1991}, +topics={BioRules},cat={C}, +} + +@INPROCEEDINGS{bengio:1992:nn, + author = {Bengio, Samy and Bengio, Yoshua and Cloutier, Jocelyn and Gecsei, Jan}, + title = {Aspects th{\'{e}}oriques de l'optimisation d'une r{\`{e}}gle d'apprentissage}, + booktitle = {Actes de la conf{\'{e}}rence Neuro-N{\^{\i}}mes 1992}, + year = {1992}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1992_nn.ps}, + abstract = {Ayant expos{\'{e}} dans de pr{\'{e}}c{\'{e}}dentes publications (voir [Beng90, Beng92] notamment) lid{\'{e}}e que lon pouvait optimiser des r{\`{e}}gles dapprentissage param{\'{e}}triques pour r{\'{e}}seaux de neurones, nous montrons dans cet article comment d{\'{e}}velopper, par la m{\'{e}}thode du Lagrangien, le gradient n{\'{e}}cessaire {\`{a}} loptimisation dune r{\`{e}}gle dapprentissage par descente du gradient. Nous pr{\'{e}}sentons aussi les bases th{\'{e}}oriques qui permettent d{\'{e}}tudier la g{\'{e}}n{\'{e}}ralisation {\`{a}} de nouvelles t{\^{a}}ches dune r{\`{e}}gle dapprentissage dont les param{\`{e}}tres ont {\'{e}}t{\'{e}} estim{\'{e}}s {\`{a}} partir dun certain ensemble de t{\^{a}}ches. Enfin, nous exposons bri{\`{e}}vement les r{\'{e}}sultats dune exp{\'{e}}rience consistant {\`{a}} trouver, par descente du gradient, une r{\`{e}}gle dapprentissage pouvant r{\'{e}}soudre plusieurs t{\^{a}}ches bool{\'{e}}ennes lin{\'{e}}airement et non lin{\'{e}}airement s{\'{e}}parables.}, +addressfr={N{\^i}es, France},topics={BioRules},cat={C}, +} + +@INPROCEEDINGS{bengio:1992:oban, + author = {Bengio, Samy and Bengio, Yoshua and Cloutier, Jocelyn and Gecsei, Jan}, + title = {On the Optimization of a Synaptic Learning rule}, + booktitle = {Conference on Optimality in Biological and Artificial Networks}, + year = {1992}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1992_oban.ps}, + abstract = {This paper presents a new approach to neural modeling based on the idea of using an automated method to optimize the parameters of a synaptic learning rule. The synaptic modification rule is considered as a parametric function. This function has local inputs and is the same in many neurons. We can use standard optimization methods to select appropriate parameters for a given type of task. We also present a theoretical analysis permitting to study the generalization property of such parametric learning rules. By generalization, we mean the possibility for the learning rule to learn to solve new tasks. Experiments were performed on three types of problems: a biologically inspired circuit (for conditioning in Aplysia). Boolean functions (linearly separable as well as non linearly separable) and classification tasks. The neural network architecture as well as the form and initial parameter values of the synaptic learning function can be designed using a priori knowledge.}, +addressfr={Dallas, USA},topics={BioRules},cat={C}, +} + +@INPROCEEDINGS{bengio:1992:snowbird, + author = {Bengio, Yoshua}, + title = {Representations Based on Articulatory Dynamics for Speech Recognition}, + booktitle = {1992 Neural Networks for Computing Conference}, + year = {1992}, +topics={PriorKnowledge,Speech},cat={C}, +} + +@INPROCEEDINGS{bengio:1993:icann, + author = {Bengio, Samy and Bengio, Yoshua and Cloutier, Jocelyn and Gecsei, Jan}, + editor = {Gielen, S. and Kappen, B.}, + title = {Generalization of a Parametric Learning Rule}, + booktitle = {{ICANN} '93: Proceedings of the International Conference on Artificial Neural Networks}, + year = {1993}, + pages = {502}, + publisher = {Springer-Verlag}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1993_icann.ps}, + abstract = {In previous work ([4,2,1]) we discussed the subject of parametric learning rules for neural networks. In this article, we present a theoretical basis permitting to study the generalization property of a learning rule whose parameters are estimated from a set of learning tasks. By generalization, we mean the possibility of using the learning rule to learn solve new tasks. Finally, we describe simple experiments on two-dimensional categorization tasks and show how they corroborate the theoretical results.}, +addressfr={Amsterdam, Pays-Bas},topics={BioRules},cat={C}, +} + +@INPROCEEDINGS{bengio:1993:snowbird, + author = {Bengio, Yoshua and Simard, Patrice and Frasconi, Paolo}, + title = {The Problem of Learning Long-Term Dependencies in Recurrent Networks}, + booktitle = {1993 Neural Networks for Computing Conference}, + year = {1993}, +topics={LongTerm},cat={C}, +} + +@TECHREPORT{bengio:1994, + author = {Bengio, Yoshua and Frasconi, Paolo}, + title = {An {EM} Approach to Learning Sequential Behavior}, + number = {DSI 11-94}, + year = {1994}, + institution = {Universita di Firenze, Dipartimento di Sistemi e Informatica}, +topics={LongTerm},cat={T}, +} + +@INPROCEEDINGS{bengio:1994:acfas, + author = {Bengio, Samy and Bengio, Yoshua and Cloutier, Jocelyn and Gecsei, Jan}, + title = {Optimisation d'une r{\`{e}}gle d'apprentissage pour r{\'{e}}seaux de neurones artificiels}, + booktitle = {Actes du soixante-deuxi{\`{e}}me congr{\`{e}}s de l'Association Canadienne Fran{\c c}aise pour l'Avancement des Sciences, colloque sur l'apprentissage et les r{\'{e}}seaux de neurones artificiels}, + year = {1994}, +topics={BioRules},cat={C}, +} + +@INPROCEEDINGS{bengio:1994:snowbird, + author = {Bengio, Yoshua and Frasconi, Paolo}, + title = {An {EM} Algorithm for Target Propagation}, + booktitle = {1994 Neural Networks for Computing Conference}, + year = {1994}, +topics={LongTerm},cat={C}, +} + +@INPROCEEDINGS{bengio:1994:wcci, + author = {Bengio, Samy and Bengio, Yoshua and Cloutier, Jocelyn}, + title = {Use of Genetic Programming for the Search of a New Learning Rule for Neural Networks}, + booktitle = {Proceedings of the First Conference on Evolutionary Computation, {IEEE} World Congress on Computational Intelligence}, + year = {1994}, + pages = {324--327}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1994_wcci.ps}, + abstract = {In previous work ([1,2,3]), we explained how to use standard optimization methods such as simulated annealing, gradient descent and genetic algorithms to optimize a parametric function which could be used as a learning rule for neural networks. To use these methods, we had to choose a fixed number of parameters and a rigid form for the learning rule. In this article, we propose to use genetic programming to find not only the values of rule parameters but also the optimal number of parameters and the form of the rule. Experiments on classification tasks suggest genetic programming finds better learning rules than other optimization methods. Furthermore, the best rule found with genetic programming outperformed the well-known backpropagation algorithm for a given set of tasks.}, +topics={BioRules},cat={C}, +} + +@INPROCEEDINGS{bengio:1994b:acfas, + author = {Bengio, Yoshua and Frasconi, Paolo}, + title = {R{\'{e}}seaux de neurones {M}arkoviens pour l'inf{\'{e}}rence grammaticale}, + booktitle = {Actes du soixante-deuxi{\`{e}}me congr{\`{e}}s de l'Association Canadienne Fran{\c c}aise pour l'Avancement des Sciences, colloque sur l'apprentissage et les r{\'{e}}seaux de neurones artificiels}, + year = {1994}, +topics={Markov,Language},cat={C}, +} + +@ARTICLE{bengio:1995:npl, + author = {Bengio, Samy and Bengio, Yoshua and Cloutier, Jocelyn}, + title = {On the Search for New Learning Rules for {ANN}s}, + journal = {Neural Processing Letters}, + volume = {2}, + number = {4}, + year = {1995}, + pages = {26--30}, + abstract = {In this paper, we present a framework where a learning rule can be optimized within a parametric learning rule space. We define what we call parametric learning rules and present a theoretical study of their generalization properties when estimated from a set of learning tasks and tested over another set of tasks. We corroborate the results of this study with practical experiments.}, +topics={BioRules},cat={J}, +} + +@INCOLLECTION{bengio:1995:oban, + author = {Bengio, Samy and Bengio, Yoshua and Cloutier, Jocelyn and Gecsei, Jan}, + editor = {Levine, D. S. and Elsberry, W. R.}, + title = {{O}n the Optimization of a Synaptic Learning Rule}, + booktitle = {Optimality in Biological and Artificial Networks}, + year = {1995}, + publisher = {Lawrence Erlbaum}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1995_oban.pdf}, + abstract = {This paper presents a new approach to neural modeling based on the idea of using an automated method to optimize the parameters of a synaptic learning rule. The synaptic modification rule is considered as a parametric function. This function has local inputs and is the same in many neurons. We can use standard optimization methods to select appropriate parameters for a given type of task. We also present a theoretical analysis permitting to study the generalization property of such parametric learning rules. By generalization, we mean the possibility for the learning rule to learn to solve new tasks. Experiments were performed on three types of problems: a biologically inspired circuit (for conditioning in Aplysia), Boolean functions (linearly separable as well as non linearly separable) and classification tasks. The neural network architecture as well as the form and initial parameter values of the synaptic learning function can be designed using a priori knowledge.}, +topics={BioRules},cat={B}, +} + +@TECHREPORT{bengio:1996:udem, + author = {Bengio, Yoshua and Bengio, Samy}, + title = {Training Asynchronous Input/Output Hidden {M}arkov Models}, + number = {1013}, + year = {1996}, + institution = {D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnelle, Universit{\'{e}}de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1996_udem.ps}, +topics={Markov},cat={T}, +} + +@INPROCEEDINGS{bengio:1997:snowbird, + author = {Bengio, Yoshua and Bengio, Samy and Singer, Yoram and Isabelle, Jean-Fran{\c c}ois}, + title = {On the Clusterization of Probabilistic Transducers}, + booktitle = {1997 Neural Networks for Computing Conference}, + year = {1997}, +topics={HighDimensional},cat={C}, +} + +@INPROCEEDINGS{bengio:1998:snowbird, + author = {Bengio, Samy and Bengio, Yoshua and Robert, Jacques and B{\'{e}}langer, Gilles}, + title = {Stochastic Learning of Strategic Equilibria for Auctions}, + booktitle = {Learning Conference}, + year = {1998}, +topics={Auction},cat={C}, +} + +@TECHREPORT{bengio:1998:udem, + author = {Bengio, Samy and Bengio, Yoshua and Robert, Jacques and B{\'{e}}langer, Gilles}, + title = {Stochastic Learning of Strategic Equilibria for Auctions}, + number = {1119}, + year = {1998}, + institution = {D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnelle, Universit{\'{e}}de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1998_udem.pdf}, + abstract = {This paper presents a new application of stochastic adaptive learning algorithms to the computation of strategic equilibria in auctions. The proposed approach addresses the problems of tracking a moving target and balancing exploration (of action space) versus exploitation (of better modeled regions of action space). Neural networks are used to represent a stochastic decision model for each bidder. Experiments confirm the correctness and usefulness of the approach.}, +topics={Auction},cat={T}, +} + +@INPROCEEDINGS{bengio:1999:snowbird, + author = {Bengio, Yoshua and Latendresse, Simon and Dugas, Charles}, + title = {Gradient-Based Learning of Hyper-Parameters}, + booktitle = {Learning Conference}, + year = {1999}, +topics={ModelSelection},cat={C}, +} + +@INPROCEEDINGS{bengio:1999:titration, + author = {Bengio, Yoshua and Brault, J-J. and Major, Fran{\c c}ois and Neal, R. and Pigeon, Steven}, + title = {Learning Algorithms for Sorting Compounds from Titration Curves}, + booktitle = {Symposium on New Perspectives for Computer-Aided Drug Design}, + year = {1999}, +topics={Speech},cat={C}, +} + +@ARTICLE{bengio:2000:ieeetrnn, + author = {Bengio, Samy and Bengio, Yoshua}, + title = {Taking on the Curse of Dimensionality in Joint Distributions Using Neural Networks}, + journal = {IEEE Transaction on Neural Networks special issue on data mining and knowledge discovery}, + volume = {11}, + number = {3}, + year = {2000}, + pages = {550--557}, + abstract = {The curse of dimensionality is severe when modeling high-dimensional discrete data: the number of possible combinations of the variables explodes exponentially. In this paper we propose a new architecture for modeling high-dimensional data that requires resources (parameters and computations) that grow at most as the square of the number of variables, using a multi_layer neural network to represent the joint distribution of the variables as the product of conditional distributions. The neural network can be interpreted as a graphical model without hidden random variables, but in which the conditional distributions are tied through the hidden units. The connectivity of the neural network can be pruned by using dependency tests between the variables (thus reducing significantly the number of parameters). Experiments on modeling the distribution of several discrete data sets show statistically significant improvements over other methods such as naive Bayes and comparable Bayesian networks, and show that significant improvements can be obtained by pruning the network.}, +topics={HighDimensional,Unsupervised,Mining},cat={J}, +} + +@INPROCEEDINGS{bengio:2000:nips, + author = {Bengio, Yoshua and Bengio, Samy}, + title = {Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks}, + year = {2000}, + pages = {400--406}, + crossref = {NIPS12-shorter}, + abstract = {The curse of dimensionality is severe when modeling high-dimensional discrete data: the number of possible combinations of the variables explodes exponentially. In this paper we propose a new architecture for modeling high-dimensional data that requires resources (parameters and computations) that grow only at most as the square of the number of variables, using a multi-layer neural network to represent the joint distribution of the variables as the product of conditional distributions. The neural network can be interpreted as a graphical model without hidden random variables, but in which the conditional distributions are tied through the hidden units. The connectivity of the neural network can be pruned by using dependency tests between the variables. Experiments on modeling the distribution of several discrete data sets show statistically significant improvements over other methods such as naive Bayes and comparable Bayesian networks, and show that significant improvements can be obtained by pruning the network.}, +topics={HighDimensional,Unsupervised},cat={C}, +} + +@ARTICLE{bengio:2003, + author = {Bengio, Yoshua and Ducharme, R{\'{e}}jean and Vincent, Pascal and Jauvin, Christian}, + title = {A Neural Probabilistic Language Model}, + volume = {3}, + year = {2003}, + pages = {1137--1155}, + journal = {Journal of Machine Learning Research}, + abstract = {A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the curse of dimensionality: a word sequence on which the model will be tested is likely to be different from all the word sequences seen during training. Traditional but very successful approaches based on n-grams obtain generalization by concatenating very short overlapping sequences seen in the training set. We propose to fight the curse of dimensionality by learning a distributed representation for words which allows each training sentence to inform the model about an exponential number of semantically neighboring sentences. The model learns simultaneously (1) a distributed representation for each word along with (2) the probability function for word sequences, expressed in terms of these representations. Generalization is obtained because a sequence of words that has never been seen before gets high probability if it is made of words that are similar (in the sense of having a nearby representation) to words forming an already seen sentence. Training such large models (with millions of parameters) within a reasonable time is itself a significant challenge. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to take advantage of longer contexts.}, +topics={Markov,Unsupervised,Language},cat={J}, +} + +@TECHREPORT{bengio:socs-1990, + author = {Bengio, Yoshua and De Mori, Renato and Flammia, Giovanni and Kompe, Ralf}, + title = {Global Optimization of a Neural Network - Hidden {M}arkov Model Hybrid}, + number = {TR-SOCS-90.22}, + year = {1990}, + institution = {School of Computer Science, McGill University}, +topics={Markov},cat={T}, +} + +@INPROCEEDINGS{bengioc:1994:acfas, + author = {Bengio, Yoshua and {LeCun}, Yann}, + title = {Reconnaissance de mots manuscrits avec r{\'{e}}seaux de neurones et mod{\`{e}}les de {M}arkov}, + booktitle = {Actes du soixante-deuxi{\`{e}}me congr{\`{e}}s de l'Association Canadienne Fran{\c c}aise pour l'Avancement des Sciences, colloque sur l'apprentissage et les r{\'{e}}seaux de neurones artificiels}, + year = {1994}, +topics={Markov,Speech},cat={C}, +} + +@TECHREPORT{Bengio_Bottou92, + author = {Bengio, Yoshua and Bottou, {L{\'{e}}on}}, + title = {A New Approach to Estimating Probability Density Functions with Artificial Neural Networks}, + number = {TR-92.02}, + year = {1992}, + institution = {Massachusetts Institute of Technology, Dept. Brain and Cognitive Sciences}, +topics={HighDimensional},cat={T}, +} + +@INCOLLECTION{bengio_extension_nips_2003, + author = {Bengio, Yoshua and Paiement, Jean-Fran{\c c}ois and Vincent, Pascal and Delalleau, Olivier and Le Roux, Nicolas and Ouimet, Marie}, + keywords = {dimensionality reduction, eigenfunctions learning, Isomap, kernel {PCA}, locally linear embedding, Nystrom formula, spectral methods}, + title = {Out-of-Sample Extensions for {LLE}, Isomap, {MDS}, Eigenmaps, and Spectral Clustering}, + year = {2004}, + crossref = {NIPS16-shorter}, + abstract = {Several unsupervised learning algorithms based on an eigendecomposition provide either an embedding or a clustering only for given training points, with no straightforward extension for out-of-sample examples short of recomputing eigenvectors. This paper provides a unified framework for extending Local Linear Embedding ({LLE}), Isomap, Laplacian Eigenmaps, Multi-Dimensional Scaling (for dimensionality reduction) as well as for Spectral Clustering. This framework is based on seeing these algorithms as learning eigenfunctions of a data-dependent kernel. Numerical experiments show that the generalizations performed have a level of error comparable to the variability of the embedding algorithms due to the choice of training data.}, +topics={HighDimensional,Kernel,Unsupervised},cat={C}, +} + +@ARTICLE{Bengio_Gingras98a, + author = {Bengio, Yoshua and Gingras, Fran{\c c}ois and Goulard, Bernard and Lina, Jean-Marc}, + title = {Gaussian Mixture Densities for Classification of Nuclear Power Plant Data}, + journal = {Computers and Artificial Intelligence}, + volume = {17}, + number = {2-3}, + year = {1998}, + pages = {189--209}, + abstract = {In this paper we are concerned with the application of learning algorithms to the classification of reactor states in nuclear plants. Two aspects must be considered, (1) some types of events (e.g., abnormal or rare) will not appear in the data set, but the system should be able to detect them, (2) not only classification of signals but also their interpretation are important for nuclear plant monitoring. We address both issues with a mixture of mixtures of Gaussians in which some parameters are shared to reflect the similar signals observed in different states of the reactor. An {EM} algorithm for these shared Gaussian mixtures is presented. Experimental results on nuclear plant data demonstrate the advantages of the proposed approach with respect to the above two points.}, +topics={Mining},cat={J}, +} + +@ARTICLE{Bengio_Gingras98b, + author = {Gingras, Fran{\c c}ois and Bengio, Yoshua}, + title = {Handling Asynchronous or Missing Financial Data with Recurrent Networks}, + journal = {International Journal of Computational Intelligence and Organizations}, + volume = {1}, + number = {3}, + year = {1998}, + pages = {154--163}, + abstract = {An important issue with many sequential data analysis problems, such as those encountered in financial data sets, is that different variables are known at different frequencies, at different times (asynchronicity), or are sometimes missing. To address this issue we propose to use recurrent networks with feedback into the input units, based on two fundamental ideas. The first motivation is that the filled-in value of the missing variable may not only depend in complicated ways on the value of this variable in the past of the sequence but also on the current and past values of other variables. The second motivation is that, for the purpose of making predictions or taking decisions, it is not always necessary to fill in the best possible value of the missing variables. In fact, it is sufficient to fill in a value which helps the system make better predictions or decisions. The advantages of this approach are demonstrated through experiments on several tasks.}, +topics={Finance,Missing},cat={J}, +} + +@INPROCEEDINGS{Bengio_icassp90, + author = {Bengio, Yoshua and Cardin, Regis and De Mori, Renato and Normandin, Yves}, + title = {A Hybrid Coder for Hidden {M}arkov Models Using a Recurrent Neural Network}, + booktitle = {International Conference on Acoustics, Speech and Signal Processing}, + year = {1990}, + pages = {537--540}, +topics={Markov,Speech},cat={C}, +} + +@INPROCEEDINGS{Bengio_LeCun94, + author = {Bengio, Yoshua and {LeCun}, Yann and Henderson, Donnie}, + title = {Globally Trained Handwritten Word Recognizer using Spatial Representation, Space Displacement Neural Networks and Hidden {M}arkov Models}, + year = {1994}, + pages = {937--944}, + crossref = {NIPS6-shorter}, + abstract = {We introduce a new approach for on-line recognition of handwritten words written in unconstrained mixed style. The preprocessor performs a word-level normalization by fitting a model of the word structure using the {EM} algorithm. Words are then coded into low resolution annotated images where each pixel contains information about trajectory direction and curvature. The recognizer is a convolution network which can be spatially replicated. From the network output, a hidden {Markov} model produces word scores. The entire system is globally trained to minimize word-level errors.}, +topics={Speech},cat={C}, +} + +@ARTICLE{Bengio_LeCun95, + author = {Bengio, Yoshua and {LeCun}, Yann and Nohl, Craig and Burges, Chris}, + title = {LeRec: A {NN}/{HMM} Hybrid for On-Line Handwriting Recognition}, + journal = {Neural Computation}, + volume = {7}, + number = {6}, + year = {1995}, + pages = {1289--1303}, + abstract = {We introduce a new approach for on-line recognition of handwritten words written in unconstrained mixed style. The preprocessor performs a word-level normalization by fitting a model of the word structure using the {EM} algorithm. Words are then coded into low resolution annotated images where each pixel contains information about trajectory direction and curvature. The recognizer is a convolution network which can be spatially replicated. From the network output, a hidden {Markov} model produces word scores. The entire system is globally trained to minimize word-level errors.}, +topics={PriorKnowledge,Speech},cat={J}, +} + +@ARTICLE{Bengio_prel92, + author = {Bengio, Yoshua and Gori, Marco and De Mori, Renato}, + title = {Learning the Dynamic Nature of Speech with Back-propagation for Sequences}, + journal = {Pattern Recognition Letters}, + volume = {13}, + number = {5}, + year = {1992}, + pages = {375--385}, + note = {(Special issue on Artificial Neural Networks)}, +topics={Speech},cat={J}, +} + +@ARTICLE{Bengio_trnn92, + author = {Bengio, Yoshua and De Mori, Renato and Flammia, Giovanni and Kompe, Ralf}, + title = {Global Optimization of a Neural Network-Hidden {M}arkov Model Hybrid}, + journal = {IEEE Transactions on Neural Networks}, + volume = {3}, + number = {2}, + year = {1992}, + pages = {252--259}, +topics={Markov},cat={J}, +} + +@TECHREPORT{Bergstra+2009, + author = {Bergstra, James and Desjardins, Guillaume and Lamblin, Pascal and Bengio, Yoshua}, + title = {Quadratic Polynomials Learn Better Image Features}, + number = {1337}, + year = {2009}, + institution = {D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {The affine-sigmoidal hidden unit (of the form $\sigma(ax+b)$) + is a crude predictor of neuron response in visual area V1. + More descriptive models of V1 have been advanced that are no more computationally expensive, + yet artificial neural network research continues to focus on networks of affine-sigmoidal models. + This paper identifies two qualitative differences between the affine-sigmoidal hidden unit + and a particular recent model of V1 response: + a) the presence of a low-rank quadratic term in the argument to $\sigma$, + and b) the use of a gentler non-linearity than the $\tanh$ or logistic sigmoid. + We evaluate these model ingredients by training single-layer + neural networks to solve three image classification tasks. + We experimented with fully-connected hidden units, + as well as locally-connected units and convolutional units + that more closely mimic the function and connectivity of the visual system. + On all three tasks, both the quadratic interactions and the gentler non-linearity + lead to significantly better generalization. + The advantage of quadratic units was strongest in conjunction with sparse and convolutional hidden units.} +} + +@MISC{bergstra+al:2010-scipy, + author = {Bergstra, James}, + title = {Optimized Symbolic Expressions and {GPU} Metaprogramming with Theano}, + year = {2010}, + howpublished = {{SciPy}}, + note = {Oral} +} + +@MISC{bergstra+al:2010-sharcnet, + author = {Bergstra, James and Bengio, Yoshua}, + title = {{GPU} Programming with Theano}, + year = {2010}, + howpublished = {{SHARCNET} Research Day}, + note = {Oral} +} + +@MISC{bergstra+al:2010snowbird, + author = {Bergstra, James and Breuleux, Olivier and Bastien, Fr{\'{e}}d{\'{e}}ric and Lamblin, Pascal and Turian, Joseph and Desjardins, Guillaume and Pascanu, Razvan and Erhan, Dumitru and Delalleau, Olivier and Bengio, Yoshua}, + title = {Deep Learning on {GPU}s with Theano}, + booktitle = {The Learning Workshop}, + year = {2010}, + note = {Oral} +} + +@INPROCEEDINGS{Bergstra+Bengio-2009, + author = {Bergstra, James and Bengio, Yoshua}, + title = {Slow, Decorrelated Features for Pretraining Complex Cell-like Networks}, + year = {2009}, + crossref = {NIPS22} +} + +@ARTICLE{bergstra+casagrande+erhan+eck+kegl:2006, + author = {Bergstra, James and Casagrande, Norman and Erhan, Dumitru and Eck, Douglas and K{\'{e}}gl, Bal{\'{a}}zs}, + title = {Aggregate Features and AdaBoost for Music Classification}, + journal = {Machine Learning}, + volume = {65}, + year = {2006}, + pages = {473--484}, + issn = {0885-6125}, + abstract = {We present an algorithm that predicts musical genre and artist from an audio waveform. Our method uses the ensemble learner ADABOOST to select from a set of audio features that have been extracted from segmented audio and then aggregated. Our classifier proved to be the most effective method for genre classification at the recent MIREX 2005 international contests in music information extraction, and the second-best method for recognizing artists. This paper describes our method in detail, from feature extraction to song classification, and presents an evaluation of our method on three genre databases and two artist-recognition databases. Furthermore, we present evidence collected from a variety of popular features and classifiers that the technique of classifying features aggregated over segments of audio is better than classifying either entire songs or individual short-timescale features.}, +PDF = {papers/2006_ml_draft.pdf}, + SOURCE = {OwnPublication}, +} + +@INPROCEEDINGS{bergstra+lacoste+eck:2006, + author = {Bergstra, James and Lacoste, Alexandre and Eck, Douglas}, + title = {Predicting Genre Labels for Artists using FreeDB}, + booktitle = {Proc. 7th International Conference on Music Information Retrieval (ISMIR)}, + year = {2006}, +SOURCE = {OwnPublication}, + PDF = {papers/2006_ismir_freedb.pdf}, +} + +@INPROCEEDINGS{bergstra+mandel+eck:2010, + author = {Bergstra, James and Mandel, Michael and Eck, Douglas}, + title = {Scalable Genre and Tag Prediction with Spectral Covariance}, + booktitle = {{ISMIR}}, + year = {2010}, + note = {accepted} +} + +@MASTERSTHESIS{Bergstra-Msc-2006, + author = {Bergstra, James}, + keywords = {apprentissage statistique, classification de musique par genre, extraction de caract{\'{e}}ristiques sonores, recherche d'information musicale}, + title = {Algorithms for Classifying Recorded Music by Genre}, + year = {2006}, + school = {Universit{\'{e}} de Montreal}, + abstract = {Ce m{\'{e}}moire traite le probl{\`{e}}me de la classification automatique de signaux musicaux par genre. Dans un premier temps, je pr{\'{e}}sente une technique utilisant l'apprentissage machine pour classifier des statistiques extraites sur des segments du signal sonore. Malgr{\'{e}} le fait que cette technique a d{\'{e}}j{\`{a}} {\'{e}}t{\'{e}} explor{\'{e}}e, mon m{\'{e}}moire est le premier {\`{a}} investiguer l'influence de la longueur et de la quantit{\'{e}} de ces segments sur le taux de classification. J'explore {\'{e}}galement l'importance d'avoir des segments contigus dans le temps. Les segments d'une {\`{a}} trois secondes apportent une meilleure performance, mais pour ce faire, ils doivent {\^{e}}tre suffisamment nombreux. Il peut m{\^{e}}me {\^{e}}tre utile d'augmenter la quantit{\'{e}} de segments jusqu'{\`{a}} ce qu'ils se chevauchent. Dans les m{\^{e}}mes exp{\'{e}}riences, je pr{\'{e}}sente une formulation alternative des descripteurs d'audio nomm{\'{e}}e Melfrequency Cepstral Coefficient (MFCC) qui am{\`{e}}ne un taux de classification de 81 \% sur un jeux de donn{\'{e}}es pour lequel la meilleure performance publi{\'{e}}e est de 71 \%. Cette m{\'{e}}thode de segmentation des chansons, ainsi que cette formulation alternative, ont pour but d'am{\'{e}}liorer l'algorithme gagnant du concours de classification de genre de MIREX 2005, d{\'{e}}velopp{\'{e}} par Norman Casagrande et moi. Ces exp{\'{e}}riences sont un approfondissement du travail entam{\'{e}} par Bergstra et al. [2006a], qui d{\'{e}}crit l'algorithme gagnant de ce concours. +Dans un deuxi{\`{e}}me temps, je pr{\'{e}}sent une m{\'{e}}thode qui utilise FreeDB, une base de donn{\'{e}}es d'information sur les albums, pour attribuer {\`{a}} un artiste une distribution de probabilit{\'{e}} sur son genre. Avec une petite base de donn{\'{e}}es, faite {\`{a}} la main, je montre qu'il y a une haute corr{\'{e}}lation entre cette distribution et l'{\'{e}}tiquette de genre traditionnel. Bien qu'il reste {\`{a}} d{\'{e}}montrer que cette m{\'{e}}thode est utile pour organiser une collection de musique, ce r{\'{e}}sultat sugg{\`{e}}re qu'on peut maintenant {\'{e}}tiqueter de grandes bases de musique automatiquement {\`{a}} un faible co{\^{u}}t, et par cons{\'{e}}quent de poursuivre plus facilement la recherche en classification {\`{a}} grande {\'{e}}chelle. Ce travail sera publi{\'{e}} comme Bergstra et al. [2006b] {\`{a}} ISMIR 2006.} +} + +@INPROCEEDINGS{bergstra:2010cosyne, + author = {Bergstra, James and Bengio, Yoshua and Lamblin, Pascal and Desjardins, Guillaume and Louradour, Jerome}, + title = {Image classification with complex cell neural networks}, + booktitle = {Computational and systems neuroscience (COSYNE)}, + year = {2010}, + note = {Poster}, + url = {http://www.frontiersin.org/conferences/individual_abstract_listing.php?conferid=770&pap=3626&ind_abs=1&pg=335}, + doi = {10.3389/conf.fnins.2010.03.00334} +} + +@INPROCEEDINGS{biaslearn:2000:ijcnn, + author = {Ghosn, Joumana and Bengio, Yoshua}, + title = {Bias Learning, Knowledge Sharing}, + booktitle = {International Joint Conference on Neural Networks 2000}, + volume = {I}, + year = {2000}, + pages = {9--14}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/ijcnn_manifold.pdf}, + abstract = {Biasing the hypothesis space of a learner has been shown to improve generalisation performances. Methods for achieving this goal have been proposed, that range from deriving and introducing a bias into a learner to automatically learning the bias. In the latter case, most methods learn the bias by simultaneously training several related tasks derived from the same domain and imposing constraints on their parameters. We extend some of the ideas presented in this field and describe a new model that parameterizes the parameters of each task as a function of an affine manifold defined in parameter space and a point lying on the manifold. An analysis of variance on a class of learning tasks is performed that shows some significantly improved performances when using the model.}, +topics={MultiTask},cat={C}, +} + +@ARTICLE{biaslearn:2003:tnn, + author = {Ghosn, Joumana and Bengio, Yoshua}, + title = {Bias Learning, Knowledge Sharing}, + journal = {IEEE Transaction on Neural Networks}, + volume = {14}, + number = {4}, + year = {2003}, + pages = {748--765}, + abstract = {Biasing properly the hypothesis space of a learner has been shown to improve generalization performance. Methods for achieving this goal have been proposed, that range from designing and introducing a bias into a learner to automatically learning the bias. Multitask learning methods fall into the latter category. When several related tasks derived from the same domain are available, these methods use the domain-related knowledge coded in the training examples of all the tasks as a source of bias. We extend some of the ideas presented in this field and describe a new approach that identifies a family of hypotheses, represented by a manifold in hypothesis space, that embodies domain-related knowledge. This family is learned using training examples sampled from a group of related tasks. Learning models trained on these tasks are only allowed to select hypotheses that belong to the family. We show that the new approach encompasses a large variety of families which can be learned. A statistical analysis on a class of related tasks is performed that shows significantly improved performances when using this approach.}, +topics={MultiTask},cat={J}, +} + +@MASTERSTHESIS{Boisvert-Mcs-2005, + author = {Boisvert, Maryse}, + keywords = {Algorithme {EM} , D{\'{e}}composition en valeurs singuli{\`{e}}res , D{\'{e}}sambigu{\"{\i}}sation s{\'{e}}mantique , Mod{\`{e}}les graphiques, WordNet }, + title = {R{\'{e}}duction de dimension pour mod{\`{e}}les graphiques probabilistes appliqu{\'{e}}s {\`{a}} la d{\'{e}}sambiguisation s{\'{e}}mantique}, + year = {2005}, + school = {Universit{\'{e}} de Montr{\'{e}}al} +} + +@INPROCEEDINGS{bonneville98, + author = {Bonneville, Martin and Meunier, Jean and Bengio, Yoshua and Soucy, Jean-Paul}, + title = {Support Vector Machines for Improving the classification of Brain Pet Images}, + booktitle = {SPIE Medical Imaging}, + year = {1998}, +topics={Kernel},cat={C}, +} + +@INPROCEEDINGS{Bottou+Bengio95, + author = {Bottou, {L{\'{e}}on} and Bengio, Yoshua}, + title = {Convergence Properties of the {K}-Means Algorithm}, + year = {1995}, + pages = {585--592}, + crossref = {NIPS7-shorter}, + abstract = {This paper studies the convergence properties of the well known K-Means clustering algorithm. The K-Means algorithm can be described either as a gradient descent algorithm or by slightly extending the mathematics of the {EM} algorithm to this hard threshold case. We show that the K-Means algorithm actually minimizes the quantization error using the very fast Newton algorithm.}, +topics={Unsupervised},cat={C}, +} + +@ARTICLE{bottou-98, + author = {Bottou, {L{\'{e}}on} and Haffner, Patrick and G. Howard, Paul and Simard, Patrice and Bengio, Yoshua and {LeCun}, Yann}, + title = {High Quality Document Image Compression with {DjVu}}, + journal = {Journal of Electronic Imaging}, + volume = {7}, + number = {3}, + year = {1998}, + pages = {410--425}, +topics={Compression},cat={J}, +} + +@INPROCEEDINGS{Bottou-dcc98, + author = {Bottou, {L{\'{e}}on} and G. Howard, Paul and Bengio, Yoshua}, + editor = {Society, {IEEE} Computer}, + title = {The Z-Coder Adaptive Binary Coder}, + booktitle = {Data Compression Conference}, + year = {1998}, + url = {http://leon.bottou.org/papers/bottou-howard-bengio-98}, +topics={Compression},cat={C}, +} + +@INPROCEEDINGS{bottou-lecun-bengio-97, + author = {Bottou, {L{\'{e}}on} and {LeCun}, Yann and Bengio, Yoshua}, + title = {Global Training of Document Processing Systems using Graph Transformer Networks}, + booktitle = {Proc. of Computer Vision and Pattern Recognition}, + year = {1997}, + pages = {490--494}, + publisher = {IEEE}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/bottou-lecun-bengio-97.ps.gz}, +topics={PriorKnowledge,Speech},cat={C}, +} + +@TECHREPORT{bottou96TR, + author = {Bottou, {L{\'{e}}on} and Bengio, Yoshua and {LeCun}, Yann}, + title = {Document analysis with transducers}, + number = {Technical Memorandum HA615600-960701-01TM}, + year = {1996}, + institution = {AT\&T Labs}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/transducer-tm.ps.gz}, +topics={HighDimensional},cat={T}, +} + +@TECHREPORT{bottou97TR, + author = {Bottou, {L{\'{e}}on} and Bengio, Yoshua and G. Howard, Paul}, + title = {Z-Coder: A Fast Adaptive Binary Arithmetic Coder}, + number = {Technical Memorandum HA615600-970721-02TM}, + year = {1997}, + institution = {AT\&T Labs}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/zcoder-tm.ps.gz}, +topics={Compression},cat={T}, +} + +@MASTERSTHESIS{Bouchard-Msc-2007, + author = {Bouchard, Lysiane}, + keywords = {auditory cortex, fMRI, linear classifier, logistic regression, na{\"{\i}}ve bayesian gaussian model, neuroimaging, spectro-temporal modulation, support vectors machine}, + title = {Analyse par apprentissage automatique des r{\'{e}}ponses fMRI du cortex auditif {\`{a}} des modulations spectro-temporelles.}, + year = {2009}, + school = {Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {The application of linear machine learning classifiers to the analysis of brain imaging data (fMRI) has led to several interesting breakthroughs in recent years. These classifiers combine the responses of the voxels to detect and categorize different brain states. They allow a more agnostic analysis than conventional fMRI analysis that systematically treats weak and distributed patterns as unwanted noise. In this project, we use such classifiers to validate an hypothesis concerning the encoding of sounds in the human brain. More precisely, we attempt to locate neurons tuned to spectral and temporal modulations in sound. We use fMRI recordings of brain responses of subjects listening to 49 different spectro-temporal modulations. The analysis of fMRI data through linear classifiers is not yet a standard procedure in this field. Thus, an important objective of this project, in the long term, is the development of new machine learning algorithms specialized for neuroimaging data. For these reasons, an important part of the experiments is dedicated to studying the behaviour of the classifiers. We are mainly interested in 3 standard linear classifiers, namely the support vectors machine algorithm (linear), the logistic regression algorithm (regularized) and the na{\"{\i}}ve bayesian gaussian model (shared variances).} +} + +@PHDTHESIS{Boufaden-Phd-2005, + author = {Boufaden, Narj{\`{e}}s}, + title = {Extraction d’information {\`{a}} partir de transcriptions de conversations t{\'{e}}l{\'{e}}phoniques sp{\'{e}}cialis{\'{e}}es}, + year = {2005}, + school = {Universit{\'{e}} de Montr{\'{e}}al, D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnel} +} + +@INPROCEEDINGS{Carreau+Bengio-2007, + author = {Carreau, Julie and Bengio, Yoshua}, + title = {A Hybrid {Pareto} Model for Conditional Density Estimation of Asymmetric Fat-Tail Data}, + booktitle = {Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS'07)}, + year = {2007}, + publisher = {Omnipress}, + abstract = {We propose an estimator for the conditional density p(Y|X) that can adapt for asymmetric heavy tails which might depend on X. Such estimators have important applications in finance and insurance. We draw from Extreme Value Theory the tools to build a hybrid unimodal density having a parameter controlling the heaviness of the upper tail. This hybrid is a Gaussian whose upper tail has been replaced by a generalized {Pareto} tail. We use this hybrid in a multi-modal mixture in order to obtain a nonparametric density estimator that can easily adapt for heavy tailed data. To obtain a conditional density estimator, the parameters of the mixture estimator can be seen as +functions of X and these functions learned. We show experimentally that this approach better models the conditional density in terms of likelihood than compared competing algorithms : conditional mixture models with other types of components and multivariate nonparametric models.}, +date={21-24} +} + +@ARTICLE{Carreau+Bengio-2009, + author = {Carreau, Julie and Bengio, Yoshua}, + title = {A Hybrid {Pareto} Mixture for Conditional Asymmetric Fat-Tailed Distributio\ n}, + journal = {IEEE Transactions on Neural Networks}, + volume = {20}, + number = {7}, + year = {2009}, + pages = {1087--1101}, + issn = {1045-9227}, + abstract = {In many cases, we observe some variables X that contain predictive information over a scalar variable of interest Y, with (X,Y) pairs observed in a training set. We can take advantage of this information to estimate the conditional density P(Y\X = x). In this paper, we propose a conditional mixture model with hybrid {Pareto} components to estimate P(Y\X = x).The hybrid {Pareto} is a Gaussian whose upper tail has been replaced by a generalized {Pareto} tail. A third parameter, in addition to the location and spread parameters of the Gaussian, controls the heaviness of the upper tail. Using the hybrid {Pareto} in a mixture model results in a nonparametric estimator that can adapt to multimodality, asymmetry, and heavy tails. A conditional density estimator is built by modeling the parameters of the mixture estimator as functions of X. We use a neural network to implement these functions. Such conditional density estimators have important applications in many domains such as finance and insurance. We show experimentally that this novel approach better models the conditional density in terms of likelihood, compared to competing algorithms: conditional mixture models with other types of components and a classical kernel-based nonparametric model.} +} + +@ARTICLE{Carreau+Bengio-extreme-2009, + author = {Carreau, Julie and Bengio, Yoshua}, + title = {A Hybrid {Pareto} Model for Asymmetric Fat-Tailed Data: the univariate case}, + journal = {Extremes}, + volume = {12}, + number = {1}, + year = {2009}, + pages = {53--76}, + abstract = {Density estimators that can adapt to asymmetric heavy tails are required in many applications such as finance and insurance. Extreme Value Theory (EVT) has developped principled methods based on asymptotic results to estimate the tails of most distributions. However, the finite sample approximation might introduce a severe bias in many cases. Moreover, the full range of the distribution is often needed, not only the tail area. On the other hand, non-parametric methods, while being powerful where data are abundant, fail to extrapolate properly in the tail area. We put forward a non-parametric density estimator that brings together the strengths of non-parametric density estimation and of EVT. A hybrid {Pareto} distribution that can be used in a mixture model is proposed to extend the generalized {Pareto} (GP) to the whole real axis. Experiments on simulated data show the following. On one hand, the mixture of hybrid {Pareto}s converges faster in terms of log-likelihood and provides good estimates of the tail of the distributions when compared with other density estimators including the GP distribution. On the other hand, the mixture of hybrid {Pareto}s offers an alternate way to estimate the tail index which is comparable to the one estimated with the standard GP methodology. The mixture of hybrids is also evaluated on the Danish fire insurance data set.} +} + +@PHDTHESIS{Carreau-PhD-2007, + author = {Carreau, Julie}, + keywords = {density estimation, extreme values, generalized {Pareto} distribution, heavy-tailed distribution, mixture of distributions, neural networks}, + title = {Mod{\`{e}}les {Pareto} hybrides pour distributions asym{\'{e}}triques et {\`{a}} queues lourdes}, + year = {2007}, + school = {UdeM}, + abstract = {We put forward a class of density estimators that can adapt to asymmetric, multi-modal and heavy-tailed distributions. Such distributions occur in many application domains such as finance and insurance. Mixture of gaussians are flexible non-parametric density estimators that have good approximation properties when the number of components is well chosen with respect to the training set size. However, those models are performing poorly on heavy-tailed data because few observations occur in the tail area. To solve this problem, we resort to extreme value theory where methods based on sound parametric assumptions have been developped to enable extrapolation beyond the range of the observations. More precisely, we build on the PoT method that was developped in hydrology where PoT stands for "Peaks-over-Threshold". The observations exceeding a given threshold are modeled by the generalized {Pareto} distribution. This distribution can approximate arbitrarily well the tail of most distributions. We build a new distribution, the hybrid {Pareto}, by stitching together a truncated Normal and a generalized {Pareto} distribution. We impose continuity constraints at the junction point. The hybrid {Pareto} is thus a smooth distribution that can be used in a mixture model. The behavior of the upper tail of the hybrid is similar to the behavior of the generalized {Pareto} tail. Moreover, the threshold inherent in the the PoT methodology can now be defined implicitly as the junction point of the component with the heaviest tail. This component also determines the tail index of the mixture. Hence, the hybrid {Pareto} mixture offers an alternate way to estimate the tail index associated with heavy-tailed data. In several applications, information that has predictive power on the variable of interest is available. In that case, we want to model the conditional density of Y given X, the vector containing predictive information. When the distribution of Y given X is asymmetric, multi-modal and heavy-tailed, we propose to use a mixure of hybrid {Pareto}s whose parameters are functions of X. Those functions are implemented by means of a neural network with one hidden layer. Neural neworks are non-parametric models that can, in principle, approximate any continuous function. Experiments on artificial and real data sets show that the hybrid {Pareto} mixture, unconditional and conditional, outperforms other density estimators in terms of log-likelihood.} +} + +@INPROCEEDINGS{casagrande+eck+kegl:icmc2005, + author = {Casagrande, Norman and Eck, Douglas and K{\'{e}}gl, Bal{\'{a}}zs}, + title = {Geometry in Sound: A Speech/Music Audio Classifier Inspired by an Image Classifier}, + booktitle = {{Proceedings of the International Computer Music Conference (ICMC)}}, + year = {2005}, + pages = {207--210}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2005_icmc_casagrande.pdf}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{casagrande+eck+kegl:ismir2005, + author = {Casagrande, Norman and Eck, Douglas and K{\'{e}}gl, Bal{\'{a}}zs}, + title = {Frame-Level Audio Feature Extraction using {A}da{B}oost}, + booktitle = {{Proceedings of the 6th International Conference on Music Information Retrieval ({ISMIR} 2005)}}, + year = {2005}, + pages = {345--350}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2005_ismir_casagrande.pdf}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@PROCEEDINGS{ccai2006, + editor = {Lamontagne, Luc and Marchand, Mario}, + title = {Advances in Artificial Intelligence, 19th Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2006, Qu{\'{e}}bec City, Qu{\'{e}}bec, Canada, June 7-9, 2006, Proceedings}, + booktitle = {Canadian Conference on AI}, + series = {Lecture Notes in Computer Science}, + volume = {4013}, + year = {2006}, + publisher = {Springer} +} + +@INPROCEEDINGS{Chapados+Bengio-2006, + author = {Chapados, Nicolas and Bengio, Yoshua}, + title = {The K Best-Paths Approach to Approximate Dynamic Programming with Application to Portfolio Optimization}, + booktitle = {AI06}, + year = {2006}, + pages = {491-502} +} + +@INPROCEEDINGS{Chapados+Bengio-2007, + author = {Chapados, Nicolas and Bengio, Yoshua}, + title = {Forecasting Commodity Contract Spreads with Gaussian Process}, + booktitle = {13th Intarnational Conference on Computing in Economics and Finance}, + year = {2007}, + abstract = {We introduce a functional representation of time series which allows forecasts to be performed over an unspecified horizon with progressively-revealed information sets. By virtue of using Gaussian processes, a complete covariance matrix between forecasts at several time-steps is available. This information is put to use in an application to actively trade price spreads between commodity futures contracts. The approach delivers impressive out-of-sample risk-adjusted returns after transaction costs on a portfolio of 30 spreads.} +} + +@ARTICLE{Chapados+Bengio-2008-JOC, + author = {Chapados, Nicolas and Bengio, Yoshua}, + title = {Noisy K Best-Paths for Approximate Dynamic Programming with Application to Portfolio Optimization}, + journal = {Journal of Computers}, + volume = {2}, + number = {1}, + year = {2007}, + pages = {12--19}, + abstract = {We describe a general method to transform a non-Markovian sequential decision problem into a supervised learning problem using a K-bestpaths algorithm. We consider an application in financial portfolio management where we can train a controller to directly optimize a Sharpe Ratio (or other risk-averse non-additive) utility function. We illustrate the approach by demonstrating experimental results using a kernel-based controller architecture that would not normally be considered in traditional +reinforcement learning or approximate dynamic programming.We further show that using a non-additive criterion (incremental Sharpe Ratio) yields a noisy K-best-paths extraction problem, that can give substantially improved performance.} +} + +@MASTERSTHESIS{Chapados-Msc-2000, + author = {Chapados, Nicolas}, + title = {Crit{\`{e}}res d'optimisation d'algorithmes d'apprentissage en gestion de portefeuille}, + year = {2000}, + school = {Universit{\'{e}} de Montr{\'{e}}al} +} + +@INPROCEEDINGS{chapados2000, + author = {Chapados, Nicolas and Bengio, Yoshua}, + title = {Cost Functions and Model Combination for {VaR}-Based Asset Allocation Using Neural Networks}, + booktitle = {Computational Finance 2000}, + year = {2000}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/compfin2000_final.pdf}, + abstract = {We introduce an asset-allocation framework based on the active control of the value-at-risk of the portfolio. Within this framework, we compare two paradigms for making the allocation using neural networks. The first one uses the network to make a forecast of asset behavior, in conjunction with a traditional mean-variance allocator for constructing the portfolio. The second paradigm uses the network to directly make the portfolio allocation decisions. We consider a method for performing soft input variable selection, and show its considerable utility. We use model combination (committee) methods to systematize the choice of hyperparemeters during training. We show that committees using both paradigms are significantly outperforming the benchmark market performance.}, +topics={Finance},cat={C}, +} + +@ARTICLE{chapados:2001, + author = {Chapados, Nicolas and Bengio, Yoshua}, + title = {Cost Functions and Model Combination for VaR--based Asset Allocation using Neural Networks}, + journal = {IEEE Transactions on Neural Networks}, + volume = {12}, + number = {4}, + year = {2001}, + pages = {890--906}, + abstract = {We introduce an asset-allocation framework based on the active control of the value-at-risk of the portfolio. Within this framework, we +compare two paradigms for making the allocation using neural networks. The first one uses the network to make a forecast of asset behavior, in conjunction with a traditional mean-variance allocator for constructing the portfolio. The second paradigm uses the network to directly make the portfolio allocation decisions. We consider a method for performing soft input variable selection, and show its considerable utility. We use model combination (committee) methods to systematize the choice of hyperparemeters during training. We show that committees +using both paradigms are significantly outperforming the benchmark market performance.}, +topics={Finance},cat={J}, +} + +@ARTICLE{chapados:2003, + author = {Bengio, Yoshua and Chapados, Nicolas}, + title = {Extensions to Metric-Based Model Selection}, + year = {2003}, + journal = {Journal of Machine Learning Research}, + abstract = {Metric-based methods have recently been introduced for model selection and regularization, often yielding very significant improvements over the alternatives tried (including cross-validation). All these methods require unlabeled data over which to compare functions and detect gross differences in behavior away from the training points. We introduce three new extensions of the metric model selection methods and apply them to feature selection. The first extension takes advantage of the particular case of time-series data in which the task involves prediction with a horizon h. The idea is to use at t the h unlabeled examples that precede t for model selection. The second extension takes advantage of the different error distributions of cross-validation and the metric methods: cross-validation tends to have a larger variance and is unbiased. A hybrid combining the two model selection methods is rarely beaten by any of the two methods. The third extension deals with the case when unlabeled data is not available at all, using an estimated input density. Experiments are described to study these extensions in the context of capacity control and feature subset selection.}, +topics={ModelSelection,Finance},cat={J}, +} + +@ARTICLE{chapelle:2001, + author = {Chapelle, Olivier and Vapnik, Vladimir and Bengio, Yoshua}, + title = {Model Selection for Small Sample Regression}, + journal = {Machine Learning}, + year = {2001}, + abstract = {Model selection is an important ingredient of many machine learning algorithms, in particular when the sample size in small, in order to strike the right trade-off between overfitting and underfitting. Previous classical results for linear regression are based on an asymptotic analysis. We present a new penalization method for performing model selection for regression that is appropriate even for small samples. Our penalization is based on an accurate estimator of the ratio of the expected training error and the expected generalization error, in terms of the expected eigenvalues of the input covariance matrix.}, +topics={ModelSelection},cat={J}, +} + +@INCOLLECTION{chapter-eval-longterm-2001, + author = {Schmidhuber, Juergen and Hochreiter, Sepp and Bengio, Yoshua}, + editor = {Kolen, J. and Kremer, S.}, + title = {Evaluating Benchmark Problems by Random Guessing}, + booktitle = {Field Guide to Dynamical Recurrent Networks}, + year = {2001}, + publisher = {IEEE Press}, +topics={LongTerm},cat={B}, +} + +@INCOLLECTION{chapter-gradient-document-2001, + author = {{LeCun}, Yann and Bottou, {L{\'{e}}on} and Bengio, Yoshua and Haffner, Patrick}, + editor = {Haykin, S. and Kosko, B.}, + title = {Gradient-Based Learning Applied to Document Recognition}, + booktitle = {Intelligent Signal Processing}, + year = {2001}, + pages = {306--351}, + publisher = {IEEE Press}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/lecun-01a.pdf}, + abstract = {Multilayer Neural Networks trained with a backprppagation algorithm constitute the best example of a successful Gradient-Based Learning technique. Given an appropriate network architecture, Gradient-Based Learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. +Real-life document recognition systems are composed of multiple modules including field extraction, segmentation, recognition, and language modeling. A new learning paradigm, called Graph Transformer Networks (GTN), allows such multi-module systems to be trained globally using Gradient-Based methods so as to monimize an overall peformance measure. +Two systems for on-line handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of Graph Transformer Networks. +A Graph Transformer Network for reading bank check is also described. It uses Convolutional Neural Network character recognizers combined with a global training technique to provides record accuracy on business and personal checks. It is deployed commercially and reads several million checks per day.}, +topics={PriorKnowledge,Speech},cat={B}, +} + +@INCOLLECTION{chapter-gradient-flow-2001, + author = {Hochreiter, Sepp and Bengio, Yoshua and Frasconi, Paolo}, + editor = {Kolen, J. and Kremer, S.}, + title = {Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies}, + booktitle = {Field Guide to Dynamical Recurrent Networks}, + year = {2001}, + publisher = {IEEE Press}, +topics={LongTerm},cat={B}, +} + +@INPROCEEDINGS{chemero+eck:1999, + author = {Chemero, T. and Eck, Douglas}, + title = {An Exploration of Representational Complexity via Coupled Oscillators}, + booktitle = {{Proceedings of the Tenth Midwest Artificial Intelligence and Cognitive Science Society}}, + year = {1999}, + publisher = {MIT Press}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/1999_chemero.pdf}, + abstract = {We note some inconsistencies in a view of representation which takes {\it decoupling} to be of key importance. We explore these inconsistencies using examples of representational vehicles taken from coupled oscillator theory and suggest a new way to reconcile {\it coupling} with {\it absence}. Finally, we tie these views to a teleological definition of representation.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@ARTICLE{ChemInfModel2006, + author = {Erhan, Dumitru and {L'Heureux}, Pierre-Jean and Yue, Shi Yi and Bengio, Yoshua}, + title = {Collaborative Filtering on a Family of Biological Targets}, + journal = {J. Chem. Inf. Model.}, + volume = {46}, + number = {2}, + year = {2006}, + pages = {626--635}, + abstract = {Building a QSAR model of a new biological target for which few screening data are available is a statistical +challenge. However, the new target may be part of a bigger family, for which we have more screening data. +Collaborative filtering or, more generally, multi-task learning, is a machine learning approach that improves +the generalization performance of an algorithm by using information from related tasks as an inductive +bias. We use collaborative filtering techniques for building predictive models that link multiple targets to +multiple examples. The more commonalities between the targets, the better the multi-target model that can +be built. We show an example of a multi-target neural network that can use family information to produce +a predictive model of an undersampled target. We evaluate JRank, a kernel-based method designed for +collaborative filtering. We show their performance on compound prioritization for an HTS campaign and +the underlying shared representation between targets. JRank outperformed the neural network both in the +single- and multi-target models.}, +topics={Bioinformatic,MultiTask},cat={J}, +} + +@TECHREPORT{collobert:2001:rr01-12, + author = {Collobert, Ronan and Bengio, Samy and Bengio, Yoshua}, + title = {A Parallel Mixture of {SVM}s for Very Large Scale Problems}, + number = {12}, + year = {2001}, + institution = {IDIAP}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/IDIAP-RR-01-12.ps}, + abstract = {Support Vector Machines ({SVM}s) are currently the state-of-the-art models for many classification problems but they suffer from the complexity of their training algorithm which is at least quadratic with respect to the number of examples. Hence, it is hopeless to try to solve real-life problems having more than a few hundreds of thousands examples with {SVM}s. The present paper proposes a new mixture of {SVM}s that can be easily implemented in parallel and where each {SVM} is trained on a small subset of the whole dataset. Experiments on a large benchmark dataset (Forest) yielded significant time improvement (time complexity appears empirically to locally grow linearly with the number of examples). In addition, and that is a surprise, a significant improvement in generalization was observed.}, +topics={Kernel},cat={T}, +} + +@ARTICLE{collobert:2002, + author = {Collobert, Ronan and Bengio, Samy and Bengio, Yoshua}, + title = {Parallel Mixture of {SVM}s for Very Large Scale Problem}, + journal = {Neural Computation}, + year = {2002}, + abstract = {Support Vector Machines ({SVM}s) are currently the state-of-the-art models for many classification problems but they suffer from the complexity of their training algorithm which is at least quadratic with respect to the number of examples. Hence, it is hopeless to try to solve real-life problems having more than a few hundreds of thousands examples with {SVM}s. The present paper proposes a new mixture of {SVM}s that can be easily implemented in parallel and where each {SVM} is trained on a small subset of the whole dataset. Experiments on a large benchmark dataset (Forest) yielded significant time improvement (time complexity appears empirically to locally grow linearly with the number of examples). In addition, and that is a surprise, a significant improvement in generalization was observed.}, +topics={HighDimensional,Kernel},cat={J}, +} + +@BOOK{collobert:2002:book, + author = {Collobert, Ronan and Bengio, Yoshua and Bengio, Samy}, + editor = {Lee, S. W. and Verri, A.}, + title = {Scaling Large Learning Problems with Hard Parallel Mixtures}, + booktitle = {Pattern Recognition with Support Vector Machines}, + series = {Lecture Notes in Computer Science}, + volume = {2388}, + year = {2002}, + publisher = {Springer-Verlag}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/2002_mixtures_svm.pdf}, + abstract = {A challenge for statistical learning is to deal with large data sets, e.g. in data mining. Popular learning algorithms such as Support Vector Machines have training time at least quadratic in the number of examples: they are hopeless to solve prolems with a million examples. We propose a "hard parallelizable mixture" methodology which yields significantly reduced training time through modularization and parallelization: the training data is iteratively partitioned by a "gater" model in such a way that it becoms easy to learn an "expert" model separately in each region of the parition. A probabilistic extension and the use of a set of generative models allows representing a gater so that all pieces of the model are locally trained. For {SVM}s, time complexity appears empirically to locally grow linearly with the number of examples, while generalization performance can be enhanced. For the probabilistic version of the algorithm, the iterative algorithm provably goes down in a cost function that is an upper bound on the negative log-likelihood.}, +topics={Kernel},cat={B}, +} + +@MISC{copyright-CTAI, + author = {Bengio, Yoshua and Ducharme, R{\'{e}}jean and Dorion, Christian}, + title = {Commodity Trading Advisor Index}, + year = {2004-2009}, + howpublished = {copyright, and commercialized software license.} +} + +@MISC{copyright-PLearn, + author = {Vincent, Pascal and Bengio, Yoshua}, + title = {{PLearn}, a {C++} Machine Learning Library}, + year = {1998-2009}, + howpublished = {copyright, public domain license.}, + url = {www.plearn.org} +} + +@ARTICLE{Cosi90, + author = {Cosi, Piero and Bengio, Yoshua and De Mori, Renato}, + title = {Phonetically-based multi-layered networks for acoustic property extraction and automatic speech recognition}, + journal = {Speech Communication}, + volume = {9}, + number = {1}, + year = {1990}, + pages = {15--30}, +topics={PriorKnowledge,Speech},cat={J}, +} + +@INCOLLECTION{courville+eck+bengio:nips2009, + author = {Courville, Aaron and Eck, Douglas and Bengio, Yoshua}, + editor = {}, + title = {An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism}, + booktitle = {Neural Information Processing Systems Conference (NIPS) 22}, + year = {2009}, + pages = {405--413}, + publisher = {}, + url = {http://books.nips.cc/papers/files/nips22/NIPS2009_1100.pdf}, +source={OwnPublication}, +sourcetype={Conference}, +pdf={""}, +} + +@INPROCEEDINGS{davies+plumbley+eck:waspaa2009, + author = {Davies, M. and Plumbley, M. and Eck, Douglas}, + title = {Towards a musical beat emphasis function}, + booktitle = {Proceedings of IEEE WASPAA}, + year = {2009}, + organization = {IEEE Workshop on Applications of Signal Processing to Audio and Acoustics}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{Delalleau+al-2005, + author = {Delalleau, Olivier and Bengio, Yoshua and Le Roux, Nicolas}, + editor = {Cowell, Robert G. and Ghahramani, Zoubin}, + title = {Efficient Non-Parametric Function Induction in Semi-Supervised Learning}, + booktitle = {Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS'05)}, + year = {2005}, + pages = {96--103}, + publisher = {Society for Artificial Intelligence and Statistics}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/semisup_aistats2005.pdf}, + abstract = {There has been an increase of interest for semi-supervised learning recently, because of the many datasets with large amounts of unlabeled examples and only a few labeled ones. This paper follows up on proposed nonparametric algorithms which provide an estimated continuous label for the given unlabeled examples. First, it extends them to function induction algorithms that minimize a regularization criterion applied to an out-of-sample example, and happen to have the form of Parzen windows regressors. This allows to predict test labels without solving again a linear system of dimension n (the number of unlabeled and labeled training examples), which can cost O(n^3). Second, this function induction procedure gives rise to an efficient approximation of the training process, reducing the linear system to be solved to m << n unknowns, using only a subset of m examples. An improvement of O(n^2/m^2) in time can thus be obtained. Comparative experiments are presented, showing the good performance of the induction formula and approximation algorithm.}, +topics={Unsupervised},cat={C}, +} + +@INCOLLECTION{Delalleau+al-ssl-2006, + author = {Delalleau, Olivier and Bengio, Yoshua and Le Roux, Nicolas}, + editor = {Chapelle, Olivier and {Sch{\"{o}}lkopf}, Bernhard and Zien, Alexander}, + title = {Large-Scale Algorithms}, + booktitle = {Semi-Supervised Learning}, + year = {2006}, + pages = {333--341}, + publisher = {{MIT} Press}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/delalleau_ssl.pdf}, + abstract = {In Chapter 11, it is shown how a number of graph-based semi-supervised learning +algorithms can be seen as the minimization of a specific cost function, leading to a +linear system with n equations and unknowns (with n the total number of labeled +and unlabeled examples). Solving such a linear system will in general require on the +order of O(kn2) time and O(kn) memory (for a sparse graph where each data point +has k neighbors), which can be prohibitive on large datasets (especially if k = n, +i.e. the graph is dense). We present in this chapter a subset selection method that +can be used to reduce the original system to one of size m << n. The idea is to solve +for the labels of a subset S of X of only m points, while still retaining information +from the rest of the data by approximating their label with a linear combination of +the labels in S (using the induction formula presented in Chapter 11). This leads +to an algorithm whose computational requirements scale as O(m2n) and memory +requirements as O(m2), thus allowing one to take advantage of significantly bigger +unlabeled datasets than with the original algorithms.}, +cat={B},topics={Unsupervised}, +} + +@INCOLLECTION{DeMori90a, + author = {De Mori, Renato and Bengio, Yoshua and Cosi, Piero}, + editor = {Mohr, R. and Pavlidis, T. and Sanfelin, A.}, + title = {On the use of an ear model and multi-layer networks for automatic speech recognition}, + booktitle = {Structural Pattern Analysis}, + year = {1990}, + publisher = {World Scientific}, +topics={PriorKnowledge,Speech},cat={B}, +} + +@INPROCEEDINGS{Desjardins+al-2010, + author = {Desjardins, Guillaume and Courville, Aaron and Bengio, Yoshua}, + title = {Tempered {Markov} Chain Monte Carlo for training of Restricted {Boltzmann} Machine}, + booktitle = {Proceedings of AISTATS 2010}, + volume = {9}, + year = {2010}, + pages = {145-152}, + abstract = {Alternating Gibbs sampling is the most common scheme used for sampling from Restricted {Boltzmann} Machines (RBM), a crucial component in deep architectures such as Deep Belief Networks. However, we find that it often does a very poor job of rendering the diversity of modes captured by the trained model. We suspect that this hinders the advantage that could in principle be brought by training algorithms relying on Gibbs sampling for uncovering spurious modes, such as the Persistent Contrastive Divergence algorithm. To alleviate this problem, we explore the use of tempered {Markov} Chain Monte-Carlo for sampling in RBMs. We find both through visualization of samples and measures of likelihood on a toy dataset that it helps both sampling and learning.} +} + +@TECHREPORT{Desjardins-2008, + author = {Desjardins, Guillaume and Bengio, Yoshua}, + keywords = {Convolutional Architectures, Deep Networks, RBM, Vision}, + title = {Empirical Evaluation of Convolutional RBMs for Vision}, + number = {1327}, + year = {2008}, + institution = {D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Convolutional Neural Networks ({CNN}) have had great success in machine learning tasks involving vision and represent one of the early successes of deep networks. Local receptive fields and weight +sharing make their architecture ideally suited for vision tasks by helping to enforce a prior based on our knowledge of natural images. This same prior could also be applied to recent developments in the field of deep networks, in order to tailor these new architectures for artificial vision. In this context, we show how the Restricted {Boltzmann} Machine (RBM), the building block of Deep Belief Networks (DBN), can be adapted to operate in a convolutional manner. We compare their performance to standard fully-connected RBMs on a simple visual learning task and show that the convolutional RBMs (CRBMs) converge to smaller values of the negative likelihood function. Our experiments also indicate that CRBMs are more efficient than standard RBMs trained on small image patches, with the CRBMs having faster convergence.} +} + +@TECHREPORT{Desjardins-tech-2009, + author = {Desjardins, Guillaume and Courville, Aaron and Bengio, Yoshua and Vincent, Pascal and Delalleau, Olivier}, + keywords = {CD, PCD, RBM, simulated tempering, tempered MCMC, unsupervised learning}, + title = {Tempered {Markov} Chain Monte Carlo for training of Restricted {Boltzmann} Machines}, + number = {1345}, + year = {2009}, + institution = {D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Alternating Gibbs sampling is the most common scheme used for sampling from Restricted {Boltzmann} Machines (RBM), a crucial component in deep architectures such as Deep Belief Networks. However, we find that it often does a very poor job of rendering the diversity of modes captured by the trained model. We suspect that this hinders the advantage that could in principle be brought by training algorithms relying on Gibbs sampling for uncovering spurious modes, such as the Persistent Contrastive Divergence algorithm. To alleviate this problem, we +explore the use of tempered {Markov} Chain Monte-Carlo for sampling in RBMs. We find both through visualization of samples and measures of likelihood that it helps both sampling and learning.} +} + +@ARTICLE{Dugas+Bengio-2009, + author = {Dugas, Charles and Bengio, Yoshua and Belisle, Francois and Nadeau, Claude and Garcia, Rene}, + title = {Incorporating Functional Knowledge in Neural Networks}, + journal = {The Journal of Machine Learning Research}, + volume = {10}, + year = {2009}, + pages = {1239--1262}, + abstract = {Incorporating prior knowledge of a particular task into the architecture of a learning algorithm can greatly improve generalization performance. We study here a case where we know that the function to be learned is non-decreasing in its two arguments and convex in one of them. For this purpose we propose a class of functions similar to multi-layer neural networks but (1) that has those properties, (2) is a universal approximator of Lipschitz functions with these and other properties. We apply this new class of functions to the task of modelling the price of call options. Experiments show improvements on regressing the price of call options using the new types of function classes that incorporate the a priori constraints.} +} + +@PHDTHESIS{Dugas-Phd-2003, + author = {Dugas, Charles}, + title = {Les algorithmes d'apprentissage appliqu{\'{e}}s aux risques financiers}, + year = {2003}, + school = {Universit{\'{e}} de Montr{\'{e}}al} +} + +@ARTICLE{dugas:2003, + author = {Dugas, Charles and Bengio, Yoshua and Chapados, Nicolas and Vincent, Pascal and Denoncourt, Germain and Fournier, Christian}, + title = {Statistical Learning Algorithms Applied to Automobile Insurance Ratemaking}, + journal = {CAS Forum}, + volume = {1}, + number = {1}, + year = {2003}, + pages = {179--214}, + abstract = {We recently conducted a research project for a large North American automobile insurer. This study was the most exhaustive ever undertaken by this particular insurer and lasted over an entire year. We analyzed the discriminating power of each variable used for ratemaking. We analyzed the performance of several models within five broad categories: linear regressions, generalized linear models, decision trees, neural networks and support vector machines. In this paper, we present the main results of this study. We qualitatively compare models and show how neural networks can represent high-order nonlinear dependencies with a small number of parameters, each of which is estimated on a large proportion of the data, thus yielding low variance. We thoroughly explain the purpose of the nonlinear sigmoidal transforms which are at the very heart of neural networks' performances. The main numerical result is a statistically significant reduction in the out-of-sample mean-squared error using the neural network model and our ability to substantially reduce the median premium by charging more to the highest risks. This in turn can translate into substantial savings and financial benefits for an insurer. We hope this paper goes a long way towards convincing actuaries to include neural networks within their set of modeling tools for ratemaking.}, +topics={Finance,Mining},cat={J}, +} + +@INPROCEEDINGS{eck+bertinmahieux+lamere+green:nips2007, + author = {Eck, Douglas and Lamere, Paul and Bertin-Mahieux, Thierry and Green, Stephen}, + editor = {Platt, John and Kolen, J. and Singer, Yoram and Roweis, S.}, + title = {Automatic Generation of Social Tags for Music Recommendation}, + year = {2008}, + crossref = {NIPS20-shorter}, +source = "OwnPublication" +} + +@INPROCEEDINGS{eck+bertinmahieux+lamere:ismir2007, + author = {Eck, Douglas and Bertin-Mahieux, Thierry and Lamere, Paul}, + title = {Autotagging music using supervised machine learning}, + booktitle = {{Proceedings of the 8th International Conference on Music Information Retrieval ({ISMIR} 2007)}}, + year = {2007}, +source={OwnPublication}, +} + +@INPROCEEDINGS{eck+casagrande:ismir2005, + author = {Eck, Douglas and Casagrande, Norman}, + title = {Finding Meter in Music Using an Autocorrelation Phase Matrix and Shannon Entropy}, + booktitle = {{Proceedings of the 6th International Conference on Music Information Retrieval ({ISMIR} 2005)}}, + year = {2005}, + pages = {504--509}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2005_ismir.pdf}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INCOLLECTION{eck+gasser+port:2000, + author = {Eck, Douglas and Gasser, M. and Port, Robert}, + editor = {Desain, P. and Windsor, L.}, + title = {Dynamics and Embodiment in Beat Induction}, + booktitle = {{Rhythm Perception and Production}}, + year = {2000}, + pages = {157--170}, + publisher = {Swets and Zeitlinger}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2000_rppw.pdf}, + abstract = {We provide an argument for using dynamical systems theory in the domain of beat induction. We motivate the study of beat induction and to relate beat induction to the more general study of human rhythm cognition. In doing so we compare a dynamical, embodied approach to a symbolic (traditional AI) one, paying particular attention to how the modeling approach brings with it tacit assumptions about what is being modeled. Please note that this is a philosophy paper about research that was, at the time of writing, very much in progress.}, +source={OwnPublication}, +sourcetype={Chapter}, +} + +@INPROCEEDINGS{eck+gasser:1996, + author = {Eck, Douglas and Gasser, M.}, + editor = {}, + title = {Perception of Simple Rhythmic Patterns in a Network of Oscillators}, + booktitle = {{The Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society}}, + year = {1996}, + publisher = {Lawrence Erlbaum Associates}, + abstract = {This paper is concerned with the complex capacity to recognize and reproduce rhythmic patterns. While this capacity has not been well investigated, in broad qualitative terms it is clear that people can learn to identify and produce recurring patterns defined in terms of sequences of beats of varying intensity and rests: the rhythms behind waltzes, reels, sambas, etc. Our short term goal is a model which is "hard-wired" with knowledge of a set of such patterns. Presented with a portion of one of the patterns or a label for a pattern, the model should reproduce the pattern and continue to do so when the input is turned off. Our long-term goal is a model which can learn to adjust the connection strengths which implement particular patterns as it is exposed to input patterns.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@TECHREPORT{eck+graves+schmidhuber:tr-speech2003, + author = {Eck, Douglas and Graves, A. and Schmidhuber, Juergen}, + title = {A New Approach to Continuous Speech Recognition Using {LSTM} Recurrent Neural Networks}, + number = {IDSIA-14-03}, + year = {2003}, + institution = {IDSIA}, + abstract = {This paper presents an algorithm for continuous speech recognition built from two Long Short-Term Memory ({LSTM}) recurrent neural networks. A first {LSTM} network performs frame-level phone probability estimation. A second network maps these phone predictions onto words. In contrast to {HMM}s, this allows greater exploitation of long-timescale correlations. Simulation results are presented for a hand-segmented subset of the "Numbers-95" database. These results include isolated phone prediction, continuous frame-level phone prediction and continuous word prediction. We conclude that despite its early stage of development, our new model is already competitive with existing approaches on certain aspects of speech recognition and promising on others, warranting further research.}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@TECHREPORT{eck+lapalme:2008, + author = {Eck, Douglas and Lapalme, J.}, + title = {Learning Musical Structure Directly from Sequences of Music}, + number = {1300}, + year = {2008}, + institution = {Universit{\'{e}} de Montr{\'{e}}al DIRO}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/tr1300.pdf}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@INPROCEEDINGS{eck+schmidhuber:icann2002, + author = {Eck, Douglas and Schmidhuber, Juergen}, + editor = {Dorronsoro, J.}, + title = {Learning The Long-Term Structure of the Blues}, + booktitle = {{Artificial Neural Networks -- ICANN 2002 (Proceedings)}}, + volume = {}, + year = {2002}, + pages = {284--289}, + publisher = {Springer}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2002_icannMusic.pdf}, + abstract = {In general music composed by recurrent neural networks ({RNN}s) suffers from a lack of global structure. Though networks can learn note-by-note transition probabilities and even reproduce phrases, they have been unable to learn an entire musical form and use that knowledge to guide composition. In this study, we describe model details and present experimental results showing that {LSTM} successfully learns a form of blues music and is able to compose novel (and some listeners believe pleasing) melodies in that style. Remarkably, once the network has found the relevant structure it does not drift from it: {LSTM} is able to play the blues with good timing and proper structure as long as one is willing to listen.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{eck+schmidhuber:ieee2002, + author = {Eck, Douglas and Schmidhuber, Juergen}, + editor = {Bourlard, H.}, + title = {Finding Temporal Structure in Music: Blues Improvisation with {LSTM} Recurrent Networks}, + booktitle = {Neural Networks for Signal Processing XII, Proceedings of the 2002 IEEE Workshop}, + year = {2002}, + pages = {747--756}, + publisher = {IEEE}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2002_ieee.pdf}, + abstract = {Few types of signal streams are as ubiquitous as music. Here we consider the problem of extracting essential ingredients of music signals, such as well-defined global temporal structure in the form of nested periodicities (or {\em meter}). Can we construct an adaptive signal processing device that learns by example how to generate new instances of a given musical style? Because recurrent neural networks can in principle learn the temporal structure of a signal, they are good candidates for such a task. Unfortunately, music composed by standard recurrent neural networks ({RNN}s) often lacks global coherence. The reason for this failure seems to be that {RNN}s cannot keep track of temporally distant events that indicate global music structure. Long Short-Term Memory ({LSTM}) has succeeded in similar domains where other {RNN}s have failed, such as timing \& counting and learning of context sensitive languages. In the current study we show that {LSTM} is also a good mechanism for learning to compose music. We present experimental results showing that {LSTM} successfully learns a form of blues music and is able to compose novel (and we believe pleasing) melodies in that style. Remarkably, once the network has found the relevant structure it does not drift from it: {LSTM} is able to play the blues with good timing and proper structure as long as one is willing to listen.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@ARTICLE{eck+scott:2005, + author = {Eck, Douglas and Scott, S. K.}, + title = {Editorial: New Research in Rhythm Perception and Production}, + journal = {Music Perception}, + volume = {22}, + number = {3}, + year = {2005}, + pages = {371-388}, +source={OwnPublication}, +sourcetype={Other}, +} + +@MISC{eck+scott:editor2005, + author = {Eck, Douglas and Scott, S. K.}, + title = {Music Perception}, + year = {2005}, + note = {Guest Editor, Special Issue on Rhythm Perception and Production, 22(3)}, +source={OwnPublication}, +sourcetype={Other}, +} + +@INPROCEEDINGS{eck:1999, + author = {Eck, Douglas}, + editor = {}, + title = {Learning Simple Metrical Preferences in a Network of {F}itzhugh-{N}agumo Oscillators}, + booktitle = {{The Proceedings of the Twenty-First Annual Conference of the Cognitive Science Society}}, + year = {1999}, + publisher = {Lawrence Erlbaum Associates}, + abstract = {Hebbian learning is used to train a network of oscillators to prefer periodic signals of pulses over aperiodic signals. Target signals consisted of metronome-like voltage pulses with varying amounts of inter-onset noise injected. (with 0\% noise yielding a periodic signal and more noise yielding more and more aperiodic signals.) The oscillators---piecewise-linear approximations (Abbott, 1990) to Fitzhugh-Nagumo oscillators---are trained using mean phase coherence as an objective function. Before training a network is shown to readily synchronize with signals having wide range of noise. After training on a series of noise-free signals, a network is shown to only synchronize with signals having little or no noise. This represents a bias towards periodicity and is explained by strong positive coupling connections between oscillators having harmonically-related periods.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@UNPUBLISHED{eck:bramsworkshop2004, + author = {Eck, Douglas}, + title = {Challenges for Machine Learning in the Domain of Music}, + year = {2004}, + note = {BRAMS Workshop on Brain and Music, Montreal Neurological Institute}, + abstract = {Slides and musical examples available on request.}, +source={OwnPublication}, +sourcetype={Workshop}, +optkey={""}, +optmonth={""}, +optannote={""}, +} + +@PHDTHESIS{eck:diss, + author = {Eck, Douglas}, + title = {{Meter Through Synchrony: Processing Rhythmical Patterns with Relaxation Oscillators}}, + year = {2000}, + school = {Indiana University, Bloomington, IN, www.idsia.ch/\-\~{}doug/\-publications.html}, + abstract = {This dissertation uses a network of relaxation oscillators to beat along with temporal signals. Relaxation oscillators exhibit interspersed slow-fast movement and model a wide array of biological oscillations. The model is built up gradually: first a single relaxation oscillator is exposed to rhythms and shown to be good at finding downbeats in them. Then large networks of oscillators are mutually coupled in an exploration of their internal synchronization behavior. It is demonstrated that appropriate weights on coupling connections cause a network to form multiple pools of oscillators having stable phase relationships. This is a promising first step towards networks that can recreate a rhythmical pattern from memory. In the full model, a coupled network of relaxation oscillators is exposed to rhythmical patterns. It is shown that the network finds downbeats in patterns while continuing to exhibit good internal stability. A novel non-dynamical model of downbeat induction called the Normalized Positive (NP) clock model is proposed, analyzed, and used to generate comparison predictions for the oscillator model. The oscillator model compares favorably to other dynamical approaches to beat induction such as adaptive oscillators. However, the relaxation oscillator model takes advantage of intrinsic synchronization stability to allow the creation of large coupled networks. This research lays the groundwork for a long-term research goal, a robotic arm that responds to rhythmical signals by tapping along. It also opens the door to future work in connectionist learning of long rhythmical patterns.}, +source={OwnPublication}, +sourcetype={Thesis}, +} + +@INPROCEEDINGS{eck:icann2001, + author = {Eck, Douglas}, + editor = {Dorffner, Georg}, + title = {A Network of Relaxation Oscillators that Finds Downbeats in Rhythms}, + booktitle = {{Artificial Neural Networks -- ICANN 2001 (Proceedings)}}, + volume = {}, + year = {2001}, + pages = {1239--1247}, + publisher = {Springer}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2001_icann.pdf}, + abstract = {A network of relaxation oscillators is used to find downbeats in rhythmical patterns. In this study, a novel model is described in detail. Its behavior is tested by exposing it to patterns having various levels of rhythmic complexity. We analyze the performance of the model and relate its success to previous work dealing with fast synchrony in coupled oscillators.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{eck:icassp2007, + author = {Eck, Douglas}, + editor = {}, + title = {Beat Tracking Using an Autocorrelation Phase Matrix}, + booktitle = {{Proceedings of the 2007 International Conference on Acoustics, Speech and Signal Processing (ICASSP)}}, + year = {2007}, + pages = {1313--1316}, + publisher = {IEEE Signal Processing Society}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2007_icassp.pdf}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{eck:icmpc2004, + author = {Eck, Douglas}, + editor = {Lipscomb, S. D. and Ashley, R. and Gjerdingen, R. O. and Webster, P.}, + title = {A Machine-Learning Approach to Musical Sequence Induction That Uses Autocorrelation to Bridge Long Timelags}, + booktitle = {{The Proceedings of the Eighth International Conference on Music Perception and Cognition ({ICMPC}8)}}, + year = {2004}, + pages = {542-543}, + publisher = {Causal Productions}, + abstract = {One major challenge in using statistical sequence learning methods in the domain of music lies in bridging the long timelags that separate important musical events. Consider, for example, the chord changes that convey the basic structure of a pop song. A sequence learner that cannot predict chord changes will almost certainly not be able to generate new examples in a musical style or to categorize songs by style. Yet, it is surprisingly difficult for a sequence learner to bridge the long timelags necessary to identify when a chord change will occur and what its new value will be. This is the case because chord changes can be separated by dozens or hundreds of intervening notes. One could solve this problem by treating chords as being special (as did Mozer, NIPS 1991). But this is impractical---it requires chords to be labeled specially in the dataset, limiting the applicability of the model to non-labeled examples---and furthermore does not address the general issue of nested temporal structure in music. I will briefly describe this temporal structure (known commonly as "meter") and present a model that uses to its advantage an assumption that sequences are metrical. The model consists of an autocorrelation-based filtration that estimates online the most likely metrical tree (i.e. the frequency and phase of beat, measure, phrase &etc.) and uses that to generate a series of sequences varying at different rates. These sequences correspond to each level in the hierarchy. Multiple learners can be used to treat each series separately and their predictions can be combined to perform composition and categorization. I will present preliminary results that demonstrate the usefulness of this approach. Time permitting I will also compare the model to alternate approaches.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{eck:icmpc2006, + author = {Eck, Douglas}, + editor = {Baroni, M. and Addessi, A. R. and Caterina, R. and Costa, M.}, + title = {Beat Induction Using an Autocorrelation Phase Matrix}, + booktitle = {The Proceedings of the 9th International Conference on Music Perception and Cognition ({ICMPC9})}, + year = {2006}, + pages = {931-932}, + publisher = {Causal Productions}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@UNPUBLISHED{eck:irisworkshop2004, + author = {Eck, Douglas}, + title = {Using Autocorrelation to Bridge Long Timelags when Learning Sequences of Music}, + year = {2004}, + note = {IRIS 2004 Machine Learning Workshop, Ottawa, Canada}, + abstract = {Slides and musical examples available on request.}, +source={OwnPublication}, +sourcetype={Workshop}, +optkey={""}, +optmonth={""}, +optannote={""}, +} + +@ARTICLE{eck:jnmr2001, + author = {Eck, Douglas}, + title = {A Positive-Evidence Model for Rhythmical Beat Induction}, + journal = {Journal of New Music Research}, + volume = {30}, + number = {2}, + year = {2001}, + pages = {187--200}, + abstract = {The Normalized Positive (NPOS) model is a rule-based model that predicts downbeat location and pattern complexity in rhythmical patterns. Though derived from several existing models, the NPOS model is particularly effective at making correct predictions while at the same time having low complexity. In this paper, the details of the model are explored and a comparison is made to existing models. Several datasets are used to examine the complexity predictions of the model. Special attention is paid to the model's ability to account for the effects of musical experience on beat induction.}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@UNPUBLISHED{eck:mipsworkshop2004, + author = {Eck, Douglas}, + title = {Bridging Long Timelags in Music}, + year = {2004}, + note = {NIPS 2004 Workshop on Music and Machine Learning (MIPS), Whistler, British Columbia}, + abstract = {Slides and musical examples available on request.}, +source={OwnPublication}, +sourcetype={Workshop}, +optkey={""}, +optmonth={""}, +optannote={""}, +} + +@ARTICLE{eck:mp2006, + author = {Eck, Douglas}, + title = {Finding Long-Timescale Musical Structure with an Autocorrelation Phase Matrix}, + journal = {Music Perception}, + volume = {24}, + number = {2}, + year = {2006}, + pages = {167--176}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@UNPUBLISHED{eck:nipsworkshop2003, + author = {Eck, Douglas}, + title = {Time-warped hierarchical structure in music and speech: A sequence prediction challenge}, + year = {2003}, + note = {NIPS 2003 Workshop on Recurrent Neural Networks, Whistler, British Columbia}, + abstract = {Slides and musical examples available on request.}, +source={OwnPublication}, +sourcetype={Workshop}, +optkey={""}, +optmonth={""}, +optannote={""}, +} + +@UNPUBLISHED{eck:nipsworkshop2006, + author = {Eck, Douglas}, + title = {Generating music sequences with an echo state network}, + year = {2006}, + note = {NIPS 2006 Workshop on Echo State Networks and Liquid State Machines}, + abstract = {Slides and musical examples available on request.}, +source={OwnPublication}, +sourcetype={Workshop}, +optkey={""}, +optmonth={""}, +optannote={""}, +} + +@UNPUBLISHED{eck:nipsworkshop2007, + author = {Eck, Douglas}, + title = {Measuring and modeling musical expression}, + year = {2007}, + note = {NIPS 2007 Workshop on Music, Brain and Cognition}, +source={OwnPublication}, +sourcetype={Workshop}, +optkey={""}, +optmonth={""}, +optannote={""}, +} + +@ARTICLE{eck:psyres2002, + author = {Eck, Douglas}, + title = {Finding Downbeats with a Relaxation Oscillator}, + journal = {Psychol. Research}, + volume = {66}, + number = {1}, + year = {2002}, + pages = {18--25}, + abstract = {A relaxation oscillator model of neural spiking dynamics is applied to the task of finding downbeats in rhythmical patterns. The importance of downbeat discovery or {\em beat induction} is discussed, and the relaxation oscillator model is compared to other oscillator models. In a set of computer simulations the model is tested on 35 rhythmical patterns from Povel \& Essens (1985). The model performs well, making good predictions in 34 of 35 cases. In an analysis we identify some shortcomings of the model and relate model behavior to dynamical properties of relaxation oscillators.}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@UNPUBLISHED{eck:rppw2005, + author = {Eck, Douglas}, + title = {Meter and Autocorrelation}, + year = {2005}, + note = {{10th Rhythm Perception and Production Workshop (RPPW), Alden Biesen, Belgium}}, +source={OwnPublication}, +sourcetype={Workshop}, +} + +@TECHREPORT{eck:tr-music2002, + author = {Eck, Douglas and Schmidhuber, Juergen}, + title = {A First Look at Music Composition using {LSTM} Recurrent Neural Networks}, + number = {IDSIA-07-02}, + year = {2002}, + institution = {IDSIA}, + abstract = {In general music composed by recurrent neural networks ({RNN}s) suffers from a lack of global structure. Though networks can learn note-by-note transition probabilities and even reproduce phrases, attempts at learning an entire musical form and using that knowledge to guide composition have been unsuccessful. The reason for this failure seems to be that {RNN}s cannot keep track of temporally distant events that indicate global music structure. Long Short-Term Memory ({LSTM}) has succeeded in similar domains where other {RNN}s have failed, such as timing \& counting and CSL learning. In the current study I show that {LSTM} is also a good mechanism for learning to compose music. I compare this approach to previous attempts, with particular focus on issues of data representation. I present experimental results showing that {LSTM} successfully learns a form of blues music and is able to compose novel (and I believe pleasing) melodies in that style. Remarkably, once the network has found the relevant structure it does not drift from it: {LSTM} is able to play the blues with good timing and proper structure as long as one is willing to listen. {\em Note: This is a more complete version of the 2002 ICANN submission Learning the Long-Term Structure of the Blues.}}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@TECHREPORT{eck:tr-npos2000, + author = {Eck, Douglas}, + title = {A Positive-Evidence Model for Classifying Rhythmical Patterns}, + number = {IDSIA-09-00}, + year = {2000}, + institution = {IDSIA}, + abstract = {The Normalized Positive (NPOS) model is a novel matching model that predicts downbeat location and pattern complexity in rhythmical patterns. Though similar models report success, the NPOS model is particularly effective at making these predictions while at the same time being theoretically and mathematically simple. In this paper, the details of the model are explored and a comparison is made to existing models. Several datasets are used to examine the complexity predictions of the model. Special attention is paid to the model's ability to account for the effects of musical experience on rhythm perception.\\ {\em Note: See the 2001 Journal of New Music Research paper "A Positive-Evidence Model for Rhythmical Beat Induction" for a newer version of this paper.}}, +ps={ftp://ftp.idsia.ch/pub/techrep/IDSIA-09-00.ps.gz}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@TECHREPORT{eck:tr-oscnet2001, + author = {Eck, Douglas}, + title = {A Network of Relaxation Oscillators that Finds Downbeats in Rhythms}, + number = {IDSIA-06-01}, + year = {2001}, + institution = {IDSIA}, + abstract = {A network of relaxation oscillators is used to find downbeats in rhythmical patterns. In this study, a novel model is described in detail. Its behavior is tested by exposing it to patterns having various levels of rhythmic complexity. We analyze the performance of the model and relate its success to previous work dealing with fast synchrony in coupled oscillators. \\ {\em Note: See the 2001 ICANN conference proceeding by the same title for a newer version of this paper.}}, +ps={ftp://ftp.idsia.ch/pub/techrep/IDSIA-06-01.ps.gz}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@TECHREPORT{eck:tr-tracking2000, + author = {Eck, Douglas}, + title = {Tracking Rhythms with a Relaxation Oscillator}, + number = {IDSIA-10-00}, + year = {2000}, + institution = {IDSIA}, + abstract = {A number of biological and mechanical processes are typified by a continued slow accrual and fast release of energy. A nonlinear oscillator exhibiting this slow-fast behavior is called a relaxation oscillator and is used to model, for example, human heartbeat pacemaking and neural action potential. Similar limit cycle oscillators are used to model a wider range of behaviors including predator-prey relationships and synchrony in animal populations such as fireflies. Though nonlinear limit-cycle oscillators have been successfully applied to beat induction, relaxation oscillators have received less attention. In this work we offer a novel and effective relaxation oscillator model of beat induction. We outline the model in detail and provide a perturbation analysis of its response to external stimuli. In a series of simulations we expose the model to patterns from Experiment 1 of Povel \& Essens (1985). We then examine the beat assignments of the model. Although the overall performance of the model is very good, there are shortcomings. We believe that a network of mutually-coupled oscillators will address many of these shortcomings, and we suggest an appropriate course for future research.\\ {\em Note: See the 2001 {\em Psychological Research} article "Finding Downbeats with a Relaxation Oscillator" for a revised but less detailed version of this paper.}}, +ps={ftp://ftp.idsia.ch/pub/techrep/IDSIA-10-00.ps.gz}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@TECHREPORT{eck:tr-tracking2002, + author = {Eck, Douglas}, + title = {Real-Time Musical Beat Induction with Spiking Neural Networks}, + number = {IDSIA-22-02}, + year = {2002}, + institution = {IDSIA}, + abstract = {Beat induction is best described by analogy to the activities of hand clapping or foot tapping, and involves finding important metrical components in an auditory signal, usually music. Though beat induction is intuitively easy to understand it is difficult to define and still more difficult to perform automatically. We will present a model of beat induction that uses a spiking neural network as the underlying synchronization mechanism. This approach has some advantages over existing methods; it runs online, responds at many levels in the metrical hierarchy, and produces good results on performed music (Beatles piano performances encoded as MIDI). In this paper the model is described in some detail and simulation results are discussed.}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@UNPUBLISHED{eck:verita2002, + author = {Eck, Douglas}, + title = {Real Time Beat Induction with Spiking Neurons}, + year = {2002}, + note = {{Music, Motor Control and the Mind: Symposium at Monte Verita, May}}, + abstract = {Beat induction is best described by analogy to the activites of hand clapping or foot tapping, and involves finding important metrical components in an auditory signal, usually music. Though beat induction is intuitively easy to understand it is difficult to define and still more difficult to model. I will discuss an approach to beat induction that uses a network of spiking neurons to synchronize with periodic components in a signal at many timescales. Through a competitive process, groups of oscillators embodying a particular metrical interpretation (e.g. \"4/4\") are selected from the network and used to track the pattern. I will compare this model to other approaches including a traditional symbolic AI system (Dixon 2001), and one based on Bayesian statistics (Cemgil et al, 2001). Finally I will present performance results of the network on a set of MIDI-recorded piano performances of Beatles songs collected by the Music, Mind, Machine Group, NICI, University of Nijmegen (see Cemgil et al, 2001 for more details or http://www.nici.kun.nl/mmm).}, +source={OwnPublication}, +sourcetype={Workshop}, +} + +@INPROCEEDINGS{ElHihi+Bengio-nips8, + author = {El Hihi, Salah and Bengio, Yoshua}, + title = {Hierarchical Recurrent Neural Networks for Long-Term Dependencies}, + year = {1996}, + crossref = {NIPS8-shorter}, + abstract = {We have already shown that extracting lone-term dependencies from sequential data is difficult, both for deterministic dynamical systems such as recurrent networks, and probabilistic models such as hidden {Markov} models ({HMM}s) or input/output hidden {Markov} models ({IOHMM}s). In practice, to avoid this problem, researchers have used domain specific a-priori knowledge to give meaning to the hidden or state variables representing past context. In this paper we propose to use a more general type of a-priori knowledge, namely that the temporal dependencies are structured hierarchically. This implies that long-term dependencies are represented by variables with a long time scale. This principle is applied to a recurrent network which includes delays and multiple time scales. Experiments confirm the advantages of such structures. A similar approach is proposed for {HMM}s and {IOHMM}s.}, +topics={LongTerm},cat={C}, +} + +@ARTICLE{Erhan+al-2010, + author = {Erhan, Dumitru and Bengio, Yoshua and Courville, Aaron and Manzagol, Pierre-Antoine and Vincent, Pascal and Bengio, Samy}, + title = {Why Does Unsupervised Pre-training Help Deep Learning?}, + volume = {11}, + year = {2010}, + pages = {625--660}, + journal = {Journal of Machine Learning Research}, + abstract = {Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several areas, mostly on vision and language datasets. The best results obtained on supervised learning tasks involve an unsupervised learning component, usually in an unsupervised pre-training phase. Even though these new algorithms have enabled training deep models, many questions remain as to the nature of this difficult learning problem. The main question investigated here is the following: why does unsupervised pre-training work and why does it work so well? Answering these questions is important if learning in deep architectures is to be further improved. We propose several explanatory hypotheses and test them through extensive simulations. We empirically show the influence of pre-training with respect to architecture depth, model capacity, and number of training examples. The experiments confirm and clarify the advantage of unsupervised pre-training. The results suggest that unsupervised pre-training guides the learning towards basins of attraction of minima that are better in terms of the underlying data distribution; the evidence from these results supports a regularization explanation for the effect of pre-training.} +} + +@INPROCEEDINGS{Erhan-aistats-2010, + author = {Erhan, Dumitru and Courville, Aaron and Bengio, Yoshua and Vincent, Pascal}, + title = {Why Does Unsupervised Pre-training Help Deep Learning?}, + booktitle = {Proceedings of AISTATS 2010}, + volume = {9}, + year = {2010}, + pages = {201-208}, + abstract = {Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants with impressive results being obtained in several areas, mostly on vision and language datasets. The best results obtained on supervised learning tasks often involve an unsupervised learning component, usually in an unsupervised pre-training phase. The main question investigated here is the following: why does unsupervised pre-training work so well? Through extensive experimentation, we explore several possible explanations discussed in the literature including its action as a regularizer (Erhan et al. 2009) and as an aid to optimization (Bengio et al. 2007). Our results build on the work of Erhan et al. 2009, showing that unsupervised pre-training appears to play predominantly a regularization role in subsequent supervised training. However our results in an online setting, with a virtually unlimited data stream, point to a somewhat more nuanced interpretation of the roles of optimization and regularization in the unsupervised pre-training effect.} +} + +@MASTERSTHESIS{Erhan-MSc, + author = {Erhan, Dumitru}, + keywords = {Apprentisage multit{\^{a}}che, Filtrage collaboratif, M{\'{e}}thodes {\`{a}} noyaux, QSAR, R{\'{e}}seaux de neurones}, + title = {Collaborative filtering techniques for drug discovery}, + year = {2006}, + school = {Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Cette th{\`{e}}se examine le probl{\`{e}}me d'apprendre plusieurs t{\^{a}}ches simultan{\'{e}}ment, +afin de transf{\'{e}}rer les connaissances apprises {\`{a}} une nouvelle t{\^{a}}che. Si +on suppose que les t{\^{a}}ches partagent une repr{\'{e}}sentation et qu'il est possible de +d{\'{e}}couvrir cette repr{\'{e}}sentation efficacement, cela peut nous servir {\`{a}} construire un +meilleur mod{\`{e}}le de la nouvelle t{\^{a}}che. Il existe plusieurs variantes de +cette m{\'{e}}thode: transfert inductif, apprentisage multit{\^{a}}che, filtrage +collaboratif etc. Nous avons {\'{e}}valu{\'{e}} plusieurs algorithmes d'apprentisage +supervis{\'{e}} pour d{\'{e}}couvrir des repr{\'{e}}sentations partag{\'{e}}es parmi les +t{\^{a}}ches d{\'{e}}finies dans un probl{\`{e}}me de chimie computationelle. Nous avons +formul{\'{e}} le probl{\`{e}}me dans un cadre d'apprentisage automatique, +fait l'analogie avec les algorithmes standards de filtrage collaboratif et construit les +hypoth{\`{e}}ses g{\'{e}}n{\'{e}}rales qui devraient {\^{e}}tre test{\'{e}}es pour valider l'utilitisation des +algorithmes multit{\^{a}}che. Nous avons aussi {\'{e}}valu{\'{e}} la performance des algorithmes +d'apprentisage utilis{\'{e}}s et d{\'{e}}montrons qu'il est, en effet, possible de trouver une +repr{\'{e}}sentation partag{\'{e}}e pour le probl{\`{e}}me consider{\'{e}}. Du point de vue +th{\'{e}}orique, notre apport est une modification d'un algorithme +standard---les machines {\`{a}} vecteurs de support--qui produit des r{\'{e}}sultats +comparables aux meilleurs algorithmes disponsibles et qui utilise {\`{a}} fond les +concepts de l'apprentisage multit{\^{a}}che. Du point de vue pratique, notre +apport est l'utilisation de notre algorithme par les compagnies +pharmaceutiques dans leur d{\'{e}}couverte de nouveaux m{\'{e}}dicaments.} +} + +@INPROCEEDINGS{Erhan2009, + author = {Erhan, Dumitru and Manzagol, Pierre-Antoine and Bengio, Yoshua and Bengio, Samy and Vincent, Pascal}, + keywords = {Deep Networks}, + title = {The Difficulty of Training Deep Architectures and the effect of Unsupervised Pre-Training}, + year = {2009}, + pages = {153--160}, + crossref = {xAISTATS2009-shorter}, + abstract = {Whereas theoretical work suggests that deep architectures might be more efficient at representing highly-varying functions, training deep architectures was unsuccessful until the recent advent of algorithms based on unsupervised pretraining. Even though these new algorithms have enabled training deep models, many questions remain as to the nature of this difficult learning problem. Answering these questions is important if learning in deep architectures is to be further improved. We attempt to shed some light on these questions through extensive simulations. The experiments confirm and clarify the advantage of unsupervised pre-training. They demonstrate the robustness of the training procedure with respect to the random initialization, the positive effect of pre-training in terms of optimization and its role as a regularizer. We empirically show the influence of pre-training with respect to architecture depth, model capacity, and number of training examples.} +} + +@ARTICLE{gasser+eck+port:1999, + author = {Gasser, M. and Eck, Douglas and Port, Robert}, + title = {Meter as Mechanism: A Neural Network Model that Learns Metrical patterns}, + journal = {Connection Science}, + volume = {11}, + number = {2}, + year = {1999}, + pages = {187--216}, + abstract = {One kind of prosodic structure that apparently underlies both music and some examples of speech production is meter. Yet detailed measurements of the timing of both music and speech show that the nested periodicities that define metrical structure can be quite noisy in time. What kind of system could produce or perceive such variable metrical timing patterns? And what would it take to be able to store and reproduce particular metrical patterns from long-term memory? We have developed a network of coupled oscillators that both produces and perceives patterns of pulses that conform to particular meters. In addition, beginning with an initial state with no biases, it can learn to prefer the particular meter that it has been previously exposed to.}, +own={Have}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@TECHREPORT{gasser+eck+port:tr-1996, + author = {Gasser, M. and Eck, Douglas and Port, Robert}, + title = {Meter as Mechanism A Neural Network that Learns Metrical Patterns}, + number = {180}, + year = {1996}, + institution = {Indiana University Cognitive Science Program}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@INPROCEEDINGS{gasser+eck:1996, + author = {Gasser, M. and Eck, Douglas}, + editor = {}, + title = {Representing Rhythmic Patterns in a Network of Oscillators}, + booktitle = {{The Proceedings of the International Conference on Music Perception and Cognition}}, + number = {4}, + year = {1996}, + pages = {361--366}, + publisher = {Lawrence Erlbaum Associates}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/1996_gasser_icmpc.pdf}, + abstract = {This paper describes an evolving computational model of the perception and pro-duction of simple rhythmic patterns. The model consists of a network of oscillators of different resting frequencies which couple with input patterns and with each other. Os-cillators whose frequencies match periodicities in the input tend to become activated. Metrical structure is represented explicitly in the network in the form of clusters of os-cillators whose frequencies and phase angles are constrained to maintain the harmonic relationships that characterize meter. Rests in rhythmic patterns are represented by ex-plicit rest oscillators in the network, which become activated when an expected beat in the pattern fails to appear. The model makes predictions about the relative difficulty of patterns and the effect of deviations from periodicity in the input.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{gers+eck+schmidhuber:icann2001, + author = {Gers, F. A. and Eck, Douglas and Schmidhuber, Juergen}, + editor = {Dorffner, Georg}, + title = {Applying {LSTM} to Time Series Predictable Through Time-Window Approaches}, + booktitle = {{Artificial Neural Networks -- ICANN 2001 (Proceedings)}}, + year = {2001}, + pages = {669--676}, + publisher = {Springer}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2001_gers_icann.pdf}, + abstract = {Long Short-Term Memory ({LSTM}) is able to solve many time series tasks unsolvable by feed-forward networks using fixed size time windows. Here we find that {LSTM}'s superiority does {\em not} carry over to certain simpler time series tasks solvable by time window approaches: the Mackey-Glass series and the Santa Fe {FIR} laser emission series (Set A). This suggests t use {LSTM} only when simpler traditional approaches fail.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@TECHREPORT{gers+eck+schmidhuber:tr-2000, + author = {Gers, F. A. and Eck, Douglas and Schmidhuber, Juergen}, + title = {Applying {LSTM} to Time Series Predictable Through Time-Window Approaches}, + number = {IDSIA-22-00}, + year = {2000}, + institution = {IDSIA}, + abstract = {Long Short-Term Memory ({LSTM}) is able to solve many time series tasks unsolvable by feed-forward networks using fixed size time windows. Here we find that {LSTM}'s superiority does {\em not} carry over to certain simpler time series tasks solvable by time window approaches: the Mackey-Glass series and the Santa Fe {FIR} laser emission series (Set A). This suggests t use {LSTM} only when simpler traditional approaches fail.\\ {\em Note: See the 2001 ICANN conference proceeding by the same title for a newer version of this paper.}}, +ps={ftp://ftp.idsia.ch/pub/techrep/IDSIA-22-00.ps.gz}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@INPROCEEDINGS{gers+perez+eck+schmidhuber:esann2002, + author = {Gers, F. A. and Perez-Ortiz, J. A. and Eck, Douglas and Schmidhuber, Juergen}, + title = {{DEKF-LSTM}}, + booktitle = {Proceedings of the 10th European Symposium on Artificial Neural Networks, ESANN 2002}, + year = {2002}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{gers+perez+eck+schmidhuber:icannA2002, + author = {Gers, F. A. and Perez-Ortiz, J. A. and Eck, Douglas and Schmidhuber, Juergen}, + editor = {Dorronsoro, J.}, + title = {Learning Context Sensitive Languages with {LSTM} Trained with {Kalman} Filters}, + booktitle = {{Artificial Neural Networks -- ICANN 2002 (Proceedings)}}, + year = {2002}, + pages = {655--660}, + publisher = {Springer}, + abstract = {Unlike traditional recurrent neural networks, the Long Short-Term Memory ({LSTM}) model generalizes well when presented with training sequences derived from regular and also simple nonregular languages. Our novel combination of {LSTM} and the decoupled extended Kalman filter, however, learns even faster and generalizes even better, requiring only the 10 shortest exemplars n <= 10 of the context sensitive language a^nb^nc^n to deal correctly with values of n up to 1000 and more. Even when we consider the relatively high update complexity per timestep, in many cases the hybrid offers faster learning than {LSTM} by itself.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@PHDTHESIS{Ghosn-Phd-2003, + author = {Ghosn, Joumana}, + title = {Apprentissage multi-t{\^{a}}ches et partage de connaissances}, + year = {2003}, + school = {Universit{\'{e}} de Montr{\'{e}}al} +} + +@INPROCEEDINGS{ghosn97, + author = {Ghosn, Joumana and Bengio, Yoshua}, + title = {Multi-Task Learning for Stock Selection}, + year = {1997}, + pages = {946--952}, + publisher = {MIT Press, Cambridge, MA}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/multitask-nips97.pdf}, + crossref = {NIPS9}, + abstract = {Artificial Neural Networks can be used to predict future returns of stocks in order to take financial decisions. Should one build a separate network for each stock or share the same network for all the stocks. In this paper we also explore other alternatives, in which some layers are shared and others are not shared. When the prediction of future returns for different stocks are viewed as different tasks, sharing some parameters across stocks is a form of multi-task learning. In a series of experiments with Canadian stocks, we obtain yearly returns that are more than 14\% above various benchmarks.}, +topics={MultiTask,Finance},cat={C}, +} + +@TECHREPORT{Gingras-asynchronous-TR96, + author = {Gingras, Fran{\c c}ois and Bengio, Yoshua}, + title = {Handling asynchronous or missing financial data with recurrent networks}, + number = {1020}, + year = {1996}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, +topics={Finance,Missing},cat={T}, +} + +@TECHREPORT{Gingras-financial-TR99, + author = {Gingras, Fran{\c c}ois and Bengio, Yoshua and Nadeau, Claude}, + title = {On Out-of-Sample Statistics for Financial Time-Series}, + number = {2585}, + year = {1999}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, +topics={Comparative,Finance},cat={T}, +} + +@INPROCEEDINGS{gingras2000, + author = {Gingras, Fran{\c c}ois and Bengio, Yoshua and Nadeau, Claude}, + title = {On Out-of-Sample Statistics for Time-Series}, + booktitle = {Computational Finance 2000}, + year = {2000}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/out-err-cf2000.pdf}, + abstract = {This paper studies an out-of-sample statistic for time-series prediction that is analogous to the widely used R2 in-sample statistic. We propose and study methods to estimate the variance of this out-of-sample statistic. We suggest that the out-of-sample statistic is more robust to distributional and asymptotic assumptions behind many tests for in-sample statistics. Furthermore we argue that it may be more important in some cases to choose a model that generalizes as well as possible rather than choose the parameters that are closest to the true parameters. Comparative experiments are performed on a financial time-series (daily and monthly returns of the TSE300 index). The experiments are performed or varying prediction horizons and we study the relation between predictibility (out-of-sample R2), variability of the out-of-sample R2 statistic, and the prediction horizon.}, +topics={Comparative,Finance},cat={C}, +} + +@INPROCEEDINGS{GlorotAISTATS2010, + author = {Bengio, Yoshua and Glorot, Xavier}, + title = {Understanding the difficulty of training deep feedforward neural networks}, + booktitle = {Proceedings of AISTATS 2010}, + volume = {9}, + year = {2010}, + pages = {249-256}, + abstract = {Whereas before 2006 it appears that deep multi-layer neural networks were not successfully trained, since then several algorithms have been shown to successfully train them, with experimental results showing the superiority of deeper vs less deep architectures. All these experimental results were obtained with new initialization or training mechanisms. Our objective here is to understand better why standard gradient descent from random initialization is doing so poorly with deep neural networks, to better understand these recent relative successes and help design better algorithms in the future. We first observe the influence of the non-linear activations functions. We find that the logistic sigmoid activation is unsuited for deep networks with random initialization because of its mean value, which can drive especially the top hidden layer into saturation. Surprisingly, we find that saturated units can move out of saturation by themselves, albeit slowly, and explaining the plateaus sometimes seen when training neural networks. We find that a new non-linearity that saturates less can often be beneficial. Finally, we study how activations and gradients vary across layers and during training, with the idea that training may be more difficult when the singular values of the Jacobian associated with each layer are far from 1. Based on these considerations, we propose a new initialization scheme that brings substantially faster convergence.} +} + +@INPROCEEDINGS{Gori89, + author = {Gori, Marco and Bengio, Yoshua and De Mori, Renato}, + title = {BPS: a learning algorithm for capturing the dynamic nature of speech}, + booktitle = {International Joint Conference on Neural Networks}, + volume = {2}, + year = {1989}, + pages = {417--424}, + publisher = {IEEE, New York}, +topics={Speech},cat={C}, +} + +@INCOLLECTION{Grandvalet+Bengio-ssl-2006, + author = {Grandvalet, Yves and Bengio, Yoshua}, + editor = {Chapelle, Olivier and {Sch{\"{o}}lkopf}, Bernhard and Zien, Alexander}, + title = {Entropy Regularization}, + booktitle = {Semi-Supervised Learning}, + year = {2006}, + pages = {151--168}, + publisher = {{MIT} Press}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/entropy_regularization_2006.pdf}, + abstract = {The problem of semi-supervised induction consists in learning a decision rule from +labeled and unlabeled data. This task can be undertaken by discriminative methods, +provided that learning criteria are adapted consequently. In this chapter, we motivate the use of entropy regularization as a means to benefit from unlabeled data in +the framework of maximum a posteriori estimation. The learning criterion is derived +from clearly stated assumptions and can be applied to any smoothly parametrized +model of posterior probabilities. The regularization scheme favors low density separation, without any modeling of the density of input features. The contribution +of unlabeled data to the learning criterion induces local optima, but this problem +can be alleviated by deterministic annealing. For well-behaved models of posterior +probabilities, deterministic annealing {EM} provides a decomposition of the learning +problem in a series of concave subproblems. Other approaches to the semi-supervised +problem are shown to be close relatives or limiting cases of entropy regularization. +A series of experiments illustrates the good behavior of the algorithm in terms of +performance and robustness with respect to the violation of the postulated low density separation assumption. The minimum entropy solution benefits from unlabeled +data and is able to challenge mixture models and manifold learning in a number of +situations.}, +cat={B},topics={Unsupervised}, +} + +@INPROCEEDINGS{graves+eck+schmidhuber:bio-adit2004, + author = {Graves, A. and Eck, Douglas and Beringer, N. and Schmidhuber, Juergen}, + title = {Biologically Plausible Speech Recognition with {LSTM} Neural Nets}, + booktitle = {Proceedings of the First Int'l Workshop on Biologically Inspired Approaches to Advanced Information Technology (Bio-ADIT)}, + year = {2004}, + pages = {127-136}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2004_bioadit.pdf}, + abstract = {Long Short-Term Memory ({LSTM}) recurrent neural networks ({RNN}s) are local in space and time and closely related to a biological model of memory in the prefrontal cortex. Not only are they more biologically plausible than previous artificial {RNN}s, they also outperformed them on many artificially generated sequential processing tasks. This encouraged us to apply {LSTM} to more realistic problems, such as the recognition of spoken digits. Without any modification of the underlying algorithm, we achieved results comparable to state-of-the-art Hidden {Markov} Model ({HMM}) based recognisers on both the {TIDIGITS} and TI46 speech corpora. We conclude that {LSTM} should be further investigated as a biologically plausible basis for a bottom-up, neural net-based approach to speech recognition.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@TECHREPORT{graves+eck+schmidhuber:tr-digits2003, + author = {Graves, A. and Eck, Douglas and Schmidhuber, Juergen}, + title = {Comparing {LSTM} Recurrent Networks and Spiking Recurrent Networks on the Recognition of Spoken Digits}, + number = {IDSIA-13-03}, + year = {2003}, + institution = {IDSIA}, + abstract = {One advantage of spiking recurrent neural networks ({SNN}s) is an ability to categorise data using a synchrony-based latching mechnanism. This is particularly useful in problems where timewarping is encountered, such as speech recognition. Differentiable recurrent neural networks ({RNN}s) by contrast fail at tasks involving difficult timewarping, despite having sequence learning capabilities superior to {SNN}s. In this paper we demonstrate that Long Short-Term Memory ({LSTM}) is an {RNN} capable of robustly categorizing timewarped speech data, thus combining the most useful features of both paradigms. We compare its performance to {SNN}s on two variants of a spoken digit identification task, using data from an international competition. The first task (described in Nature (Nadis 2003)) required the categorisation of spoken digits with only a single training exemplar, and was specifically designed to test robustness to timewarping. Here {LSTM} performed better than all the {SNN}s in the competition. The second task was to predict spoken digits using a larger training set. Here {LSTM} greatly outperformed an {SNN}-like model found in the literature. These results suggest that {LSTM} has a place in domains that require the learning of large timewarped datasets, such as automatic speech recognition.}, +source={OwnPublication}, +sourcetype={TechReport}, +} + +@INPROCEEDINGS{haffner-98, + author = {Haffner, Patrick and Bottou, {L{\'{e}}on} and G. Howard, Paul and Simard, Patrice and Bengio, Yoshua and {LeCun}, Yann}, + title = {Browsing through High Quality Document Images with {DjVu}}, + booktitle = {Proc. of Advances in Digital Libraries 98}, + year = {1998}, + pages = {309--318}, + publisher = {IEEE}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/haffner-98.ps.gz}, +topics={HighDimensional},cat={C}, +} + +@INPROCEEDINGS{Hamel+al-2009, + author = {Hamel, Philippe and Wood, Sean and Eck, Douglas}, + title = {Automatic Identification of Instrument Classes in Polyphonic and Poly-Instrument Audio}, + booktitle = {10th International Society for Music Information Retrieval Conference}, + year = {2009}, + pages = {399--404}, + url = {http://ismir2009.ismir.net/proceedings/PS3-2.pdf}, + abstract = {We present and compare several models for automatic identification of instrument classes in polyphonic and poly-instrument audio. The goal is to be able to identify which categories of instrument (Strings, Woodwind, Guitar, Piano, etc.) are present in a given audio example. We use a machine learning approach to solve this task. We constructed a system to generate a large database of musically relevant poly-instrument audio. Our database is generated from hundreds of instruments classified in 7 categories. Musical audio examples are generated by mixing multi-track MIDI files with thousands of instrument combinations. We compare three different classifiers : a Support Vector Machine ({SVM}), a Multilayer Perceptron (MLP) and a Deep Belief Network (DBN). We show that the DBN tends to outperform both the {SVM} and the MLP in most cases.} +} + +@MISC{Hugo+al-snowbird-2007, + author = {Larochelle, Hugo and Bengio, Yoshua and Erhan, Dumitru}, + title = {Generalization to a zero-data task: an empirical study}, + year = {2007}, + howpublished = {Talk and poster presented at the Learning Workshop(Snowbird), San Juan, Puerto Rico, 2007} +} + +@INPROCEEDINGS{hyper:2000:ijcnn, + author = {Bengio, Yoshua}, + title = {Continuous Optimization of Hyper-Parameters}, + booktitle = {International Joint Conference on Neural Networks 2000}, + volume = {I}, + year = {2000}, + pages = {305--310}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/hyper-ijcnn2000.pdf}, + abstract = {Many machine learning algorithms can be formulated as the minimization of a training criterion which involves a hyper-parameter. This hyper-parameter is usually chosen by trial and error with a model selection criterion. In this paper we present a methodology to optimize several hyper-parameters, based on the computation of the gradient of a model selection criterion with respect to the hyper-parameters. In the case of a quadratic training criterion, the gradient of the selection criterion with respect to the hyper-parameters is efficiently computed by back-propagating through a Cholesky decomposition. In the more general case, we show that the implicit function theorem can be used to derive a formula for the hyper-parameter gradient involving second derivatives of the training criterion.}, +topics={ModelSelection},cat={C}, +} + +@INPROCEEDINGS{ICML01, + editor = {Brodley, Carla E. and Danyluk, Andrea Pohoreckyj}, + title = {Proceedings of the Eighteenth International Conference on Machine Learning (ICML'01)}, + booktitle = {Proceedings of the Eighteenth International Conference on Machine Learning (ICML'01)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{ICML01-short, + editor = {Brodley, Carla E. and Danyluk, Andrea Pohoreckyj}, + title = {Proceedings of the Eighteenth International Conference on Machine Learning (ICML'01)}, + booktitle = {ICML'01}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{ICML02, + editor = {Sammut, Claude and Hoffmann, Achim G.}, + title = {Proceedings of the Nineteenth International Conference on Machine Learning (ICML'02)}, + booktitle = {Proceedings of the Nineteenth International Conference on Machine Learning (ICML'02)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{ICML02-short, + editor = {Sammut, Claude and Hoffmann, Achim G.}, + title = {Proceedings of the Nineteenth International Conference on Machine Learning (ICML'02)}, + booktitle = {ICML'02}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{ICML03, + editor = {Fawcett, Tom and Mishra, Nina}, + title = {Proceedings of the Twenty International Conference on Machine Learning (ICML'03)}, + booktitle = {Proceedings of the Twenty International Conference on Machine Learning (ICML'03)}, + year = {-1}, + publisher = {AAAI Press} +} + +@INPROCEEDINGS{ICML03-short, + editor = {Fawcett, Tom and Mishra, Nina}, + title = {Proceedings of the Twenty International Conference on Machine Learning (ICML'03)}, + booktitle = {ICML'03}, + year = {-1}, + publisher = {AAAI Press} +} + + +@INPROCEEDINGS{ICML04, + editor = {Brodley, Carla E.}, + title = {Proceedings of the Twenty-first International Conference on Machine Learning (ICML'04)}, + booktitle = {Proceedings of the Twenty-first International Conference on Machine Learning (ICML'04)}, + year = {-1}, + publisher = {ACM} +} + +@INPROCEEDINGS{ICML04-short, + editor = {Brodley, Carla E.}, + title = {Proceedings of the Twenty-first International Conference on Machine Learning (ICML'04)}, + booktitle = {ICML'04}, + year = {-1}, + publisher = {ACM} +} + + +@INPROCEEDINGS{ICML05-short, + editor = {Raedt, Luc De and Wrobel, Stefan}, + title = {Proceedings of the Twenty-second International Conference on Machine Learning (ICML'05)}, + booktitle = {ICML'05}, + year = {-1}, + publisher = {ACM} +} + + +@INPROCEEDINGS{ICML06-short, + editor = {Cohen, William W. and Moore, Andrew}, + title = {Proceedings of the Twenty-three International Conference on Machine Learning (ICML'06)}, + booktitle = {ICML'06}, + year = {-1}, + publisher = {ACM} +} + + +@INPROCEEDINGS{ICML07-short, + editor = {Ghahramani, Zoubin}, + title = {Proceedings of the 24th International Conference on Machine Learning (ICML'07)}, + booktitle = {ICML'07}, + year = {-1}, + publisher = {ACM} +} + + +@INPROCEEDINGS{ICML08-short, + editor = {Cohen, William W. and McCallum, Andrew and Roweis, Sam T.}, + title = {Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08)}, + booktitle = {ICML'08}, + year = {-1}, + publisher = {ACM} +} + + +@INPROCEEDINGS{ICML09-short, + editor = {Bottou, {L{\'{e}}on} and Littman, Michael}, + title = {Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML'09)}, + booktitle = {ICML'09}, + year = {-1}, + publisher = {ACM} +} + + +@INPROCEEDINGS{ICML96, + editor = {Saitta, L.}, + title = {Proceedings of the Thirteenth International Conference on Machine Learning (ICML'96)}, + booktitle = {Proceedings of the Thirteenth International Conference on Machine Learning (ICML'96)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{ICML96-short, + editor = {Saitta, L.}, + title = {Proceedings of the Thirteenth International Conference on Machine Learning (ICML'96)}, + booktitle = {ICML'96}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{ICML97, + editor = {Fisher, Douglas H.}, + title = {{}Proceedings of the Fourteenth International Conference on Machine Learning (ICML'97)}, + booktitle = {Proceedings of the Fourteenth International Conference on Machine Learning (ICML'97)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{ICML97-short, + editor = {Fisher, Douglas H.}, + title = {{}Proceedings of the Fourteenth International Conference on Machine Learning (ICML'97)}, + booktitle = {ICML'97}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{ICML98, + editor = {Shavlik, Jude W.}, + title = {Proceedings of the Fifteenth International Conference on Machine Learning (ICML'98)}, + booktitle = {Proceedings of the Fifteenth International Conference on Machine Learning (ICML'98)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{ICML98-short, + editor = {Shavlik, Jude W.}, + title = {Proceedings of the Fifteenth International Conference on Machine Learning (ICML'98)}, + booktitle = {ICML'98}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{ICML99, + editor = {Bratko, Ivan and Dzeroski, Saso}, + title = {Proceedings of the Sixteenth International Conference on Machine Learning (ICML'99)}, + booktitle = {Proceedings of the Sixteenth International Conference on Machine Learning (ICML'99)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{ICML99-short, + editor = {Bratko, Ivan and Dzeroski, Saso}, + title = {Proceedings of the Sixteenth International Conference on Machine Learning (ICML'99)}, + booktitle = {ICML'99}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INCOLLECTION{jaeger+eck:2007, + author = {Jaeger, H. and Eck, Douglas}, + title = {Can't get you out of my head: {A} connectionist model of cyclic rehearsal}, + booktitle = {Modeling Communications with Robots and Virtual Humans}, + series = {{LNCS}}, + year = {2007}, + publisher = {Springer-Verlag}, + url = {http://www.iro.umontreal.ca/~eckdoug/papers/2007_jaeger_eck.pdf}, +source={OwnPublication}, +sourcetype={Chapter}, +} + +@MISC{James+al-snowbird-2008, + author = {Bergstra, James and Bengio, Yoshua and Louradour, Jerome}, + title = {Image Classification using Higher-Order Neural Models}, + year = {2008}, + howpublished = {The Learning Workshop (Snowbird, Utah)}, + url = {http://snowbird.djvuzone.org/2007/abstracts/161.pdf} +} + + +@INPROCEEDINGS{Kegl+Bertin+Eck-2008, + author = {K{\'{e}}gl, Bal{\'{a}}zs and Bertin-Mahieux, Thierry and Eck, Douglas}, + title = {Metropolis-Hastings Sampling in a FilterBoost Music Classifier}, + booktitle = {Music and machine learning workshop (ICML08)}, + year = {2008} +} + +@INPROCEEDINGS{kegl2005b, + author = {K{\'{e}}gl, Bal{\'{a}}zs}, + title = {Generalization Error and Algorithmic Convergence of Median Boosting.}, + year = {2005}, + crossref = {NIPS17-shorter}, + abstract = {We have recently proposed an extension of ADABOOST to regression that uses the median of the base regressors as the final regressor. In this paper we extend theoretical results obtained for ADABOOST to median boosting and to its localized variant. First, we extend recent results on efficient margin maximizing to show that the algorithm can converge to the maximum achievable margin within a preset precision in a finite number of steps. Then we provide confidence-interval-type bounds on the generalization error.} +} + +@ARTICLE{lacoste+eck:eurasip, + author = {Lacoste, Alexandre and Eck, Douglas}, + title = {A Supervised Classification Algorithm For Note Onset Detection}, + journal = {EURASIP Journal on Applied Signal Processing}, + volume = {2007}, + number = {ID 43745}, + year = {2007}, + pages = {1--13}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@MASTERSTHESIS{Lajoie2009, + author = {Lajoie, Isabelle}, + keywords = {apprentissage non-supervis{\'{e}}, architecture profonde, auto-encodeur d{\'{e}}bruiteur, machine de {Boltzmann} restreinte, r{\'{e}}seau de neurones artificiel}, + title = {Apprentissage de repr{\'{e}}sentations sur-compl{\`{e}}tes par entra{\^{\i}}nement d’auto-encodeurs}, + year = {2009}, + school = {Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Les avanc{\'{e}}s dans le domaine de l’intelligence artificielle, permettent {\`{a}} des syst{\`{e}}mes +informatiques de r{\'{e}}soudre des t{\^{a}}ches de plus en plus complexes li{\'{e}}es par exemple {\`{a}} +la vision, {\`{a}} la compr{\'{e}}hension de signaux sonores ou au traitement de la langue. Parmi +les mod{\`{e}}les existants, on retrouve les R{\'{e}}seaux de Neurones Artificiels (RNA), dont la +popularit{\'{e}} a fait un grand bond en avant avec la d{\'{e}}couverte de Hinton et al. [22], soit +l’utilisation de Machines de {Boltzmann} Restreintes (RBM) pour un pr{\'{e}}-entra{\^{\i}}nement +non-supervis{\'{e}} couche apr{\`{e}}s couche, facilitant grandement l’entra{\^{\i}}nement supervis{\'{e}} du +r{\'{e}}seau {\`{a}} plusieurs couches cach{\'{e}}es (DBN), entra{\^{\i}}nement qui s’av{\'{e}}rait jusqu’alors tr{\`{e}}s +difficile {\`{a}} r{\'{e}}ussir. Depuis cette d{\'{e}}couverte, des chercheurs ont {\'{e}}tudi{\'{e}} l’efficacit{\'{e}} de nouvelles strat{\'{e}}gies de pr{\'{e}}-entra{\^{\i}}nement, telles que l’empilement d’auto-encodeurs traditionnels (SAE) [5, 38], et l’empilement d’auto-encodeur d{\'{e}}bruiteur (SDAE) [44]. + C’est dans ce contexte qu’a d{\'{e}}but{\'{e}} la pr{\'{e}}sente {\'{e}}tude. Apr{\`{e}}s un bref passage en revue des notions de base du domaine de l’apprentissage machine et des m{\'{e}}thodes de +pr{\'{e}}-entra{\^{\i}}nement employ{\'{e}}es jusqu’{\`{a}} pr{\'{e}}sent avec les modules RBM, AE et DAE, nous +avons approfondi notre compr{\'{e}}hension du pr{\'{e}}-entra{\^{\i}}nement de type SDAE, explor{\'{e}} ses +diff{\'{e}}rentes propri{\'{e}}t{\'{e}}s et {\'{e}}tudi{\'{e}} des variantes de SDAE comme strat{\'{e}}gie d’initialisation +d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumi{\`{e}}re +l’influence du niveau de bruit, du nombre de couches et du nombre d’unit{\'{e}}s cach{\'{e}}es +sur l’erreur de g{\'{e}}n{\'{e}}ralisation du SDAE. Nous avons constat{\'{e}} une am{\'{e}}lioration de la +performance sur la t{\^{a}}che supervis{\'{e}}e avec l’utilisation des bruits poivre et sel (PS) et +gaussien (GS), bruits s’av{\'{e}}rant mieux justifi{\'{e}}s que celui utilis{\'{e}} jusqu’{\`{a}} pr{\'{e}}sent, soit le +masque {\`{a}} z{\'{e}}ro (MN). De plus, nous avons d{\'{e}}montr{\'{e}} que la performance profitait d’une +emphase impos{\'{e}}e sur la reconstruction des donn{\'{e}}es corrompues durant l’entra{\^{\i}}nement +des diff{\'{e}}rents DAE. Nos travaux ont aussi permis de r{\'{e}}v{\'{e}}ler que le DAE {\'{e}}tait en mesure d’apprendre, sur des images naturelles, des filtres semblables {\`{a}} ceux retrouv{\'{e}}s dans +les cellules V1 du cortex visuel, soit des filtres d{\'{e}}tecteurs de bordures. Nous aurons par +ailleurs pu montrer que les repr{\'{e}}sentations apprises du SDAE, compos{\'{e}}es des caract{\'{e}}ristiques ainsi extraites, s’av{\'{e}}raient fort utiles {\`{a}} l’apprentissage d’une machine {\`{a}} vecteurs de +support ({SVM}) lin{\'{e}}aire ou {\`{a}} noyau gaussien, am{\'{e}}liorant grandement sa performance de +g{\'{e}}n{\'{e}}ralisation. Aussi, nous aurons observ{\'{e}} que similairement au DBN, et contrairement +au SAE, le SDAE poss{\'{e}}dait une bonne capacit{\'{e}} en tant que mod{\`{e}}le g{\'{e}}n{\'{e}}rateur. Nous +avons {\'{e}}galement ouvert la porte {\`{a}} de nouvelles strat{\'{e}}gies de pr{\'{e}}-entra{\^{\i}}nement et d{\'{e}}couvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs +(SRAE).} +} + +@INPROCEEDINGS{lamere+eck:ismir2007, + author = {Lamere, Paul and Eck, Douglas}, + editor = {}, + title = {Using 3D Visualizations to Explore and Discover Music}, + booktitle = {{Proceedings of the 8th International Conference on Music Information Retrieval ({ISMIR} 2007)}}, + year = {2007}, + publisher = {}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@ARTICLE{Larochelle+al-2010, + author = {Larochelle, Hugo and Bengio, Yoshua and Turian, Joseph}, + title = {Tractable Multivariate Binary Density Estimation and the Restricted {Boltzmann} Forest}, + journal = {Neural Computation}, + year = {2010}, + note = {To appear} +} + +@INPROCEEDINGS{Larochelle+Bengio-2008, + author = {Larochelle, Hugo and Bengio, Yoshua}, + title = {Classification using Discriminative Restricted {B}oltzmann Machines}, + year = {2008}, + pages = {536--543}, + crossref = {ICML08-shorter}, + abstract = {Recently, many applications for Restricted {Boltzmann} Machines (RBMs) have been developed for a large variety of learning problems. However, RBMs are usually used as feature extractors for another learning algorithm or to provide a good initialization +for deep feed-forward neural network classifiers, and are not considered as a standalone solution to classification problems. In +this paper, we argue that RBMs provide a self-contained framework for deriving competitive non-linear classifiers. We present an evaluation of different learning algorithms for +RBMs which aim at introducing a discriminative component to RBM training and improve their performance as classifiers. This +approach is simple in that RBMs are used directly to build a classifier, rather than as a stepping stone. Finally, we demonstrate how discriminative RBMs can also be successfully employed in a semi-supervised setting.} +} + +@INPROCEEDINGS{Larochelle-2009, + author = {Larochelle, Hugo and Erhan, Dumitru and Vincent, Pascal}, + title = {Deep Learning using Robust Interdependent Codes}, + booktitle = {Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009)}, + year = {2009}, + pages = {312--319}, +date = "April 16-18, 2009", +} + +@ARTICLE{Larochelle-jmlr-2009, + author = {Larochelle, Hugo and Bengio, Yoshua and Louradour, Jerome and Lamblin, Pascal}, + title = {Exploring Strategies for Training Deep Neural Networks}, + volume = {10}, + year = {2009}, + pages = {1--40}, + journal = {Journal of Machine Learning Research}, + abstract = {Deep multi-layer neural networks have many levels of non-linearities allowing them to compactly represent highly non-linear and highly-varying functions. However, until recently it was not clear how to train such deep networks, since gradient-based optimization starting from random initialization often appears to get stuck in poor solutions. Hinton et al. recently proposed a greedy layer-wise unsupervised learning procedure relying on the training algorithm of restricted {Boltzmann} machines (RBM) to initialize the parameters of a deep belief network (DBN), a generative model with many layers of hidden causal variables. This was followed by the proposal of another greedy layer-wise procedure, relying on the usage of autoassociator networks. In the context of the above optimization problem, we study these algorithms empirically to better understand their success. Our experiments confirm the hypothesis that the greedy layer-wise unsupervised training strategy helps the optimization by initializing weights in a region near a good local minimum, but also implicitly acts as a sort of regularization that brings better generalization and encourages internal distributed representations that are high-level abstractions of the input. We also present a series of experiments aimed at evaluating the link between the performance of deep neural networks and practical aspects of their topology, for example, demonstrating cases where the addition of more depth helps. Finally, we empirically explore simple variants of these training algorithms, such as the use of different RBM input unit distributions, a simple way of combining gradient estimators to improve performance, as well as on-line versions of those algorithms.} +} + +@PHDTHESIS{Larochelle-PhD-2009, + author = {Larochelle, Hugo}, + keywords = {apprentissage non-supervis{\'{e}}, architecture profonde, autoassociateur, autoencodeur, machine de {Boltzmann} restreinte, r{\'{e}}seau de neurones artificiel}, + title = {{\'{E}}tude de techniques d'apprentissage non-supervis{\'{e}} pour l'am{\'{e}}lioration de l'entra{\^{\i}}nement supervis{\'{e}} de mod{\`{e}}les connexionnistes}, + year = {2009}, + school = {University of Montr{\'{e}}al}, + abstract = {Le domaine de l'intelligence artificielle a pour objectif le d{\'{e}}veloppement de syst{\`{e}}mes informatiques capables de simuler des comportements normalement associ{\'{e}}s {\`{a}} l'intelligence humaine. On aimerait entre autres pouvoir construire une machine qui puisse +r{\'{e}}soudre des t{\^{a}}ches li{\'{e}}es {\`{a}} la vision (e.g., la reconnaissance d'objet), au traitement de la langue (e.g., l'identification du sujet d'un texte) ou au traitement de signaux sonores (e.g., la reconnaissance de la parole). + Une approche d{\'{e}}velopp{\'{e}}e afin de r{\'{e}}soudre ce genre de t{\^{a}}ches est bas{\'{e}}e sur l'apprentissage automatique de mod{\`{e}}les {\`{a}} partir de donn{\'{e}}es {\'{e}}tiquet{\'{e}}es refl{\'{e}}tant le comportement intelligent {\`{a}} {\'{e}}muler. Entre autre, il a {\'{e}}t{\'{e}} propos{\'{e}} de mod{\'{e}}liser le calcul n{\'{e}}cessaire {\`{a}} la +r{\'{e}}solution d'une t{\^{a}}che {\`{a}} l'aide d'un r{\'{e}}seau de neurones artificiel, dont il est possible d'adapter le comportement {\`{a}} l'aide de la r{\'{e}}tropropagation [99, 131] d'un gradient informatif sur les erreurs commises par le r{\'{e}}seau. Populaire durant les ann{\'{e}}es 80, cette +approche sp{\'{e}}cifique a depuis perdu partiellement de son attrait, suite au d{\'{e}}veloppement des m{\'{e}}thodes {\`{a}} noyau. Celles-ci sont souvent plus stables, plus faciles {\`{a}} utiliser et leur performance est souvent au moins aussi {\'{e}}lev{\'{e}}e pour une vaste gamme de probl{\`{e}}mes. + Les m{\'{e}}thodes d'apprentissage automatique ont donc progress{\'{e}} dans leur fonctionnement, mais aussi dans la complexit{\'{e}} des probl{\`{e}}mes auxquels elles se sont attaqu{\'{e}}. Ainsi, plus r{\'{e}}cemment, des travaux [12, 15] ont commenc{\'{e}} {\`{a}} {\'{e}}mettre des doutes sur la capacit{\'{e}} des machines {\`{a}} noyau {\`{a}} pouvoir efficacement r{\'{e}}soudre des probl{\`{e}}mes de la complexit{\'{e}} requise par l'intelligence artificielle. Parall{\`{e}}lement, Hinton et al. [81] faisaient une perc{\'{e}}e dans l'apprentissage automatique de r{\'{e}}seaux de neurones, en proposant une proc{\'{e}}dure permettant l'entra{\^{\i}}nement de r{\'{e}}seaux de neurones d'une plus grande complexit{\'{e}} (i.e., avec plus de couches de neurones cach{\'{e}}es) qu'il n'{\'{e}}tait possible auparavant. + C'est dans ce contexte qu'ont {\'{e}}t{\'{e}} conduits les travaux de cette th{\`{e}}se. Cette th{\`{e}}se d{\'{e}}bute par une exposition des principes de base de l'apprentissage automatique (chapitre 1) et une discussion des obstacles {\`{a}} l'obtention d'un mod{\`{e}}le ayant une bonne performance +de g{\'{e}}n{\'{e}}ralisation (chapitre 2). Puis, sont pr{\'{e}}sent{\'{e}}es les contributions apport{\'{e}}es dans le cadre de cinq articles, contributions qui sont toutes bas{\'{e}}es sur l'utilisation d'une certaine +forme d'apprentissage non-supervis{\'{e}}. + Le premier article (chapitre 4) propose une m{\'{e}}thode d'entra{\^{\i}}nement pour un type sp{\'{e}}cifique de r{\'{e}}seau {\`{a}} une seule couche cach{\'{e}}e (la machine de {Boltzmann} restreinte) bas{\'{e}}e sur une combinaison des apprentissages supervis{\'{e}} et non-supervis{\'{e}}. Cette m{\'{e}}thode permet d'obtenir une meilleure performance de g{\'{e}}n{\'{e}}ralisation qu'un r{\'{e}}seau de neurones standard ou qu'une machine {\`{a}} vecteurs de support {\`{a}} noyau, et met en {\'{e}}vidence de fa{\c c}on +explicite les b{\'{e}}n{\'{e}}fices qu'apporte l'apprentissage non-supervis{\'{e}} {\`{a}} l'entra{\^{\i}}nement d'un r{\'{e}}seau de neurones. + Ensuite, dans le second article (chapitre 6), on {\'{e}}tudie et {\'{e}}tend la proc{\'{e}}dure d'entra{\^{\i}}nement propos{\'{e}}e par Hinton et al. [81]. Plus sp{\'{e}}cifiquement, on y propose une approche diff{\'{e}}rente mais plus flexible pour initialiser un r{\'{e}}seau {\`{a}} plusieurs couches cach{\'{e}}es, bas{\'{e}}e sur un r{\'{e}}seau autoassociateur. On y explore aussi l'impact du nombre de couches et de neurones par couche sur la performance d'un r{\'{e}}seau et on y d{\'{e}}crit diff{\'{e}}rentes variantes mieux adapt{\'{e}}es {\`{a}} l'apprentissage en ligne ou pour donn{\'{e}}es {\`{a}} valeurs continues. + Dans le troisi{\`{e}}me article (chapitre 8), on explore plut{\^{o}}t la performance de r{\'{e}}seaux profonds sur plusieurs probl{\`{e}}mes de classification diff{\'{e}}rents. Les probl{\`{e}}mes choisis ont la propri{\'{e}}t{\'{e}} d'avoir {\'{e}}t{\'{e}} g{\'{e}}n{\'{e}}r{\'{e}}s {\`{a}} partir de plusieurs facteurs de variation. Cette propri{\'{e}}t{\'{e}}, qui caract{\'{e}}rise les probl{\`{e}}mes li{\'{e}}s {\`{a}} l'intelligence artificielle, pose difficult{\'{e}} aux machines {\`{a}} noyau, tel que confirm{\'{e}} par les exp{\'{e}}riences de cet article. + Le quatri{\`{e}}me article (chapitre 10) pr{\'{e}}sente une am{\'{e}}lioration de l'approche bas{\'{e}}e sur les r{\'{e}}seaux autoassociateurs. Cette am{\'{e}}lioration applique une modification simple {\`{a}} la proc{\'{e}}dure d'entra{\^{\i}}nement d'un r{\'{e}}seau autoassociateur, en « bruitant » les entr{\'{e}}es du r{\'{e}}seau afin que celui-ci soit forc{\'{e}} {\`{a}} la d{\'{e}}bruiter. + Le cinqui{\`{e}}me et dernier article (chapitre 12) apporte une autre am{\'{e}}lioration aux r{\'{e}}seaux autoassociateurs, en permettant des interactions d'inhibition ou d'excitation entre les neurones cach{\'{e}}s de ces r{\'{e}}seaux. On y d{\'{e}}montre que de telles interactions peuvent +{\^{e}}tre apprises et sont b{\'{e}}n{\'{e}}fiques {\`{a}} la performance d'un r{\'{e}}seau profond.} +} + +@INPROCEEDINGS{Larochelle2008, + author = {Larochelle, Hugo and Erhan, Dumitru and Bengio, Yoshua}, + title = {Zero-data Learning of New Tasks}, + booktitle = {AAAI Conference on Artificial Intelligence}, + year = {2008}, + url = {http://www-etud.iro.umontreal.ca/~larocheh/publications/aaai2008_zero-data.pdf}, + abstract = {Recently, many applications for Restricted {Boltzmann} Machines (RBMs) have been developed for a large variety of learning problems. However, RBMs are usually used as feature extractors for another learning algorithm or to provide a good initialization +for deep feed-forward neural network classifiers, and are not considered as a standalone solution to classification problems. In +this paper, we argue that RBMs provide a self-contained framework for deriving competitive non-linear classifiers. We present an evaluation of different learning algorithms for +RBMs which aim at introducing a discriminative component to RBM training and improve their performance as classifiers. This +approach is simple in that RBMs are used directly to build a classifier, rather than as a stepping stone. Finally, we demonstrate how discriminative RBMs can also be successfully employed in a semi-supervised setting.} +} + +@INPROCEEDINGS{LarochelleH2007, + author = {Larochelle, Hugo and Erhan, Dumitru and Courville, Aaron and Bergstra, James and Bengio, Yoshua}, + title = {An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation}, + year = {2007}, + pages = {473--480}, + crossref = {ICML07-shorter}, + abstract = {Recently, several learning algorithms relying on models with deep architectures have been proposed. Though they have demonstrated impressive performance, to date, they have only been evaluated on relatively simple problems such as digit recognition in a controlled environment, for which many machine learning algorithms already report reasonable results. Here, we present a series of experiments which indicate that these models show promise in solving harder learning problems that exhibit many factors of variation. These models are compared with well-established algorithms such as Support Vector Machines and single hidden-layer feed-forward neural networks.} +} + +@MASTERSTHESIS{Latendresse-MSc, + author = {Latendresse, Simon}, + title = {L'utilisation d'hyper-param{\`{e}}tres pour la selection de variables}, + year = {1999}, + school = {Universit{\'{e}} de Montreal, Dept. IRO}, + note = {(in French)} +} + +@MASTERSTHESIS{Lauzon99, + author = {Lauzon, Vincent-Philippe}, + title = {Mod{\'{e}}les statistiques comme algorithmes d'apprentissage et {MMCC}s; pr{\'{e}}diction de s{\'{e}}ries financi{\`{e}}res}, + year = {1999}, + school = {D{\'{e}}epartement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + crossref = {DIRO} +} + +@INPROCEEDINGS{lecun-93, + author = {{LeCun}, Yann and Bengio, Yoshua and Henderson, Donnie and Weisbuch, A. and Weissman, H. and L., Jackel}, + title = {On-line handwriting recognition with neural networks: spatial representation versus temporal representation.}, + booktitle = {Proc. International Conference on handwriting and drawing.}, + year = {1993}, + publisher = {Ecole Nationale Superieure des Telecommunications}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/lecun-93.ps.gz}, +topics={PriorKnowledge,Speech},cat={C}, +} + +@INPROCEEDINGS{lecun-99, + author = {{LeCun}, Yann and Haffner, Patrick and Bottou, {L{\'{e}}on} and Bengio, Yoshua}, + editor = {Forsyth, D.}, + title = {Object Recognition with Gradient-Based Learning}, + booktitle = {Shape, Contour and Grouping in Computer Vision}, + year = {1999}, + pages = {319-345}, + publisher = {Springer}, + url = {orig/lecun-99.ps.gz}, +topics={PriorKnowledge,Speech},cat={B}, +} + +@TECHREPORT{lecun-99b, + author = {{LeCun}, Yann and Haffner, Patrick and Bottou, {L{\'{e}}on} and Bengio, Yoshua}, + title = {Gradient-Based Learning for Object Detection, Segmentation and Recognition}, + year = {1999}, + institution = {AT\&T Labs}, + url = {orig/lecun-99b.ps.gz}, +topics={Speech},cat={T}, +} + +@INPROCEEDINGS{lecun-bengio-94, + author = {{LeCun}, Yann and Bengio, Yoshua}, + title = {Word-level training of a handwritten word recognizer based on convolutional neural networks}, + booktitle = {Proc. of the International Conference on Pattern Recognition}, + volume = {II}, + year = {1994}, + pages = {88--92}, + publisher = {IEEE}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/icpr-word.ps}, + abstract = {We introduce a new approach for on-line recognition of handwritten words written in unconstrained mixed style. Words are represented by low resolution annotated images where each pixel contains information about trajectory direction and curvature. The recognizer is a convolution network which can be spatially replicated. From the network output, a hidden {Markov} model produces word scores. The entire system is globally trained to minimize word-level errors.}, +topics={Speech},cat={C}, +} + +@INPROCEEDINGS{lecun-bengio-95a, + author = {{LeCun}, Yann and Bengio, Yoshua}, + editor = {Arbib, M. A.}, + title = {Convolutional Networks for Images, Speech, and Time-Series}, + booktitle = {The Handbook of Brain Theory and Neural Networks}, + year = {1995}, + pages = {255--257}, + publisher = {MIT Press}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/handbook-convo.pdf}, +topics={PriorKnowledge,Speech},cat={C}, +} + +@INCOLLECTION{lecun-bengio-95b, + author = {{LeCun}, Yann and Bengio, Yoshua}, + editor = {Arbib, M. A.}, + title = {Pattern Recognition and Neural Networks}, + booktitle = {The Handbook of Brain Theory and Neural Networks}, + year = {1995}, + pages = {711--714}, + publisher = {MIT Press}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/handbook-patrec.pdf}, +topics={PriorKnowledge,Speech},cat={B}, +} + +@ARTICLE{LeCun98, + author = {{LeCun}, Yann and Bottou, {L{\'{e}}on} and Bengio, Yoshua and Haffner, Patrick}, + title = {Gradient-Based Learning Applied to Document Recognition}, + journal = {Proceedings of the IEEE}, + volume = {86}, + number = {11}, + year = {1998}, + pages = {2278--2324}, + abstract = {Multilayer Neural Networks trained with the backpropagation algorithm constitute the best example of a successful Gradient-Based Learning technique. Given an appropriate network architecture, Gradient-Based Learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. +Real-life document recognition systems are composed or multiple modules including field extraction, segmentation, recognition, and language modeling. A new learning paradigm, called Graph Transformer Networks (GTN), allows such multi-module systems to be trained globally using Gradient-Based methods so as to minimize an overall performance measure. +Two systems for on-line handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of Graph Transformer Networks. +A Graph Transformer Network for reading bank check is also described. It uses Convolutional Neural Network character recognizers combined with global training techniques to provides record accuracy on business and personal checks. It is deployed commercially and reads several million checks per day.}, +topics={PriorKnowledge,Speech},cat={C}, +} + +@INPROCEEDINGS{Lecun_icassp97, + author = {{LeCun}, Yann and Bottou, {L{\'{e}}on} and Bengio, Yoshua}, + title = {Reading Checks with graph transformer networks}, + booktitle = {International Conference on Acoustics, Speech and Signal Processing}, + volume = {1}, + year = {1997}, + pages = {151--154}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/lecun-bottou-bengio-97.ps.gz}, +topics={Speech},cat={C}, +} + +@ARTICLE{LeRoux+Bengio-2010, + author = {Le Roux, Nicolas and Bengio, Yoshua}, + title = {Deep Belief Networks are Compact Universal Approximators}, + journal = {Neural Computation}, + year = {2010}, + note = {To appear} +} + +@TECHREPORT{LeRoux-Bengio-2007-TR, + author = {Le Roux, Nicolas and Bengio, Yoshua}, + title = {Representational Power of Restricted {B}oltzmann Machines and Deep Belief Networks}, + number = {1294}, + year = {2007}, + institution = {D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Deep Belief Networks (DBN) are generative neural network models with +many layers of hidden explanatory factors, recently introduced by Hinton et al., +along with a greedy layer-wise unsupervised learning algorithm. The building +block of a DBN is a probabilistic model called a Restricted {Boltzmann} Machine +(RBM), used to represent one layer of the model. Restricted {Boltzmann} Machines +are interesting because inference is easy in them, and because they have been +successfully used as building blocks for training deeper models. +We first prove that adding hidden units yields strictly improved modeling +power, while a second theorem shows that RBMs are universal approximators of +discrete distributions. We then study the question of whether DBNs with more +layers are strictly more powerful in terms of representational power. This +suggests a new and less greedy criterion for training RBMs within DBNs.} +} + +@ARTICLE{LeRoux-Bengio-2008, + author = {Le Roux, Nicolas and Bengio, Yoshua}, + title = {Representational Power of Restricted {B}oltzmann Machines and Deep Belief Networks}, + journal = {Neural Computation}, + volume = {20}, + number = {6}, + year = {2008}, + pages = {1631--1649}, + abstract = {Deep Belief Networks (DBN) are generative neural network models with many layers of hidden explanatory factors, recently introduced by Hinton et al., along with a greedy layer-wise unsupervised learning algorithm. The building block of a DBN is a probabilistic model called a Restricted {Boltzmann} Machine (RBM), used to represent one layer of the model. Restricted {Boltzmann} Machines are interesting because inference is easy in them, and because they have been successfully used as building blocks for training deeper models. We first prove that adding hidden units yields strictly improved modelling power, while a second theorem shows that RBMs are universal approximators of discrete distributions. We then study the question of whether DBNs with more layers are strictly more powerful in terms of representational power. This suggests a new and less greedy criterion for training RBMs within DBNs.} +} + +@INPROCEEDINGS{LeRoux-continuous, + author = {Le Roux, Nicolas and Bengio, Yoshua}, + title = {Continuous Neural Networks}, + booktitle = {Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS'07)}, + year = {2007}, + publisher = {Omnipress}, + abstract = {This article extends neural networks to the case of an uncountable number of hidden units, in several ways. In the first approach proposed, a finite parametrization is possible, allowing gradient-based learning. While having the same number of parameters as an ordinary neural network, its internal structure suggests that it can represent some smooth functions much more compactly. Under mild assumptions, we also find better error bounds than with ordinary neural networks. Furthermore, this parametrization may help reducing the problem of saturation of the neurons. In a second approach, the input-to-hidden weights arefully non-parametric, yielding a kernel machine for which we demonstrate a simple kernel formula. Interestingly, the resulting kernel machine can be made hyperparameter-free and still generalizes in spite of an absence of explicit regularization.} +} + +@PHDTHESIS{LeRoux-PhD-2008, + author = {Le Roux, Nicolas}, + title = {Avanc{\'{e}}es th{\'{e}}oriques sur la repr{\'{e}}sentation et l'optimisation des r{\'{e}}seaux de neurones}, + year = {2008}, + school = {Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Les r{\'{e}}seaux de neurones artificiels ont {\'{e}}t{\'{e}} abondamment utilis{\'{e}}s dans la communaut{\'{e}} de l'apprentissage machine depuis les ann{\'{e}}es 80. Bien qu'ils aient {\'{e}}t{\'{e}} {\'{e}}tudi{\'{e}}s pour la premi{\`{e}}re fois il y a cinquante ans par Rosenblatt [68], ils ne furent r{\'{e}}ellement populaires qu'apr{\`{e}}s l'apparition de la r{\'{e}}tropropagation du gradient, en 1986 [71]. +En 1989, il a {\'{e}}t{\'{e}} prouv{\'{e}} [44] qu'une classe sp{\'{e}}cifique de r{\'{e}}seaux de neurones (les r{\'{e}}seaux de neurones {\`{a}} une couche cach{\'{e}}e) {\'{e}}tait suffisamment puissante pour pouvoir approximer presque n'importe quelle fonction avec une pr{\'{e}}cision arbitraire : le th{\'{e}}or{\`{e}}me d'approximation universelle. Toutefois, bien que ce th{\'{e}}or{\`{e}}me e{\^{u}}t pour cons{\'{e}}quence un int{\'{e}}r{\^{e}}t accru pour les r{\'{e}}seaux de neurones, il semblerait qu'aucun effort n'ait {\'{e}}t{\'{e}} fait pour profiter de cette propri{\'{e}}t{\'{e}}. +En outre, l'optimisation des r{\'{e}}seaux de neurones {\`{a}} une couche cach{\'{e}}e n'est pas convexe. Cela a d{\'{e}}tourn{\'{e}} une grande partie de la communaut{\'{e}} vers d'autres algorithmes, comme par exemple les machines {\`{a}} noyau (machines {\`{a}} vecteurs de support et r{\'{e}}gression +{\`{a}} noyau, entre autres). +La premi{\`{e}}re partie de cette th{\`{e}}se pr{\'{e}}sentera les concepts d'apprentissage machine g{\'{e}}n{\'{e}}raux n{\'{e}}cessaires {\`{a}} la compr{\'{e}}hension des algorithmes utilis{\'{e}}s. La deuxi{\`{e}}me partie se focalisera plus sp{\'{e}}cifiquement sur les m{\'{e}}thodes {\`{a}} noyau et les r{\'{e}}seaux de neurones. La troisi{\`{e}}me partie de ce travail visera ensuite {\`{a}} {\'{e}}tudier les limitations des machines {\`{a}} noyaux et {\`{a}} comprendre les raisons pour lesquelles elles sont inadapt{\'{e}}es {\`{a}} certains probl{\`{e}}mes que nous avons {\`{a}} traiter. +La quatri{\`{e}}me partie pr{\'{e}}sente une technique permettant d'optimiser les r{\'{e}}seaux de neurones {\`{a}} une couche cach{\'{e}}e de mani{\`{e}}re convexe. Bien que cette technique s'av{\`{e}}re difficilement exploitable pour des probl{\`{e}}mes de grande taille, une version approch{\'{e}}e permet d'obtenir une bonne solution dans un temps raisonnable. +La cinqui{\`{e}}me partie se concentre sur les r{\'{e}}seaux de neurones {\`{a}} une couche cach{\'{e}}e infinie. Cela leur permet th{\'{e}}oriquement d'exploiter la propri{\'{e}}t{\'{e}} d'approximation universelle et ainsi d'approcher facilement une plus grande classe de fonctions. +Toutefois, si ces deux variations sur les r{\'{e}}seaux de neurones {\`{a}} une couche cach{\'{e}}e leur conf{\`{e}}rent des propri{\'{e}}t{\'{e}}s int{\'{e}}ressantes, ces derniers ne peuvent extraire plus que des concepts de bas niveau. Les m{\'{e}}thodes {\`{a}} noyau souffrant des m{\^{e}}mes limites, aucun de +ces deux types d'algorithmes ne peut appr{\'{e}}hender des probl{\`{e}}mes faisant appel {\`{a}} l'apprentissage de concepts de haut niveau. +R{\'{e}}cemment sont apparus les Deep Belief Networks [39] qui sont des r{\'{e}}seaux de neurones {\`{a}} plusieurs couches cach{\'{e}}es entra{\^{\i}}n{\'{e}}s de mani{\`{e}}re efficace. Cette profondeur leur permet d'extraire des concepts de haut niveau et donc de r{\'{e}}aliser des t{\^{a}}ches hors +de port{\'{e}}e des algorithmes conventionnels. La sixi{\`{e}}me partie {\'{e}}tudie des propri{\'{e}}t{\'{e}}s de ces r{\'{e}}seaux profonds. +Les probl{\`{e}}mes que l'on rencontre actuellement n{\'{e}}cessitent non seulement des algorithmes capables d'extraire des concepts de haut niveau, mais {\'{e}}galement des m{\'{e}}thodes d'optimisation capables de traiter l'immense quantit{\'{e}} de donn{\'{e}}es parfois disponibles, si possible en temps r{\'{e}}el. La septi{\`{e}}me partie est donc la pr{\'{e}}sentation d'une nouvelle technique permettant une optimisation plus rapide.} +} + +@ARTICLE{lheureux-04, + author = {{L'Heureux}, Pierre-Jean and Carreau, Julie and Bengio, Yoshua and Delalleau, Olivier and Yue, Shi Yi}, + title = {Locally Linear Embedding for dimensionality reduction in {QSAR}}, + journal = {Journal of Computer-Aided Molecular Design}, + volume = {18}, + year = {2004}, + pages = {475--482}, + abstract = {Current practice in Quantitative Structure Activity Relationship (QSAR) methods usually involves generating a great number of chemical descriptors and then cutting them back with variable selection techniques. Variable selection is an effective method to reduce the dimensionality but may discard some valuable information. This paper introduces Locally Linear Embedding ({LLE}), a local non-linear dimensionality reduction technique, that can statistically discover a low-dimensional representation of the chemical data. {LLE} is shown to create more stable representations than other non-linear dimensionality +reduction algorithms, and to be capable of capturing non-linearity in chemical data.}, +topics={Bioinformatic},cat={J}, +} + +@TECHREPORT{lm-TR00, + author = {Bengio, Yoshua and Ducharme, R{\'{e}}jean and Vincent, Pascal}, + title = {A Neural Probabilistic Language Model}, + number = {1178}, + year = {2000}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1178.pdf}, + abstract = {A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the curse of dimensionality: a word sequence on which the model will be tested is likely to be different from all the word sequences seen during training. Traditional but very successful approaches based on n-grams obtain generalization by concatenating very short overlapping sequences seen in the training set. We propose to fight the curse of dimensionality by learning a distributed representation for words which allows each training sentence to inform the model about an exponential number of semantically neighboring sentences. The model learns simultaneously (1) a distributed representation for each word along with (2) the probability function for word sequences, expressed in terms of these representations. Generalization is obtained because a sequence of words that has never been seen before gets high probability if it is made or words that are similar (in the sense of having a nearby representation) to words forming an already seen sentence. Training such large models (with millions of parameters) within a reasonable time is itself a significant challenge. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach very significantly improves on a state-of-the-art trigram model, and that the proposed approach allows to take advantage of much longer contexts.}, +topics={Markov,Unsupervised,Language},cat={T}, +} + +@INPROCEEDINGS{Maillet+al-2009, + author = {Maillet, Fran{\c c}ois and Eck, Douglas and Desjardins, Guillaume and Lamere, Paul}, + title = {Steerable Playlist Generation by Learning Song Similarity from Radio Station Playlists}, + booktitle = {Proceedings of the 10th International Conference on Music Information Retrieval}, + year = {2009}, + url = {http://www-etud.iro.umontreal.ca/~mailletf/papers/ismir09-playlist.pdf}, + abstract = {This paper presents an approach to generating steerable playlists. We first demonstrate a method for learning song transition probabilities from audio features extracted from songs played in professional radio station playlists. We then show that by using this learnt similarity function as a prior, we are able to generate steerable playlists by choosing the next song to play not simply based on that prior, but on a tag cloud that the user is able to manipulate to express the high-level characteristics of the music he wishes Last.fm, to listen to.} +} + +@INPROCEEDINGS{manzagol+bertinmahieux+eck:ismir2008, + author = {Manzagol, Pierre-Antoine and Bertin-Mahieux, Thierry and Eck, Douglas}, + title = {On the Use of Sparse Time-Relative Auditory Codes for Music}, + booktitle = {{Proceedings of the 9th International Conference on Music Information Retrieval ({ISMIR} 2008)}}, + year = {2008}, + abstract = {Many if not most audio features used in MIR research are inspired by work done in speech recognition and are variations on the spectrogram. Recently, much attention has been given to new representations of audio that are sparse and time-relative. These representations are efficient and able to avoid the time-frequency trade-off of a spectrogram. Yet little work with music streams has been conducted and these features remain mostly unused in the MIR community. In this paper we further explore the use of these features for musical signals. In particular, we investigate their use on realistic music examples (i.e. released commercial music) and their use as input features for supervised learning. Furthermore, we identify three specific issues related to these features which will need to be further addressed in order to obtain the full benefit for MIR applications.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@MASTERSTHESIS{Manzagol-Msc-2007, + author = {Manzagol, Pierre-Antoine}, + key = {Algorithme d'apprentissage, méthode de second ordre, gradient naturel, approximation stochastique}, + title = {TONGA - Un algorithme de gradient naturel pour les probl{\`{e}}mes de grande taille}, + year = {2007}, + school = {Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Les syst{\`{e}}mes adaptatifs sont confront{\'{e}}s {\`{a}} des donn{\'{e}}es qui {\'{e}}voluent rapidement en quantit{\'{e}} et en complexit{\'{e}}. Les avanc{\'{e}}es mat{\'{e}}rielles de l'informatique ne susent pas {\`{a}} compenser cet essor. Une mise {\`{a}} l'{\'{e}}chelle des techniques d'apprentissage est n{\'{e}}cessaire. D'une part, les mod{\`{e}}les doivent gagner en capacit{\'{e}} de repr{\'{e}}sentation. De l'autre, les algorithmes d'apprentissage doivent devenir plus ecaces. + Nos travaux se situent dans ce contexte des probl{\`{e}}mes de grande taille et portent sur l'am{\'{e}}lioration des algorithmes d'apprentissage. Deux {\'{e}}l{\'{e}}ments de r{\'{e}}ponse sont d{\'{e}}j{\`{a}} connus. Il s'agit des m{\'{e}}thodes de second ordre et de l'approximation stochastique. Or, les m{\'{e}}thodes de second ordre poss{\`{e}}dent des complexit{\'{e}}s en calculs et en m{\'{e}}moire qui sont prohibitives dans le cadre des probl{\`{e}}mes de grande taille. {\'{E}}galement, il est notoirement dicile de concilier ces m{\'{e}}thodes avec l'approximation stochastique. TONGA est un algorithme d'apprentissage con{\c c}u pour faire face {\`{a}} ces dicult{\'{e}}s. Il s'agit d'une implantation stochastique et adapt{\'{e}}e aux probl{\`{e}}mes de grande taille d'une m{\'{e}}thode de second ordre, le gradient naturel. Dans ce m{\'{e}}moire, nous examinons de pr{\`{e}}s ce nouvel algorithme d'apprentissage en le comparant sur plusieurs probl{\`{e}}mes au gradient stochastique, la technique d'optimisation commun{\'{e}}ment utilis{\'{e}}e dans le cadre des probl{\`{e}}mes de grande taille. Nos exp{\'{e}}riences montrent que TONGA est au moins tout aussi ecace que le gradient stochastique, ce qui est un accomplissement en soit. Dans certains cas, TONGA offre une convergence nettement sup{\'{e}}rieure {\`{a}} celle du gradient stochastique.} +} + +@INPROCEEDINGS{matic-94, + author = {Matic, N. and Henderson, Donnie and {LeCun}, Yann and Bengio, Yoshua}, + title = {Pen-based visitor registration system (PENGUIN)}, + booktitle = {Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers}, + year = {1994}, + publisher = {IEEE}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/matic-94.tiff}, + abstract = {We describe a new electronic pen-based visitors registration system (PENGUIN) whose goal is to expand and modernize the visitor sign-in procedure at Bell Laboratories. The system uses a pen-interface (i.e. tablet-display) in what is essentially a form filling application. Our pen-interface is coupled with a powerful and accurate on-line handwriting recognition module. A database of AT&T employees (the visitors' hosts) and country names is used to check the recognition module outputs, in order to find the best match. The system provides assistance to the guard at one of the guard stations in routing visitors to their hosts. All the entered data are stored electronically. Initial testing shows that PENGUIN system performs reliably and with high accuracy. It retrieves the correct host name with 97\% accuracy and the correct visitors citizenship with 99\% accuracy. The system is robust and easy to use for both visitors and guards}, +topics={Speech},cat={C}, +} + +@UNPUBLISHED{mirex2005artist, + author = {Bergstra, James and Casagrande, Norman and Eck, Douglas}, + title = {Artist Recognition: A Timbre- and Rhythm-Based Multiresolution Approach}, + year = {2005}, + note = {{MIREX} artist recognition contest}, +source={OwnPublication}, +sourcetype={Other}, +} + +@UNPUBLISHED{mirex2005genre, + author = {Bergstra, James and Casagrande, Norman and Eck, Douglas}, + title = {Genre Classification: Timbre- and Rhythm-Based Multiresolution Audio Classification}, + year = {2005}, + note = {{MIREX} genre classification contest}, +source={OwnPublication}, +sourcetype={Other}, +} + +@UNPUBLISHED{mirex2005note, + author = {Lacoste, Alexandre and Eck, Douglas}, + title = {Onset Detection with Artificial Neural Networks}, + year = {2005}, + note = {{MIREX} note onset detection contest}, +source={OwnPublication}, +sourcetype={Other}, +} + +@UNPUBLISHED{mirex2005tempo, + author = {Eck, Douglas and Casagrande, Norman}, + title = {A Tempo-Extraction Algorithm Using an Autocorrelation Phase Matrix and Shannon Entropy}, + year = {2005}, + note = {{MIREX} tempo extraction contest (www.music-ir.org/\-evaluation/\-mirex-results)}, +source={OwnPublication}, +sourcetype={Other}, +} + +@INPROCEEDINGS{mitacs-insurance01, + author = {Bengio, Yoshua and Chapados, Nicolas and Dugas, Charles and Ghosn, Joumana and Takeuchi, Ichiro and Vincent, Pascal}, + title = {High-Dimensional Data Inference for Automobile Insurance Premia Estimation}, + booktitle = {Presented at the 2001 MITACS Annual Meeting}, + year = {2001}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/mitacs_insurance.ps}, +topics={HighDimensional,Mining},cat={C}, +} + +@INPROCEEDINGS{Morin+al-2005, + author = {Morin, Frederic and Bengio, Yoshua}, + editor = {Cowell, Robert G. and Ghahramani, Zoubin}, + title = {Hierarchical Probabilistic Neural Network Language Model}, + booktitle = {Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics}, + year = {2005}, + pages = {246--252}, + publisher = {Society for Artificial Intelligence and Statistics}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf}, + abstract = {In recent years, variants of a neural network architecture for statistical language modeling have been proposed and successfully applied, e.g. in the language modeling component of speech recognizers. The main advantage of these architectures is that they learn an embedding for words (or other symbols) in a continuous space that helps to smooth the language model and provide good generalization even when the number of training examples is insufficient. However, these models are extremely slow in comparison to the more commonly used n-gram models, both for training and recognition. As an alternative to an importance sampling method proposed to speed-up training, we introduce a hierarchical decomposition of the conditional probabilities that yields a speed-up of about 200 both during training and recognition. The hierarchical decomposition is a binary hierarchical clustering constrained by the prior knowledge extracted from the WordNet semantic hierarchy.}, +topics={Language},cat={C}, +} + +@TECHREPORT{Nadeau-inference-TR99, + author = {Nadeau, Claude and Bengio, Yoshua}, + title = {Inference and the Generalization Error}, + number = {99s-45}, + year = {1999}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/techrep.pdf}, + abstract = {We perform a theoretical investigation of the variance of the cross-validation estimate of the generalization error that takes into account the variability due to the choice of training sets and test examples. This allows us to propose two new estimators of this variance. We show, via simulations, that these new statistics perform well relative to the statistics considered in (Dietterich, 1998). In particular, tests of hypothesis based on these dont tend to be too liberal like other tests currently available, and have good power.}, +topics={Comparative},cat={T}, +} + +@INPROCEEDINGS{nadeau:2000:nips, + author = {Nadeau, Claude and Bengio, Yoshua}, + title = {Inference for the Generalization Error}, + year = {2000}, + pages = {307--313}, + crossref = {NIPS12-shorter}, + abstract = {In order to to compare learning algorithms, experimental results reported in the machine learning litterature often use statistical tests of significance. Unfortunately, most of these tests do not take into account the variability due to the choice of training set. We perform a theoretical investigation of the variance of the cross-validation estimate of the generalization error that takes into account the variability due to the choice of training sets. This allows us to propose two new ways to estimate this variance. We show, via simulations, that these new statistics perform well relative to the statistics considered by Dietterich (Dietterich, 1998).}, +topics={Comparative},cat={C}, +} + +@ARTICLE{nadeau:2001, + author = {Nadeau, Claude and Bengio, Yoshua}, + title = {Inference for the Generalization Error}, + journal = {Machine Learning}, + year = {2001}, + abstract = {In order to compare learning algorithms, experimental results reported in the machine learning literature often use statistical tests of significance to support the claim that a new learning algorithm generalizes better. Such tests should take into account the variability due to the choice of training set and not only that due to the test examples, as is often the case. This could lead to gross underestimation of the variance of the cross-validation estimator, and to the wrong conclusion that the new algorithm is significantly better when it is not. We perform a theoretical investigation of the variance of a cross-validation estimator of the generalization error that takes into account the variability due to the randomness of the training set as well as test examples. Our analysis shows that all the variance estimators that are based only on the results of the cross-validation experiment must be biased. This analysis allows us to propose new estimators of this variance. We show, via simulations, that tests of hypothesis about the generalization error using those new variance estimators have better properties than tests involving variance estimators currently in use and listed in (Dietterich, 1998). In particular, the new tests have correct size and good power. That is, the new tests do not reject the null hypothesis too often when the hypothesis is true, but they tend to frequently reject the null hypothesis when the latter is false.}, +topics={Comparative},cat={J}, +} + +@ARTICLE{NC06, + author = {Bengio, Yoshua and Monperrus, Martin and Larochelle, Hugo}, + title = {Nonlocal Estimation of Manifold Structure}, + journal = {Neural Computation}, + volume = {18}, + year = {2006}, + pages = {2509--2528}, + abstract = {We claim and present arguments to the effect that a large class of manifold +learning algorithms that are essentially local and can be framed as +kernel learning algorithms will suffer from the curse of dimensionality, at +the dimension of the true underlying manifold. This observation suggests +to explore non-local manifold learning algorithms which attempt to discover +shared structure in the tangent planes at different positions. A criterion for +such an algorithm is proposed and experiments estimating a tangent plane +prediction function are presented, showing its advantages with respect to +local manifold learning algorithms: it is able to generalize very far from +training data (on learning handwritten character image rotations), where a +local non-parametric method fails.}, +topics={HighDimensional,Kernel,Unsupervised},cat={J}, +} + +@INPROCEEDINGS{NIPS1-short, + editor = {Touretzky, D. S.}, + title = {Advances in Neural Information Processing Systems 1 (NIPS'88)}, + booktitle = {NIPS 1}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{NIPS10-short, + editor = {Jordan, M.I. and Kearns, M.J. and Solla, S.A.}, + title = {Advances in Neural Information Processing Systems 10 (NIPS'97)}, + booktitle = {NIPS 10}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS11, + editor = {Kearns, M.J. and Solla, S.A.}, + title = {Advances in Neural Information Processing Systems 11 (NIPS'98)}, + booktitle = {Advances in Neural Information Processing Systems 11 (NIPS'98)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS11-short, + editor = {Kearns, M.J. and Solla, S.A.}, + title = {Advances in Neural Information Processing Systems 11 (NIPS'98)}, + booktitle = {NIPS 11}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS12-short, + editor = {Solla, S.A. and Leen, T. K.}, + title = {Advances in Neural Information Processing Systems 12 (NIPS'99)}, + booktitle = {NIPS 12}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS13-short, + editor = {Leen, T. K. and Dietterich, T.G.}, + title = {Advances in Neural Information Processing Systems 13 (NIPS'00)}, + booktitle = {NIPS 13}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS14, + editor = {Dietterich, T.G. and Becker, S. and Ghahramani, Zoubin}, + title = {Advances in Neural Information Processing Systems 14 (NIPS'01)}, + booktitle = {Advances in Neural Information Processing Systems 14 (NIPS'01)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS14-short, + editor = {Dietterich, T.G. and Becker, S. and Ghahramani, Zoubin}, + title = {Advances in Neural Information Processing Systems 14 (NIPS'01)}, + booktitle = {NIPS 14}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS15-short, + editor = {Becker, S. and Thrun, Sebastian}, + title = {Advances in Neural Information Processing Systems 15 (NIPS'02)}, + booktitle = {NIPS 15}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS16-short, + editor = {Becker, S. and Saul, L. and {Sch{\"{o}}lkopf}, Bernhard}, + title = {Advances in Neural Information Processing Systems 16 (NIPS'03)}, + booktitle = {NIPS 16}, + year = {-1} +} + + +@INPROCEEDINGS{NIPS17-short, + editor = {Saul, Lawrence K. and Weiss, Yair and Bottou, {L{\'{e}}on}}, + title = {Advances in Neural Information Processing Systems 17 (NIPS'04)}, + booktitle = {NIPS 17}, + year = {-1} +} + + +@INPROCEEDINGS{NIPS18-short, + editor = {Weiss, Yair and {Sch{\"{o}}lkopf}, Bernhard and Platt, John}, + title = {Advances in Neural Information Processing Systems 18 (NIPS'05)}, + booktitle = {NIPS 18}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS19-short, + editor = {{Sch{\"{o}}lkopf}, Bernhard and Platt, John and Hoffman, Thomas}, + title = {Advances in Neural Information Processing Systems 19 (NIPS'06)}, + booktitle = {NIPS 19}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS2-short, + editor = {Touretzky, D. S.}, + title = {Advances in Neural Information Processing Systems 2 (NIPS'89)}, + booktitle = {NIPS 2}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{NIPS20-short, + editor = {Platt, John and Koller, D. and Singer, Yoram and Roweis, S.}, + title = {Advances in Neural Information Processing Systems 20 (NIPS'07)}, + booktitle = {NIPS 20}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS2003_AA65, + author = {Bengio, Yoshua and Grandvalet, Yves}, + keywords = {cross validation, error bars, generalization error inference, k-fold cross-validation, model selection, statistical comparison of algorithms, variance estimate}, + title = {No Unbiased Estimator of the Variance of K-Fold Cross-Validation}, + year = {2004}, + publisher = {MIT Press}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/var-kfold-part1-nips.pdf}, + crossref = {NIPS16}, + abstract = {Most machine learning researchers perform quantitative experiments to estimate generalization error and compare algorithm performances. In order to draw statistically convincing conclusions, it is important to estimate the uncertainty of such estimates. This paper studies the estimation of uncertainty around the K-fold cross-validation estimator. The main theorem shows that there exists no universal unbiased estimator of the variance of K-fold cross-validation. An analysis based on the eigendecomposition of the covariance matrix of errors helps to better understand the nature of the problem and shows that naive estimators may grossly underestimate variance, as confirmed by numerical experiments.}, +topics={Comparative},cat={C}, +} + +@INCOLLECTION{NIPS2005_424, + author = {Bengio, Yoshua and Delalleau, Olivier and Le Roux, Nicolas}, + title = {The Curse of Highly Variable Functions for Local Kernel Machines}, + year = {2006}, + pages = {107--114}, + crossref = {NIPS18-shorter}, + abstract = {We present a series of theoretical arguments supporting the claim that a +large class of modern learning algorithms that rely solely on the smoothness +prior with similarity between examples expressed with a local +kernel are sensitive to the curse of dimensionality, or more precisely +to the variability of the target. Our discussion covers supervised, semisupervised +and unsupervised learning algorithms. These algorithms are +found to be local in the sense that crucial properties of the learned function +at x depend mostly on the neighbors of x in the training set. This +makes them sensitive to the curse of dimensionality, well studied for +classical non-parametric statistical learning. We show in the case of the +Gaussian kernel that when the function to be learned has many variations, +these algorithms require a number of training examples proportional to +the number of variations, which could be large even though there may exist +short descriptions of the target function, i.e. their Kolmogorov complexity +may be low. This suggests that there exist non-local learning +algorithms that at least have the potential to learn about such structured +but apparently complex functions (because locally they have many variations), +while not using very specific prior domain knowledge.}, +topics={HighDimensional,Kernel,Unsupervised},cat={C}, +} + +@INPROCEEDINGS{NIPS2005_456, + author = {K{\'{e}}gl, Bal{\'{a}}zs and Wang, Ligen}, + title = {Boosting on Manifolds: Adaptive Regularization of Base Classifiers}, + year = {2005}, + pages = {665--672}, + crossref = {NIPS17-shorter}, + abstract = {In this paper we propose to combine two powerful ideas, boosting and manifold learning. On the one hand, we improve ADABOOST by incorporating knowledge on the structure of the data into base classifier design and selection. On the other hand, we use ADABOOSTs efficient learning mechanism to significantly improve supervised and semi-supervised algorithms proposed in the context of manifold learning. Beside the specific manifold-based penalization, the resulting algorithm also accommodates the boosting of a large family of regularized learning algorithms.}, +topics={Boosting},cat={C}, +} + +@INCOLLECTION{NIPS2005_519, + author = {Grandvalet, Yves and Bengio, Yoshua}, + title = {Semi-supervised Learning by Entropy Minimization}, + year = {2005}, + pages = {529--236}, + crossref = {NIPS17-shorter}, + abstract = {We consider the semi-supervised learning problem, where a decision rule is to be learned from labeled and unlabeled data. In this framework, we motivate minimum entropy regularization, which enables to incorporate unlabeled data in the standard supervised learning. Our approach includes other approaches to the semi-supervised problem as particular or limiting cases. A series of experiments illustrates that the proposed solution benefits from unlabeled data. The method challenges mixture models when the data are sampled from the distribution class spanned by the generative model. The performances are definitely in favor of minimum entropy regularization when generative models are misspecified, and the weighting of unlabeled data provides robustness to the violation of the cluster assumption. Finally, we also illustrate that the method can also be far superior to manifold learning in high dimension spaces.}, +topics={Unsupervised},cat={C}, +} + +@INPROCEEDINGS{NIPS2005_539, + author = {Bengio, Yoshua and Larochelle, Hugo and Vincent, Pascal}, + title = {Non-Local Manifold Parzen Windows}, + year = {2006}, + crossref = {NIPS18-shorter}, + abstract = {To escape from the curse of dimensionality, we claim that one can learn +non-local functions, in the sense that the value and shape of the learned +function at x must be inferred using examples that may be far from x. +With this objective, we present a non-local non-parametric density estimator. +It builds upon previously proposed Gaussian mixture models with +regularized covariance matrices to take into account the local shape of +the manifold. It also builds upon recent work on non-local estimators of +the tangent plane of a manifold, which are able to generalize in places +with little training data, unlike traditional, local, non-parametric models.}, +topics={HighDimensional,Kernel,Unsupervised},cat={C}, +} + +@INPROCEEDINGS{NIPS2005_583, + author = {Bengio, Yoshua and Le Roux, Nicolas and Vincent, Pascal and Delalleau, Olivier and Marcotte, Patrice}, + title = {Convex Neural Networks}, + year = {2006}, + pages = {123--130}, + crossref = {NIPS18-shorter}, + abstract = {Convexity has recently received a lot of attention in the machine learning +community, and the lack of convexity has been seen as a major disadvantage +of many learning algorithms, such as multi-layer artificial neural +networks. We show that training multi-layer neural networks in which the +number of hidden units is learned can be viewed as a convex optimization +problem. This problem involves an infinite number of variables, but can be +solved by incrementally inserting a hidden unit at a time, each time finding +a linear classifier that minimizes a weighted sum of errors.}, +topics={Boosting},cat={C}, +} + +@INPROCEEDINGS{NIPS2005_663, + author = {Rivest, Fran{\c c}ois and Bengio, Yoshua and Kalaska, John}, + title = {Brain Inspired Reinforcement Learning}, + year = {2005}, + pages = {1129--1136}, + crossref = {NIPS17-shorter}, + abstract = {Successful application of reinforcement learning algorithms often involves considerable hand-crafting of the necessary non-linear features to reduce the complexity of the value functions and hence to promote convergence of the algorithm. In contrast, the human brain readily and autonomously finds the complex features when provided with sufficient training. Recent work in machine learning and neurophysiology has demonstrated the role of the basal ganglia and the frontal cortex in mammalian reinforcement learning. This paper develops and explores new reinforcement learning algorithms inspired by neurological evidence that provides potential new approaches to the feature construction problem. The algorithms are compared and evaluated on the Acrobot task.}, +topics={BioRules},cat={C}, +} + +@INCOLLECTION{NIPS2005_691, + author = {Bengio, Yoshua and Monperrus, Martin}, + title = {Non-Local Manifold Tangent Learning}, + year = {2005}, + pages = {129--136}, + crossref = {NIPS17-shorter}, + abstract = {We claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local and can be framed as kernel learning algorithms will suffer from the curse of dimensionality, at the dimension of the true underlying manifold. This observation suggests to explore non-local manifold learning algorithms which attempt to discover shared structure in the tangent planes at different positions. A criterion for such an algorithm is proposed and experiments estimating a tangent plane prediction function are presented, showing its advantages with respect to local manifold learning algorithms: it is able to generalize very far from training data (on learning handwritten character image rotations), where a local non-parametric method fails.}, +topics={HighDimensional,Unsupervised},cat={C}, +} + +@INPROCEEDINGS{NIPS2005_874, + author = {K{\'{e}}gl, Bal{\'{a}}zs}, + title = {Generalization Error and Algorithmic Convergence of Median Boosting}, + year = {2005}, + pages = {657--664}, + crossref = {NIPS17-shorter}, + abstract = {We have recently proposed an extension of ADABOOST to regression that uses the median of the base regressors as the final regressor. In this paper we extend theoretical results obtained for ADABOOST to median boosting and to its localized variant. First, we extend recent results on efficient margin maximizing to show that the algorithm can converge to the maximum achievable margin within a preset precision in a finite number of steps. Then we provide confidence-interval-type bounds on the generalization error.}, +topics={Boosting},cat={C}, +} + +@INPROCEEDINGS{NIPS2007-56, + author = {Le Roux, Nicolas and Manzagol, Pierre-Antoine and Bengio, Yoshua}, + title = {Topmoumoute online natural gradient algorithm}, + year = {2008}, + crossref = {NIPS20-shorter}, + abstract = {Guided by the goal of obtaining an optimization algorithm that is both fast and yielding good generalization, we study the descent direction maximizing the decrease in generalization error or the probability of not increasing generalization error. The surprising result is that from both the Bayesian and frequentist perspectives this can yield the natural gradient direction. Although that direction can be very expensive to compute we develop an efficient, general, online approximation to the natural gradient descent which is suited to large scale problems. We report experimental results showing much faster convergence in computation time and in number of iterations with TONGA (Topmoumoute Online natural Gradient Algorithm) than with stochastic gradient descent, even on very large datasets.} +} + +@INPROCEEDINGS{NIPS2007-812, + author = {Chapados, Nicolas and Bengio, Yoshua}, + title = {Augmented Functional Time Series Representation and Forecasting with Gaussian Processes}, + year = {2008}, + pages = {265--272}, + crossref = {NIPS20-shorter}, + abstract = {We introduce a functional representation of time series which allows forecasts to be performed over an unspecified horizon with progressively-revealed information sets. By virtue of using Gaussian processes, a complete covariance matrix between forecasts at several time-steps is available. This information is put to use in an application to actively trade price spreads between commodity futures contracts. The approach delivers impressive out-of-sample risk-adjusted returns after transaction costs on a portfolio of 30 spreads.} +} + +@INPROCEEDINGS{NIPS2007-925, + author = {Le Roux, Nicolas and Bengio, Yoshua and Lamblin, Pascal and Joliveau, Marc and K{\'{e}}gl, Bal{\'{a}}zs}, + title = {Learning the 2-D Topology of Images}, + year = {2008}, + pages = {841--848}, + crossref = {NIPS20-shorter}, + abstract = {We study the following question: is the two-dimensional structure of images a very strong prior or is it something that can be learned with a few examples of natural images? If someone gave us a learning task involving images for which the two-dimensional topology of pixels was not known, could we discover it automatically and exploit it? For example suppose that the pixels had been permuted in a fixed but unknown way, could we recover the relative two-dimensional location of pixels on images? The surprising result presented here is that not only the answer is yes but that about as few as a thousand images are enough to approximately recover the relative locations of about a thousand pixels. This is achieved using a manifold learning algorithm applied to pixels associated with a measure of distributional similarity between pixel intensities. We compare different topologyextraction approaches and show how having the two-dimensional topology can be exploited.} +} + +@INPROCEEDINGS{NIPS21, + editor = {Koller, D. and Schuurmans, Dale and Bengio, Yoshua and Bottou, {L{\'{e}}on}}, + title = {Advances in Neural Information Processing Systems 21 (NIPS'08)}, + booktitle = {Advances in Neural Information Processing Systems 21 (NIPS'08)}, + year = {-1}, + publisher = {Nips Foundation (http://books.nips.cc)} +} + +@INPROCEEDINGS{NIPS21-short, + editor = {Koller, D. and Schuurmans, Dale and Bengio, Yoshua and Bottou, {L{\'{e}}on}}, + title = {Advances in Neural Information Processing Systems 21 (NIPS'08)}, + booktitle = {NIPS 21}, + year = {-1}, + publisher = {Nips Foundation (http://books.nips.cc)} +} + + +@INPROCEEDINGS{NIPS22-short, + editor = {Bengio, Yoshua and Schuurmans, Dale and Williams, Christopher and Lafferty, John and Culotta, Aron}, + title = {Advances in Neural Information Processing Systems 22 (NIPS'09)}, + booktitle = {NIPS 22}, + year = {-1} +} + + +@INPROCEEDINGS{NIPS3, + editor = {Lipmann, R. P. and Moody, J. E. and Touretzky, D. S.}, + title = {Advances in Neural Information Processing Systems 3 (NIPS'90)}, + booktitle = {Advances in Neural Information Processing Systems 3 (NIPS'90)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{NIPS3-short, + editor = {Lipmann, R. P. and Moody, J. E. and Touretzky, D. S.}, + title = {Advances in Neural Information Processing Systems 3 (NIPS'90)}, + booktitle = {NIPS 3}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{NIPS4-short, + editor = {Moody, J. E. and Hanson, S. J. and Lipmann, R. P.}, + title = {Advances in Neural Information Processing Systems 4 (NIPS'91)}, + booktitle = {NIPS 4}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{NIPS5, + editor = {Giles, C.L. and Hanson, S. J. and Cowan, J. D.}, + title = {Advances in Neural Information Processing Systems 5 (NIPS'92)}, + booktitle = {Advances in Neural Information Processing Systems 5 (NIPS'92)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{NIPS5-short, + editor = {Giles, C.L. and Hanson, S. J. and Cowan, J. D.}, + title = {Advances in Neural Information Processing Systems 5 (NIPS'92)}, + booktitle = {NIPS 5}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + + +@INPROCEEDINGS{NIPS6-short, + editor = {Cowan, J. D. and Tesauro, G. and Alspector, J.}, + title = {Advances in Neural Information Processing Systems 6 (NIPS'93)}, + booktitle = {NIPS 6}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS7-short, + editor = {Tesauro, G. and Touretzky, D. S. and Leen, T. K.}, + title = {Advances in Neural Information Processing Systems 7 (NIPS'94)}, + booktitle = {NIPS 7}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS8-short, + editor = {Touretzky, D. S. and Mozer, M. and Hasselmo, M.E.}, + title = {Advances in Neural Information Processing Systems 8 (NIPS'95)}, + booktitle = {NIPS 8}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{NIPS9-short, + editor = {Mozer, M. and Jordan, M.I. and Petsche, T.}, + title = {Advances in Neural Information Processing Systems 9 (NIPS'96)}, + booktitle = {NIPS 9}, + year = {-1}, + publisher = {MIT Press} +} + + +@INPROCEEDINGS{nnlm:2001:nips, + author = {Bengio, Yoshua and Ducharme, R{\'{e}}jean and Vincent, Pascal}, + title = {A Neural Probabilistic Language Model}, + year = {2001}, + crossref = {NIPS13-shorter}, + abstract = {A goal of statistical language modeling is to learn the joint probability function of sequences of words. This is intrinsically difficult because of the curse of dimensionality: we propose to fight it with its own weapons. In the proposed approach one learns simultaneously (1) a distributed representation for each word (i.e. a similarity between words) along with (2) the probability function for word sequences, expressed with these representations. Generalization is obtained because a sequence of words that +has never been seen before gets high probability if it is made of words that are similar to words forming an already seen sentence. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach very significantly improves on a state-of-the-art trigram model.}, +topics={Markov,Unsupervised,Language},cat={C}, +} + +@INPROCEEDINGS{nsvn:2000:ijcnn, + author = {Vincent, Pascal and Bengio, Yoshua}, + title = {A Neural Support Vector Network Architecture with Adaptive Kernels}, + booktitle = {International Joint Conference on Neural Networks 2000}, + volume = {V}, + year = {2000}, + pages = {187--192}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/nsvn.pdf}, + abstract = {In the Support Vector Machines ({SVM}) framework, the positive-definite kernel can be seen as representing a fixed similarity measure between two patterns, and a discriminant function is obtained by taking a linear combination of the kernels computed at training examples called support vectors. Here we investigate learning architectures in which the kernel functions can be replaced by more general similarity measures that can have arbitrary internal parameters. The training criterion used in {SVM}s is not appropriate for this purpose so we adopt the simple criterion that is generally used when training neural networks for classification tasks. Several experiments are performed which show that such Neural Support Vector Networks perform similarly to {SVM}s while requiring significantly fewer support vectors, even when the similarity measure has no internal parameters.}, +topics={Kernel},cat={C}, +} + +@INPROCEEDINGS{Ouimet+al-2005, + author = {Ouimet, Marie and Bengio, Yoshua}, + editor = {Cowell, Robert G. and Ghahramani, Zoubin}, + title = {Greedy Spectral Embedding}, + booktitle = {Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics}, + year = {2005}, + pages = {253--260}, + publisher = {Society for Artificial Intelligence and Statistics}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/greedy-kernel-aistats05.pdf}, + abstract = {Spectral dimensionality reduction methods and spectral clustering methods require computation of the principal eigenvectors of an n X n matrix where n is the number of examples. Following up on previously proposed techniques to speed-up kernel methods by focusing on a subset of m examples, we study a greedy selection procedure for this subset, based on the feature space distance between a candidate example and the span of the previously chosen ones. In the case of kernel {PCA} or spectral clustering this reduces computation to O(m^2 n). For the same computational complexity, we can also compute the feature space projection of the non-selected examples on the subspace spanned by the selected examples, to estimate the embedding function based on all the data, which yields considerably better estimation of the embedding function. This algorithm can be formulated in an online setting and we can bound the error on the approximation of the Gram matrix.}, +topics={HighDimensional,kenel},cat={C}, +} + +@MASTERSTHESIS{Ouimet-Msc-2004, + author = {Ouimet, Marie}, + keywords = {algorithmes voraces., apprentissage non-supervis{\'{e}}, m{\'{e}}thodes spectrales, noyaux, r{\'{e}}duction de dimensionnalit{\'{e}}}, + title = {R{\'{e}}duction de dimensionnalit{\'{e}} non lin{\'{e}}aire et vorace}, + year = {2004}, + school = {Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Les m{\'{e}}thodes spectrales de r{\'{e}}duction de dimensionnalit{\'{e}} et les m{\'{e}}thodes de segmentation spectrale exigent le calcul des vecteurs propres principaux d'une matrice de taille n x n o{\`{u}} n est le nombre d'exemples. Des techniques ont {\'{e}}t{\'{e}} propos{\'{e}}es dans la litt{\'{e}}rature pour acc{\'{e}}l{\'{e}}rer les m{\'{e}}thodes {\`{a}} noyau en se concentrant sur un sous-ensemble de m exemples. Nous proposons une proc{\'{e}}dure vorace pour la s{\'{e}}lection de ce sous-ensemble, qui est bas{\'{e}}e sur la distance dans l'espace des caract{\`{e}}ristiques entre un exemple candidat et le sous-espace g{\'{e}}n{\'{e}}r{\'{e}} par les exemples pr{\'{e}}c{\'{e}}demment choisis. Dans le cas de l'ACP {\`{a}} noyau ou de la segmentation spectrale, nous obtenons un algorithme en O(m*m*n), o{\`{u}} m << n, qui, contrairement aux techniques pr{\'{e}}c{\'{e}}demment propos{\'{e}}es, peut se formuler de fa{\c c}on en-ligne. Pour la m{\^{e}}me complexit{\'{e}} en temps, nous pouvons {\'{e}}galement calculer la projection des exemples non choisis sur le sous-espace engendr{\'{e}} par les exemples choisis dans l'espace des caract{\'{e}}ristiques. En repr{\'{e}}sentant ainsi les exemples par leur projection nous obtenons une approximation de plus faible rang de la matrice de Gram sur toutes les donn{\'{e}}es. Nous pouvons {\'{e}}galement borner l'erreur correspondant {\`{a}} cette approximation de la matrice de Gram.} +} + +@ARTICLE{paiement+bengio+eck:aij, + author = {Paiement, Jean-Fran{\c c}ois and Bengio, Samy and Eck, Douglas}, + title = {Probabilistic Models for Melodic Prediction}, + journal = {Artificial Intelligence Journal}, + volume = {173}, + year = {2009}, + pages = {1266-1274}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@INPROCEEDINGS{paiement+eck+bengio+barber:icml2005, + author = {Paiement, Jean-Fran{\c c}ois and Eck, Douglas and Bengio, Samy and Barber, D.}, + title = {A graphical model for chord progressions embedded in a psychoacoustic space}, + year = {2005}, + pages = {641--648}, + publisher = {ACM Press}, + crossref = {ICML05}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{paiement+eck+bengio:ccai2006, + author = {Paiement, Jean-Fran{\c c}ois and Eck, Douglas and Bengio, Samy}, + editor = {Lamontagne, Luc and Marchand, Mario}, + title = {Probabilistic Melodic Harmonization}, + booktitle = {Canadian Conference on AI}, + series = {Lecture Notes in Computer Science}, + volume = {4013}, + year = {2006}, + pages = {218-229}, + publisher = {Springer}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{paiement+eck+bengio:ismir2005, + author = {Paiement, Jean-Fran{\c c}ois and Eck, Douglas and Bengio, Samy}, + title = {A Probabilistic Model for Chord Progressions}, + booktitle = {{Proceedings of the 6th International Conference on Music Information Retrieval ({ISMIR} 2005)}}, + year = {2005}, + pages = {312-319}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@INPROCEEDINGS{paiement+grandvalet+bengio+eck:icml2008, + author = {Paiement, Jean-Fran{\c c}ois and Grandvalet, Yves and Bengio, Samy and Eck, Douglas}, + title = {A generative model for rhythms}, + year = {2008}, + pages = {}, + crossref = {ICML06-shorter}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@UNPUBLISHED{paiement+grandvalet+bengio+eck:nipsworkshop2007, + author = {Paiement, Jean-Fran{\c c}ois and Grandvalet, Yves and Bengio, Samy and Eck, Douglas}, + title = {A generative model for rhythms}, + year = {2007}, + note = {NIPS 2007 Workshop on Music, Brain and Cognition}, +source={OwnPublication}, +sourcetype={Workshop}, +optkey={""}, +optmonth={""}, +optannote={""}, +} + +@MASTERSTHESIS{Paiement-Msc-2003, + author = {Paiement, Jean-Fran{\c c}ois}, + keywords = {algorithmes, apprentissage, apprentissage non supervis{\'{e}}, forage de donn{\'{e}}es, noyaux, r{\'{e}}duction de dimensions, statistique, Statistiques}, + title = {G{\'{e}}n{\'{e}}ralisation d'algorithmes de r{\'{e}}duction de dimension}, + year = {2003}, + school = {Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {On pr{\'{e}}sente tout d'abord la notion de vari{\'{e}}t{\'{e}} comme r{\'{e}}gion de faible dimension contenant des observations situ{\'{e}}es dans un espace de haute dimension. Cette d{\'{e}}finition justifie l'{\'{e}}laboration d'algorithmes permettant d'exprimer les donn{\'{e}}es dans un syst{\`{e}}me de coordonn{\'{e}}es de dimensions {\'{e}}gale {\`{a}} celle de la vari{\'{e}}t{\'{e}} sur laquelle les donn{\'{e}}es sont approximativement situ{\'{e}}es. +La notion de noyau comme mesure de similarit{\'{e}} est par la suite formalis{\'{e}}e. On constate que l'application d'un noyau {\`{a}} deux observations correspond {\`{a}} l'{\'{e}}valuation d'un produit scalaire dans un espace de Hilbert appel{\'{e}} espace de caract{\'{e}}ristiques. +Une m{\'{e}}thode de r{\'{e}}duction de dimension lin{\'{e}}raire est expos{\'{e}}e ainsi que ces limites. Des algorithmes non lin{\'{e}}raires de r{\'{e}}duction de dimension et de segmentation permettent de s'affranchir de ces limites. Ces derniers ne fournissent cependant pas d'extension directe {\`{a}} des points hors {\'{e}}chantillon. +L'{\'{e}}tape fondamentale au sein des algorithmes pr{\'{e}}sent{\'{e}}s est la solution d'un syst{\`{e}}me de vecteurs propres d'une matrice sym{\'{e}}trique cr{\'{e}}{\'{e}}e {\`{a}} partir d'un noyau d{\'{e}}pendant des donn{\'{e}}es. On con{\c c}oit cd probl{\`{e}}me comme le fait de trouver les fonctions propres d'un op{\'{e}}rateur lin{\'{e}}aire d{\'{e}}fini {\`{a}} partir du m{\^{e}}me noyau. On utilise alors la formulation de Nystr{\"{o}}m, pr{\'{e}}sente dans l'espace en composantes principales {\`{a}} noyaux, afin de r{\'{e}}duire la dimension des points hors {\'{e}}chantillon sur la vase des plongements obtenus {\`{a}} l'aide des algorithmes d{\'{e}}j{\`{a}} mentionn{\'{e}}s. +La qualit{\'{e}} de la projection g{\'{e}}n{\'{e}}r{\'{e}}e est compar{\'{e}}e {\`{a}} la perturbation intrins{\`{e}}que des algorithmes si on substitue certaine observations par d'autres tir{\'{e}}es de la m{\^{e}}me distribution.} +} + +@ARTICLE{perez+gers+schmidhuber+eck:2002, + author = {Perez-Ortiz, J. A. and Gers, F. A. and Eck, Douglas and Schmidhuber, Juergen}, + title = {{K}alman filters improve {LSTM} network performance in problems unsolvable by traditional recurrent nets}, + journal = {Neural Networks}, + volume = {16}, + number = {2}, + year = {2003}, + abstract = {The Long Short-Term Memory ({LSTM}) network trained by gradient descent solves difficult problems which traditional recurrent neural networks in general cannot. We have recently observed that the decoupled extended Kalman filter training algorithm allows for even better performance, reducing significantly the number of training steps when compared to the original gradient descent training algorithm. In this paper we present a set of experiments which are unsolvable by classical recurrent networks but which are solved elegantly and robustly and quickly by {LSTM} combined with Kalman filters.}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@ARTICLE{perez+gers+schmidhuber+eck:2003, + author = {Perez-Ortiz, J. A. and Gers, F. A. and Eck, Douglas and Schmidhuber, Juergen}, + title = {{K}alman filters improve {LSTM} network performance in problems unsolvable by traditional recurrent nets}, + journal = {Neural Networks}, + volume = {16}, + number = {2}, + year = {2003}, + pages = {241--250}, + abstract = {The Long Short-Term Memory ({LSTM}) network trained by gradient descent solves difficult problems which traditional recurrent neural networks in general cannot. We have recently observed that the decoupled extended Kalman filter training algorithm allows for even better performance, reducing significantly the number of training steps when compared to the original gradient descent training algorithm. In this paper we present a set of experiments which are unsolvable by classical recurrent networks but which are solved elegantly and robustly and quickly by {LSTM} combined with Kalman filters.}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@INPROCEEDINGS{perez+schmidhuber+gers+eck:icannB2002, + author = {Perez-Ortiz, J. A. and Schmidhuber, Juergen and Gers, F. A. and Eck, Douglas}, + editor = {Dorronsoro, J.}, + title = {Improving Long-Term Online Prediction with {Decoupled Extended Kalman Filters}}, + booktitle = {{Artificial Neural Networks -- ICANN 2002 (Proceedings)}}, + year = {2002}, + pages = {1055--1060}, + publisher = {Springer}, + abstract = {Long Short-Term Memory ({LSTM}) recurrent neural networks ({RNN}s) outperform traditional {RNN}s when dealing with sequences involving not only short-term but also long-term dependencies. The decoupled extended Kalman filter learning algorithm ({DEKF}) works well in online environments and reduces significantly the number of training steps when compared to the standard gradient-descent algorithms. Previous work on {LSTM}, however, has always used a form of gradient descent and has not focused on true online situations. Here we combine {LSTM} with {DEKF} and show that this new hybrid improves upon the original learning algorithm when applied to online processing.}, +source={OwnPublication}, +sourcetype={Conference}, +} + +@TECHREPORT{Pigeon-Bengio-96-aH-TR, + author = {Pigeon, Steven and Bengio, Yoshua}, + title = {A Memory-Efficient Huffman Adaptive Coding Algorithm for Very Large Sets of Symbols}, + number = {\#1081}, + year = {1997}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/HuffAdapt.pdf}, + abstract = {The problem of computing the minimum redundancy codes as we observe symbols one by one has received a lot of attention. However, existing algorithm implicitly assumes that either we have a small alphabet quite typically 256 symbols or that we have an arbitrary amount of memory at our disposal for the creation of the tree. In real life applications one may need to encode symbols coming from a much larger alphabet, for e.g. coding integers. We now have to deal not with hundreds of symbols but possibly with millions of symbols. While other algorithms use a space proportional to the number of observed symbol, we here propose one that uses space proportional to the number of frequency classes, which is, quite interestingly, always smaller or equal to the number of observed symbols.}, +topics={Compression},cat={T}, +} + +@INPROCEEDINGS{Pigeon-dcc98, + author = {Pigeon, Steven and Bengio, Yoshua}, + editor = {Society, {IEEE} Computer}, + title = {A Memory-Efficient Adaptive Huffman Coding Algorithm for Very Large Sets of Symbols}, + booktitle = {Data Compression Conference}, + year = {1998}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/dcc98.pdf}, + abstract = {The problem of computing the minimum redundancy codes as we observe symbols one by one has received a lot of attention. However, existing algorithms implicitly assumes that either we have a small alphabet quite typically 256 symbols or that we have an arbitrary amount of memory at our disposal for the creation of the tree. In real life applications one may need to +encode symbols coming from a much larger alphabet, for e.g. coding integers. We now have to deal not with hundreds of symbols but possibly with millions of symbols. While other algorithms use a space proportional to the number of observed symbols, we here propose one that uses space proportional to the number of frequency classes, which is, quite interestingly, always smaller or equal to the size of the alphabet.}, +topics={Compression},cat={C}, +} + +@INPROCEEDINGS{Pigeon-dcc99, + author = {Pigeon, Steven and Bengio, Yoshua}, + editor = {Society, {IEEE} Computer}, + title = {Binary Pseudowavelets and Applications to Bilevel Image Processing}, + booktitle = {Data Compression Conference}, + year = {1999}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/dcc99.pdf}, + abstract = {This paper shows the existance of binary pseudowavelets, bases on the binary domain that exhibit some of the properties of wavelets, such as multiresolution reconstruction and compact support. The binary pseudowavelets are defined on _n (binary vectors of length n) and are operated upon with the binary operators logical and and exclusive or. The forward transform, or analysis, is the decomposition of a binary vector into its constituant binary pseudowavelets. Binary pseudowavelets allow multiresolution, progressive reconstruction of binary vectors by using progressively more coefficients in the inverse transform. Binary pseudowavelets bases, being sparse matrices, also provide for fast transforms; moreover pseudowavelets rely on hardware-friendly operations for efficient software and hardware implementation.}, +topics={Compression},cat={C}, +} + +@TECHREPORT{Pigeon-Huffman-TR98, + author = {Pigeon, Steven and Bengio, Yoshua}, + title = {A Memory-Efficient Adaptive Huffman Coding for Very Large Sets of Symbols revisited}, + number = {1095}, + year = {1998}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TechRep_AdaptativeHuffman2.pdf}, + abstract = {While algorithm M (presented in A Memory-Efficient Huffman Adaptive Coding Algorithm for Very Large Sets of Symbols, by Steven Pigeon & Yoshua Bengio, Universit{\'{e}} de Montr{\'{e}}al technical report #1081 [1]) converges to the entropy of the signal, it also assumes that the characteristics of the signal are stationary, that is, that they do not change over time and that successive adjustments, ever decreasing in their magnitude, will lead to a reasonable approximation of the entropy. While this is true for some data, it is clearly not true for some other. We present here a modification of the M algorithm that allows negative updates. Negative updates are used to maintain a window over the source. Symbols enter the window at its right and will leave it at its left, after w steps (the window width). The algorithm presented here allows us to update correctly the weights of the symbols in the symbol tree. Here, we will also have negative migration or demotion, while we only had positive migration or promotion in M. This algorithm will be called M+.}, +topics={Compression},cat={T}, +} + +@PHDTHESIS{Pigeon-Phd-2001, + author = {Pigeon, Steven}, + keywords = {algorithmes, codes adaptatifs, codes de Golomb, codes universels, Compression de donn{\'{e}}es, compression LZ78, LZW, ondelettes, pseudo-ondelettes}, + title = {Contributions {\`{a}} la compression de donn{\'{e}}es}, + year = {2001}, + school = {Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {L'objectif de cette th{\`{e}}se est de pr{\'{e}}senter nos contributions {\`{a}} la compression de donn{\'{e}}es. Le texte entier n'est pas consacr{\'{e}} {\`{a}} nos seules contributions. Une large part est consacr{\'{e}}e au mat{\'{e}}riel introductif et {\`{a}} la recension de litt{\'{e}}rature sur les sujets qui sont pertinents {\`{a}} nos contributions. Le premier chapitre de contribution, le chapitre "Contribution au codage des entiers" se concentre sur le probl{\`{e}}me de la g{\'{e}}n{\'{e}}ration de codes efficaces pour les entiers. Le chapitre "Codage Huffman Adaptatif" pr{\'{e}}sente deux nouveaux algorithmes pour la g{\'{e}}n{\'{e}}ration dynamique de codes structur{\'{e}}s en arbre, c'est-{\`{a}}-dire des codes de type Huffman. Le chapitre "LZW avec une perte" explore le probl{\`{e}}me de la compression d'images comportant un petit nombre de couleurs distinctes et propose une extension avec perte d'un algorithme originalement sans perte, LZW. Enfin, le dernier chapitre de contribution, le chapitre "Les pseudo-ondelettes binaires" pr{\'{e}}sente une solution original au probl{\`{e}}me de l'analyse multir{\'{e}}solution des images monochromes, c'est-{\`{a}}-dire des images n'ayant que deux couleurs, conventionnellement noir et blanc. Ce type d'image correspond par exemple aux images textuelles telle que produites par un processus de transmission de type facsimil{\'{e}}.} +} + +@ARTICLE{Pigeon98, + author = {Pigeon, Steven and Bengio, Yoshua}, + title = {Memory-Efficient Adaptive Huffman Coding}, + journal = {Dr. Dobb's Journal}, + volume = {290}, + year = {1998}, + pages = {131--135}, +topics={Compression},cat={J}, +} + +@INPROCEEDINGS{probnn:2000:ijcnn, + author = {Bengio, Yoshua}, + title = {Probabilistic Neural Network Models for Sequential Data}, + booktitle = {International Joint Conference on Neural Networks 2000}, + volume = {V}, + year = {2000}, + pages = {79--84}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/81_01.PDF}, + abstract = {It has already been shown how Artificial Neural Networks ({ANN}s) can be incorporated into probabilistic models. +In this paper we review some of the approaches which have been proposed to incorporate them into probabilistic +models of sequential data, such as Hidden {Markov} Models ({HMM}s). We also discuss new developments and new +ideas in this area, in particular how {ANN}s can be used to model high-dimensional discrete and continuous data to +deal with the curse of dimensionality, and how the ideas proposed in these models could be applied to statistical +language modeling to represent longer-term context than allowed by trigram models, while keeping word-order +information.}, +topics={Markov},cat={C}, +} + +@UNPUBLISHED{pugin+burgoyne+eck+fujinaga:nipsworkshop2007, + author = {Pugin, L. and Burgoyne, J. A. and Eck, Douglas and Fujinaga, I.}, + title = {Book-adaptive and book-dependant models to accelerate digitalization of early music}, + year = {2007}, + note = {NIPS 2007 Workshop on Music, Brain and Cognition}, +source={OwnPublication}, +sourcetype={Workshop}, +optkey={""}, +optmonth={""}, +optannote={""}, +} + +@INPROCEEDINGS{Rahim-97, + author = {Rahim, Mazin and Bengio, Yoshua and {LeCun}, Yann}, + title = {Discriminative feature and model design for automatic speech recognition}, + booktitle = {Proceedings of Eurospeech 1997}, + year = {1997}, + pages = {75--78}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/rahim-bengio-lecun-97.ps.gz}, + abstract = {A system for discriminative feature and model design is presented for automatic speech recognition. Training based on minimum classification error with a single objective function is applied for designing a set of parallel networks performing feature transformation and a set of hidden {Markov} models performing speech recognition. This paper compares the use of linear and non-linear functional transformations when applied to conventional recognition features, such as spectrum or cepstrum. It also provides a framework for integrated feature and model training when using class-specific transformations. Experimental results on telephone-based connected digit recognition are presented.}, +topics={Speech},cat={C}, +} + +@ARTICLE{Rivest-2009, + author = {Rivest, Fran{\c c}ois and Kalaska, John and Bengio, Yoshua}, + title = {Alternative Time Representations in Dopamine Models}, + journal = {Journal of Computational Neuroscience}, + volume = {28}, + number = {1}, + year = {2009}, + pages = {107--130}, + abstract = {Dopaminergic neuron activity has been modeled during learning and appetitive behavior, most commonly using the temporal-difference (TD) algorithm. However, a proper representation of elapsed time and of the exact task is usually required for the model to work. Most models use timing elements such as delay-line representations of time that are not biologically realistic for intervals in the range of seconds. The interval-timing literature provides several alternatives. One of them is that timing could emerge from general network dynamics, instead of coming from a dedicated circuit. Here, we present a general rate-based learning model based on long short-term memory ({LSTM}) networks that learns a time representation when needed. Using a na{\"{\i}}ve network learning its environment in conjunction with TD, we reproduce dopamine activity in appetitive trace conditioning with a constant CS-US interval, including probe trials with unexpected delays. The proposed model learns a representation of the environment dynamics in an adaptive biologically plausible framework, without recourse to delay lines or other special-purpose circuits. Instead, the model predicts that the task-dependent representation of time is learned by experience, is encoded in ramp-like changes in single-neuron activity distributed across small neural networks, and reflects a temporal integration mechanism resulting from the inherent dynamics of recurrent loops within the network. The model also reproduces the known finding that trace conditioning is more difficult than delay conditioning and that the learned representation of the task can be highly dependent on the types of trials experienced during training. Finally, it suggests that the phasic dopaminergic signal could facilitate learning in the cortex.} +} + +@ARTICLE{schmidhuber+gers+eck:2002, + author = {Schmidhuber, Juergen and Gers, F. A. and Eck, Douglas}, + title = {Learning Nonregular Languages: A Comparison of Simple Recurrent Networks and {LSTM}}, + journal = {Neural Computation}, + volume = {14}, + number = {9}, + year = {2002}, + pages = {2039--2041}, + abstract = {In response to Rodriguez' recent article (Rodriguez 2001) we compare the performance of simple recurrent nets and {\em ``Long Short-Term Memory''} ({LSTM}) recurrent nets on context-free and context-sensitive languages.}, +source={OwnPublication}, +sourcetype={Journal}, +} + +@TECHREPORT{Schwenk-Bengio-97-TR, + author = {Schwenk, Holger and Bengio, Yoshua}, + title = {Adaptive Boosting of Neural Networks for Character Recognition}, + number = {\#1072}, + year = {1997}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/AdaBoostTR.pdf}, + abstract = {Boosting is a general method for improving the performance of any learning algorithm that consistently generates classifiers which need to perform only slightly better than random guessing. A recently proposed and very promising boosting algorithm is AdaBoost [5]. It has been applied with great success to several benchmark machine learning problems using rather simple learning algorithms [4], in particular decision trees [1, 2, 6]. In this paper we use AdaBoost to improve the performances of neural networks applied to character recognition tasks. We compare training methods based on sampling the training set and weighting the cost function. Our system achieves about 1.4\% error on a data base of online handwritten digits from more than 200 writers. Adaptive boosting of a multi-layer network achieved 2\% error on the UCI Letters offline characters data set.}, +topics={Boosting,Speech},cat={T}, +} + +@INPROCEEDINGS{Schwenk-nips10, + author = {Schwenk, Holger and Bengio, Yoshua}, + title = {Training Methods for Adaptive Boosting of Neural Networks for Character Recognition}, + year = {1998}, + crossref = {NIPS10-shorter}, + abstract = {Boosting is a general method for improving the performance of any learning algorithm that consistently generates classifiers which need to perform only slightly better than random guessing. A recently proposed and very promising boosting algorithm is AdaBoost [5]. It has been applied with great success to several benchmark machine learning problems using rather simple learning algorithms [4], in particular decision trees [1, 2, 6]. In this paper we use AdaBoost to improve the performances of neural networks applied to character recognition tasks. We compare training methods based on sampling the training set and weighting the cost function. Our system achieves about 1.4\% error on a data base of online handwritten digits from more than 200 writers. Adaptive boosting of a multi-layer network achieved 2\% error on the UCI Letters offline characters data set.}, +topics={Boosting,Speech},cat={C}, +} + +@ARTICLE{Schwenk2000, + author = {Schwenk, Holger and Bengio, Yoshua}, + title = {Boosting Neural Networks}, + journal = {Neural Computation}, + volume = {12}, + number = {8}, + year = {2000}, + pages = {1869--1887}, + abstract = {Boosting is a general method for improving the performance of learning algorithms. A recently proposed boosting algorithm is AdaBoost. It has been applied with great success to several benchmark machine learning problems using mainly decision trees as base classifiers. In this paper we investigate whether AdaBoost also works as well with neural networks, and we discuss the advantages and drawbacks of di_erent versions of the AdaBoost algorithm. In particular, we compare training methods based on sampling the training set and weighting the cost function. The results suggest that random resampling of the training data is not the main explanation of the success of the improvements brought by AdaBoost. This is in contrast to Bagging which directly aims at reducing variance and for which random resampling is essential to obtain the reduction in generalization error. Our system achieves about 1.4\% error on a data set of online handwritten digits from more than 200 writers. A boosted multi-layer network achieved 1.5\% error on the UCI Letters and 8.1\% error on the UCI satellite data set, which is significantly better than boosted decision trees.}, +topics={Boosting},cat={J}, +} + +@INPROCEEDINGS{secondorder:2001:nips, + author = {Dugas, Charles and Bengio, Yoshua and Belisle, Francois and Nadeau, Claude and Garcia, Rene}, + title = {Incorporating Second-Order Functional Knowledge for Better Option Pricing}, + year = {2001}, + crossref = {NIPS13-shorter}, + abstract = {Incorporating prior knowledge of a particular task into the architecture of a learning algorithm can greatly improve generalization performance. We study here a case where we know that the function to be learned is non-decreasing in two of its arguments and convex in one of them. For this purpose we propose a class of functions similar to multi-layer neural networks but (1) that has those properties, (2) is a universal approximator of continuous functions with these and other properties. We apply this new class of functions to the task of modeling the price of call options. Experiments show improvements on regressing the price of call options using the new types of function classes that incorporate the a priori constraints.}, +topics={Finance},cat={C}, +} + +@ARTICLE{Sonnenburg+al-2007, + author = {Sonnenburg, Soeren and et al. and Vincent, Pascal}, + title = {The Need for Open Source Software in Machine Learning.}, + year = {2007}, + note = {institution: Fraunhofer Publica [http://publica.fraunhofer.de/oai.har] (Germany)}, + journal = {Journal of Machine Learning Research}, + abstract = {all authors: Sonnenburg, S. and Braun, M.L. and Ong, C.S. and Bengio, S. and Bottou, L. and Holmes, G. and {LeCun}, Y. and M{\~{A}}¼ller, K.-R. and Pereira, F. and Rasmussen, C.E. and R{\~{A}}¤tsch, G. and Sch{\~{A}}{\P}lkopf, B. and Smola, A. and Vincent, P. and Weston, J. and Williamson, R.C. + +Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not used, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.} +} + +@ARTICLE{Takeuchi-Bengio-Kanamori-2002, + author = {Takeuchi, Ichiro and Bengio, Yoshua and Kanamori, Takafumi}, + title = {Robust Regression with Asymmetric Heavy-Tail Noise Distributions}, + journal = {Neural Computation}, + volume = {14}, + number = {10}, + year = {2002}, + pages = {2469--2496}, + abstract = {In the presence of a heavy-tail noise distribution, regression becomes much more difficult. Traditional robust regression methods assume that the noise distribution is symmetric and they down-weight the influence of so-called outliers. When the noise distribution is assymetric these methods yield biased regression estimators. Motivated by data-mining problems for the insurance industry, we propose in this paper a new approach to robust regession that is tailored to deal with the case where the noise distribution is asymmetric. The main idea is to learn most of the parameters of the model using conditional quantile estimators (which are biased but robust etimators of the regression), and to lern a few remaining parameters to combbine and correct these stimators, to unbiasedly minimize the average squared error. Theoritical analysis and experiments show the clear advantages of the approach. Results are on artificial data as well as real insurance data, using both linear and neural-network predictors.}, +topics={Mining},cat={J}, +} + +@ARTICLE{Thierry+al-2008, + author = {Bertin-Mahieux, Thierry and Eck, Douglas and Maillet, Fran{\c c}ois and Lamere, Paul}, + title = {Autotagger: A Model For Predicting Social Tags from Acoustic Features on Large Music Databases}, + journal = {Journal of New Music Research}, + year = {2008}, + abstract = {Social tags are user-generated keywords associated with some resource on the Web. In the case of music, social tags have become an important component of "Web 2.0" recommender systems, allowing users to generate playlists based on use-dependent terms such as chill or jogging that have been applied to particular songs. In this paper, we propose a method for predicting these social tags directly from MP3 files. Using a set of 360 classifiers trained using the online ensemble learning algorithm FilterBoost, we map audio features onto social tags collected from the Web. The resulting automatic tags (or autotags) furnish information about music that is otherwise untagged or poorly tagged, allowing for insertion of previously unheard music into a social recommender. This avoids the cold-start problem common in such systems. Autotags can also be used to smooth the tag space from which similarities and +recommendations are made by providing a set of comparable baseline tags for all tracks in a recommender system. Because the words we learn are the same as those used by people who label their music collections, it is easy to integrate our predictions into existing similarity and prediction methods based on web data.} +} + +@ARTICLE{Thivierge+al-2007, + author = {Thivierge, J. -P. and Rivest, Fran{\c c}ois and Monchi, O}, + title = {Spiking Neurons, Dopamine, and Plasticity: Timing Is Everything, But Concentration Also Matters}, + journal = {Synapse}, + volume = {61}, + year = {2007}, + pages = {375-390}, + abstract = {While both dopamine (DA) fluctuations and spike-timing-dependent plasticity (STDP) are known to influence long-term corticostriatal plasticity, little attention has been devoted to the interaction between these two fundamental mechanisms. Here, a theoretical framework is proposed to account for experimental results specifying the role of presynaptic activation, postsynaptic activation, and concentrations of extracellular DA in synaptic plasticity. Our starting point was an explicitly-implemented multiplicative rule linking STDP to Michaelis-Menton equations that models the dynamics of extracellular DA fluctuations. This rule captures a wide range of results on conditions leading to long-term potentiation and depression in simulations that manipulate the frequency of induced corticostriatal stimulation and DA release. A well-documented biphasic function relating DA concentrations to synaptic plasticity emerges naturally from simulations involving a multiplicative rule linking DA and neural activity. This biphasic function is found consistently across different neural coding schemes employed (voltage-based vs. spike-based models). By comparison, an additive rule fails to capture these results. The proposed framework is the first to generate testable predictions on the dual influence of DA concentrations and STDP on long-term plasticity, suggesting a way in which the biphasic influence of DA concentrations can modulate the direction and magnitude of change induced by STDP, and raising the possibility that DA concentrations may inverse the LTP/LTD components of the STDP rule.} +} + +@TECHREPORT{tonga-tr, + author = {Le Roux, Nicolas and Manzagol, Pierre-Antoine and Bengio, Yoshua}, + title = {Topmoumoute online natural gradient algorithm}, + number = {1299}, + year = {2007}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + abstract = {Guided by the goal of obtaining an optimization algorithm that is +both fast and yielding good generalization, we study the descent direction maximizing the decrease in generalization error or the probability of not increasing generalization error. The surprising result is that from both the Bayesian and frequentist perspectives this can yield the natural gradient direction. Although that direction can be very expensive to compute we develop an efficient, general, online approximation to the natural gradient descent which is suited to large scale problems. We report experimental results showing much faster convergence in computation time and in number of iterations with TONGA (Topmoumoute Online natural Gradient Algorithm) than with stochastic gradient descent, even on very large datasets.} +} + +@TECHREPORT{TR1197, + author = {Vincent, Pascal and Bengio, Yoshua}, + title = {K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms}, + number = {1197}, + year = {2001}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1197.pdf}, + abstract = {Guided by an initial idea of building a complex (non linear) decision surface with maximal local margin in input space, we give a possible geometrical intuition as to why K-Nearest Neighbor ({KNN}) algorithms often perform more poorly than {SVM}s on classification tasks. We then propose modified K-Nearest Neighbor algorithms to overcome the perceived problem. The approach is similar in spirit to Tangent Distance, but with invariances inferred from the local neighborhood rather than prior knowledge. Experimental results on real world classification tasks suggest that the modified {KNN} algorithms often give a dramatic improvement over standard {KNN} and perform as well or better than {SVM}s.}, +topics={Kernel},cat={T}, +} + +@TECHREPORT{TR1198, + author = {Takeuchi, Ichiro and Bengio, Yoshua and Kanamori, Takafumi}, + title = {Robust Regression with Asymmetric Heavy-Tail Noise}, + number = {1198}, + year = {2001}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1198.pdf}, + abstract = {In the presence of a heavy-tail noise distribution, regression becomes much more difficult. Traditional robust regression methods assume that the noise distribution is symmetric and they downweight the influence of so-called outliers. When the noise distribution is asymmetric these methods yield strongly biased regression estimators. Motivated by data-mining problems for the insurance industry, we propose in this paper a new approach to robust regression that is tailored to deal with the case where the noise distribution is asymmetric. The main idea is to learn most of the parameters of the model using conditional quantile estimators (which are biased but robust estimators of the regression), and to learn a few remaining parameters to combine and correct these estimators, to minimize the average squared error. Theoretical analysis and experiments show the clear advantages of the approach. Results are on artificial data as well as real insurance data, using both linear and neural-network predictors.}, +topics={Mining},cat={T}, +} + +@TECHREPORT{TR1199, + author = {Chapados, Nicolas and Bengio, Yoshua and Vincent, Pascal and Ghosn, Joumana and Dugas, Charles and Takeuchi, Ichiro and Meng, Linyan}, + title = {Estimating Car Insurance Premia: a Case Study in High-Dimensional Data Inference}, + number = {1199}, + year = {2001}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1199.pdf}, + abstract = {Estimating insurance premia from data is a difficult regression problem for several reasons: the large number of variables, many of which are discrete, and the very peculiar shape of the noise distribution, asymmetric with fat tails, with a large majority zeros and a few unreliable and very large values. We introduce a methodology for estimating insurance premia that has been applied in the car insurance industry. It is based on mixtures of specialized neural networks, in order to reduce the effect of outliers on the estimation. Statistical comparisons with several different alternatives, including decision trees and generalized linear models show that the proposed method is significantly more precise, allowing to identify the least and most risky contracts, and reducing the median premium by charging more to the most risky customers.}, +topics={HighDimensional,Mining},cat={T}, +} + +@TECHREPORT{TR1200, + author = {Bengio, Yoshua and Chapados, Nicolas}, + title = {Extending Metric-Based Model Selection and Regularization in the Absence of Unlabeled Data}, + number = {1200}, + year = {2001}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/lisa/pointeurs/TR1200.ps}, + abstract = {Metric-based methods have recently been introduced for model selection and regularization, often yielding very significant improvements over all the alternatives tried (including cross-validation). However, these methods require a large set of unlabeled data, which is not always available in many applications. In this paper we extend these methods (TRI, ADJ and ADA) to the case where no unlabeled data is available. The extended methods (xTRI, xADJ, xADA) use a model of the input density directly estimated from the training set. The intuition is that the main reason why the above methods work well is that they make sure that the learned function behaves similarly on the training points and on neighboring points. The experiments are based on estimating a simple non-parametric density model. They show that the extended methods perform comparably to the originals even though no unlabeled data is used.}, +topics={ModelSelection,Finance},cat={T}, +} + +@TECHREPORT{TR1215, + author = {Bengio, Yoshua}, + title = {New Distributed Probabilistic Language Models}, + number = {1215}, + year = {2002}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1215.ps}, + abstract = {Our previous work on statistical modeling introduced the use of probabilistic feedforward neural networks with shared parameters in order to help dealing with the curse of dimensionality. This work started with the motivation to speed up the above model and to take advantage of prior knowledge e.g., in WordNet or in syntactically labeled data sets, and to better deal with polysemy. With the objective of reaching these goals, we present here a series of new statistical language models, most of which are yet untested.}, +topics={Markov,Language,Unsupervised},cat={T}, +} + +@TECHREPORT{TR1216, + author = {Bengio, Yoshua and S{\'{e}}n{\'{e}}cal, Jean-S{\'{e}}bastien}, + title = {Quick Training of Probabilistic Neural Nets by Importance Sampling}, + number = {1216}, + year = {2002}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/tr1216.ps}, + abstract = {Our previous work on statistical language modeling introduced the use of probabilistic feedforward neural networks to help dealing with the curse of dimensionality. Training this model by maximum likelihood however requires for each example to perform as many network passes as there are words in the vocabulary. Inspired by the contrastive divergence model, we proposed and evaluate sampling-based methods which require network passes only for the observed positive example and a few sampled negative example words. A very significant speed-up is obtained with an adaptive importance sampling.}, +topics={Markov,Language,Unsupervised},cat={T}, +} + +@TECHREPORT{TR1231, + author = {Bengio, Yoshua and Kermorvant, Christopher}, + title = {Extracting Hidden Sense Probabilities from Bitexts}, + number = {1231}, + year = {2003}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1231.pdf}, + abstract = {We propose a probabilistic model that is inspired by Diab & Resniks algorithm to extract disambiguation information from aligned bilingual texts. Like Diab & Resniks, the proposed model uses WordNet and the fact that word ambiguities are not always the same in the two languages. The generative model introduces a dependency between two translated words through a common ancestor inWordNets ontology. Unlike Diab & Resniks algorithm it does not suppose that the translation in the source language has a single meaning.}, +topics={Language},cat={T}, +} + +@TECHREPORT{TR1232, + author = {Bengio, Yoshua and Vincent, Pascal and Paiement, Jean-Fran{\c c}ois}, + title = {Learning Eigenfunctions of Similarity: Linking Spectral Clustering and Kernel {PCA}}, + number = {1232}, + year = {2003}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1232.pdf}, + abstract = {In this paper, we show a direct equivalence between spectral clustering and kernel {PCA}, and how both are special cases of a more general learning problem, that of learning the principal eigenfunctions of a kernel, when the functions are from a Hilbert space whose inner product is defined with respect to a density model. This suggests a new approach to unsupervised learning in which abstractions (such as manifolds and clusters) that represent the main features of the data density are extracted. Abstractions discovered at one level can be used to build higher-level abstractions. This paper also discusses how these abstractions can be used to recover a quantitative model of the input density, which is at least useful for evaluative and comparative purposes.}, +topics={HighDimensional,Kernel,Unsupervised},cat={T}, +} + +@TECHREPORT{TR1234, + author = {Bengio, Yoshua and Grandvalet, Yves}, + title = {No Unbiased Estimator of the Variance of K-Fold Cros-Validation}, + number = {1234}, + year = {2003}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1234.pdf}, + abstract = {Most machine learning researchers perform quantitative experiments to estimate generalization error and compare the performance of different algorithms (in particular, their proposed algorithm). In order to be able to draw statistically convincing conclusions, it is important for them to also estimate the uncertainty around the error (or error difference) estimate. This paper studies the very commonly used K-fold cross-validation estimator of generalization performance. The main theorem shows that there exists no universal (valid under all distributions) unbiased estimator of the variance of K-fold cross-validation. The analysis that accompanies this result is based on the eigen-decomposition of the covariance matrix of errors, which has only three different eigenvalues corresponding to three degrees of freedom of the matrix and three components of the total variance. This analysis helps to better understand the nature of the problem and how it can make na{\"{\i}}ve estimators (that dont take into account the error correlations due to the overlap between training and test sets) grossly underestimate variance. This is confirmed by numerical experiments in which the three components of the variance are compared when the difficulty of the learning problem and the number of folds are varied.}, +topics={Comparative},cat={T}, +} + +@TECHREPORT{tr1238, + author = {Bengio, Yoshua and Paiement, Jean-Fran{\c c}ois and Vincent, Pascal}, + title = {Out-of-Sample Extensions for {LLE}, {I}somap, {MDS}, {E}igenmaps, and Spectral Clustering}, + number = {1238}, + year = {2003}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/tr1238.pdf}, + abstract = {Several unsupervised learning algorithms based on an eigendecomposition provide either an embedding or a clustering only for given training points, with no straightforward extension for out-of-sample examples short of recomputing eigenvectors. This paper provides algorithms for such an extension for Local Linear Embedding ({LLE}), Isomap, Laplacian Eigenmaps, Multi-Dimensional Scaling (all algorithms which provide lower-dimensional embedding for dimensionality reduction) as well as for Spectral Clustering (which performs non-Gaussian clustering). These extensions stem from a unified framework in which these algorithms are seen as learning eigenfunctions of a kernel. {LLE} and Isomap pose special challenges as the kernel is training-data dependent. Numerical experiments on real data show that the generalizations performed have a level of error comparable to the variability of the embedding algorithms to the choice of training data.}, +topics={HighDimensional,Kernel,Unsupervised},cat={T}, +} + +@TECHREPORT{tr1239, + author = {Bengio, Yoshua and Vincent, Pascal and Paiement, Jean-Fran{\c c}ois and Delalleau, Olivier and Ouimet, Marie and Le Roux, Nicolas}, + title = {Spectral Clustering and Kernel {PCA} are Learning Eigenfunctions}, + number = {1239}, + year = {2003}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/tr1239.pdf}, + abstract = {In this paper, we show a direct equivalence between spectral clustering and kernel {PCA}, and how both are special cases of a more general learning problem, that of learning the principal eigenfunctions of a kernel, when the functions are from a function space whose scalar product is defined with respect to a density model. This defines a natural mapping for new data points, for methods that only provided an embedding, such as spectral clustering and Laplacian eigenmaps. The analysis hinges on a notion of generalization for embedding algorithms based on the estimation of underlying eigenfunctions, and suggests ways to improve this generalization by smoothing the data empirical distribution.}, +topics={HighDimensional,Kernel,Unsupervised},cat={T}, +} + +@TECHREPORT{tr1240, + author = {Vincent, Pascal and Bengio, Yoshua}, + title = {Locally Weighted Full Covariance Gaussian Density Estimation}, + number = {1240}, + year = {2003}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/tr1240.pdf}, + abstract = {We describe an interesting application of the principle of local learning to density estimation. Locally weighted fitting of a Gaussian with a regularized full covariance matrix yields a density estimator which displays improved behavior in the case where much of the probability mass is concentrated along a low dimensional manifold. While the proposed estimator is not guaranteed to integrate to 1 with a finite sample size, we prove asymptotic convergence to the true density. Experimental results illustrating the advantages of this estimator over classic non-parametric estimators are presented.}, +topics={HighDimensional,Kernel,Unsupervised},cat={T}, +} + +@TECHREPORT{tr1247, + author = {Bengio, Yoshua and Delalleau, Olivier and Le Roux, Nicolas}, + title = {Efficient Non-Parametric Function Induction in Semi-Supervised Learning}, + number = {1247}, + year = {2004}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/tr1247.pdf}, + abstract = {There has been an increase of interest for semi-supervised learning recently, because of the many datasets with large amounts of unlabeled examples and only a few labeled ones. This paper follows up on proposed non-parametric algorithms which provide an estimated continuous label for the given unlabeled examples. It extends them to function induction algorithms that correspond to the minimization of a regularization criterion applied to an out-of-sample example, and happens to have the form of a Parzen windows regressor. The advantage of the extension is that it allows predicting the label for a new example without having to solve again a linear system of dimension n (the number of unlabeled and labeled training examples), which can cost O(n^3). Experiments show that the extension works well, in the sense of predicting a label close to the one that would have been obtained if the test example had been included in the unlabeled set. This relatively efficient function induction procedure can also be used when n is large to approximate the solution by writing it only in terms of a kernel expansion with m << n terms, and reducing the linear system to m equations in m unknowns.}, +topics={Kernel,Unsupervised},cat={T}, +} + +@TECHREPORT{tr1250, + author = {Bengio, Yoshua and Monperrus, Martin}, + title = {Discovering shared structure in manifold learning}, + number = {1250}, + year = {2004}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/tr-tangent.pdf}, + abstract = {We claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local will suffer from at least four generic problems associated with (1) noise in the data, (2) curvature of the manifold, (3) dimensionality of the manifold, and (4) the presence of many manifolds with little data per manifold. This analysis suggests non-local manifold learning algorithms which attempt to discover shared structure in the tangent planes at different positions. A criterion for such an algorithm is proposed and experiments estimating a tangent plane prediction function are presented. The function has parameters that are shared across space rather than estimated based on the local neighborhood, as in current non-parametric manifold learning algorithms. The results show clearly the advantages of this approach with respect to local manifold learning algorithms.}, +topics={HighDimensional,Kernel,Unsupervised},cat={T}, +} + +@TECHREPORT{tr1252, + author = {Bengio, Yoshua and Larochelle, Hugo}, + title = {Implantation et analyse d'un mod{\`{e}}le graphique {\`{a}} entra{\^{\i}}nement supervis{\'{e}}, semi-supervis{\'{e}} et non-supervis{\'{e}} pour la d{\'{e}}sambigu{\"{\i}}sation s{\'{e}}mantique}, + number = {1252}, + year = {2004}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/tr1252.pdf}, + abstract = {La d{\'{e}}sambigu{\"{\i}}sation s{\'{e}}mantique est un sujet qui suscite beaucoup dint{\'{e}}r{\^{e}}t dans la communaut{\'{e}} scientifique en apprentissage automatique. Quoique cette t{\^{a}}che ait {\'{e}}t{\'{e}} abord{\'{e}}e depuis les d{\'{e}}buts du traitement automatique de la langue, peu de progr{\`{e}}s ont {\'{e}}t{\'{e}} accomplis jusqu{\`{a}} maintenant. Nous pr{\'{e}}sentons ici une application de d{\'{e}}sambigu{\"{\i}}sation bas{\'{e}}e sur un mod{\`{e}}le graphique probabiliste. Ce mod{\`{e}}le a {\'{e}}t{\'{e}} appris sur des donn{\'{e}}es {\'{e}}tiquet{\'{e}}es, non-{\'{e}}tiquet{\'{e}}es, et sur la hi{\'{e}}rarchie WordNet. Avec peu dexamples dapprentissage, ses performances sont comparables {\`{a}} celles de lalgorithme de Bayes na{\"{\i}}f. Il pourrait {\'{e}}ventuellement {\^{e}}tre adapt{\'{e}} {\`{a}} des corpus bi-textes.}, +topics={Unsupervised,Language},cat={T}, +} + +@TECHREPORT{tr1281, + author = {Le Roux, Nicolas and Bengio, Yoshua}, + title = {Continuous Neural Networks}, + number = {1281}, + year = {2006}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/continuous_nnet_tr1281.pdf}, + abstract = {This article extends neural networks to the case of an uncountable number of hidden units, in several +ways. In the first approach proposed, a finite parametrization is possible, allowing gradient-based +learning. While having the same number of parameters as an ordinary neural network, its internal +structure suggests that it can represent some smooth functions much more compactly. Under mild +assumptions, we also find better error bounds than with ordinary neural networks. Furthermore, this +parametrization may help reducing the problem of saturation of the neurons. In a second approach, the +input-to-hidden weights are fully non-parametric, yielding a kernel machine for which we demonstrate +a simple kernel formula. Interestingly, the resulting kernel machine can be made hyperparameter-free +and still generalizes in spite of an absence of explicit regularization.}, +cat={T},topics={Kernel,HighDimensional}, +} + +@TECHREPORT{tr1282, + author = {Bengio, Yoshua and Lamblin, Pascal and Popovici, Dan and Larochelle, Hugo}, + title = {Greedy Layer-Wise Training of Deep Networks}, + number = {1282}, + year = {2006}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/dbn_supervised_tr1282.pdf}, + abstract = {Deep multi-layer neural networks have many levels of non-linearities, which allows them to potentially +represent very compactly highly non-linear and highly-varying functions. However, until recently it +was not clear how to train such deep networks, since gradient-based optimization starting from random +initialization appears to often get stuck in poor solutions. Hinton et al. recently introduced a greedy +layer-wise unsupervised learning algorithm for Deep Belief Networks (DBN), a generative model with +many layers of hidden causal variables. In the context of the above optimization problem, we study +this algorithm empirically and explore variants to better understand its success and extend it to cases +where the inputs are continuous or where the structure of the input distribution is not revealing enough +about the variable to be predicted in a supervised task.}, +cat={T},topics={HighDimensional,Unsupervised}, +} + +@TECHREPORT{tr1283, + author = {Carreau, Julie and Bengio, Yoshua}, + title = {A Hybrid {Pareto} Model for Asymmetric Fat-Tail Data}, + number = {1283}, + year = {2006}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/fat_tails_tr1283.pdf}, + abstract = {We propose an estimator for the conditional density p(Y |X) that can adapt for asymmetric heavy tails +which might depend on X. Such estimators have important applications in finance and insurance. We +draw from Extreme Value Theory the tools to build a hybrid unimodal density having a parameter +controlling the heaviness of the upper tail. This hybrid is a Gaussian whose upper tail has been +replaced by a generalized {Pareto} tail. We use this hybrid in a multi-modal mixture in order to obtain +a nonparametric density estimator that can easily adapt for heavy tailed data. To obtain a conditional +density estimator, the parameters of the mixture estimator can be seen as functions of X and these +functions learned. We show experimentally that this approach better models the conditional density in +terms of likelihood than compared competing algorithms: conditional mixture models with other types +of components and multivariate nonparametric models.}, +cat={T},topics={Unsupervised,Mining}, +} + +@TECHREPORT{tr1284, + author = {Larochelle, Hugo and Bengio, Yoshua}, + title = {Distributed Representation Prediction for Generalization to New Words}, + number = {1284}, + year = {2006}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/dist_rep_pred_tr1284.pdf}, + abstract = {Learning distributed representations of symbols (e.g. words) has been used in several Natural Language Processing +systems. Such representations can capture semantic or syntactic similarities between words, which permit to fight +the curse of dimensionality when considering sequences of such words. Unfortunately, because these representations +are learned only for a previously determined vocabulary of words, it is not clear how to obtain representations +for new words. We present here an approach which gets around this problem by considering the distributed representations +as predictions from low-level or domain-knowledge features of words. We report experiments on a Part +Of Speech tagging task, which demonstrates the success of this approach in learning meaningful representations and +in providing improved accuracy, especially for new words.}, +cat={T},topics={HighDimensional,Language}, +} + +@TECHREPORT{tr1285, + author = {Grandvalet, Yves and Bengio, Yoshua}, + title = {Hypothesis Testing for Cross-Validation}, + number = {1285}, + year = {2006}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/xv_rho_stat_tr1285.pdf}, + abstract = {K-fold cross-validation produces variable estimates, whose variance cannot be estimated unbiasedly. However, in practice, one would like to +provide a figure related to the variability of this estimate. The first part +of this paper lists a series of restrictive assumptions (on the distribution of +cross-validation residuals) that allow to derive unbiased estimates. We exhibit three such estimates, corresponding to differing assumptions. Their +similar expressions however entail almost identical empirical behaviors. +Then, we look for a conservative test for detecting significant differences +in performances between two algorithms. Our proposal is based on the +derivation of the form of a t-statistic parametrized by the correlation of +residuals between each validation set. Its calibration is compared to the +usual t-test. While the latter is overconfident in concluding that differences are indeed significant, our test is bound to be more skeptical, with +smaller type-I error.}, +cat={T},topics={ModelSelection,Comparative}, +} + +@TECHREPORT{tr1286, + author = {Erhan, Dumitru and Bengio, Yoshua and {L'Heureux}, Pierre-Jean and Yue, Shi Yi}, + title = {Generalizing to a Zero-Data Task: a Computational Chemistry Case Study}, + number = {1286}, + year = {2006}, + institution = {D{\'{e}}partement d'informatique et recherche op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/mt_qsar_tr1286.pdf}, + abstract = {We investigate the problem of learning several tasks simultaneously in order to transfer the acquired +knowledge to a completely new task for which no training data are available. Assuming that the tasks +share some representation that we can discover efficiently, such a scenario should lead to a better model of +the new task, as compared to the model that is learned by only using the knowledge of the new task. We +have evaluated several supervised learning algorithms in order to discover shared representations among +the tasks defined in a computational chemistry/drug discovery problem. We have cast the problem from +a statistical learning point of view and set up the general hypotheses that have to be tested in order +to validate the multi-task learning approach. We have then evaluated the performance of the learning +algorithms and showed that it is indeed possible to learn a shared representation of the tasks that allows +to generalize to a new task for which no training data are available. From a theoretical point of view, +our contribution also comprises a modification to the Support Vector Machine algorithm, which can +produce state-of-the-art results using multi-task learning concepts at its core. From a practical point +of view, our contribution is that this algorithm can be readily used by pharmaceutical companies for +virtual screening campaigns.}, +cat={T},topics={MultiTask,Kernel,Bioinformatic}, +} + +@INPROCEEDINGS{Turian+al-2009, + author = {Turian, Joseph and Bergstra, James and Bengio, Yoshua}, + title = {Quadratic Features and Deep Architectures for Chunking}, + booktitle = {North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL HLT)}, + year = {2009}, + abstract = {We experiment with several chunking models. Deeper architectures achieve better generalization. Quadratic filters, a simplification of theoretical model of V1 complex cells, reliably increase accuracy. In fact, logistic regression with quadratic filters outperforms a standard single hidden layer neural network. Adding quadratic filters to logistic regression is almost as effective as feature engineering. Despite predicting each output label independently, our model is competitive with ones that use previous decisions.} +} + +@INPROCEEDINGS{Turian+al-2010, + author = {Turian, Joseph and Ratinov, Lev and Bengio, Yoshua and Roth, Dan}, + title = {A preliminary evaluation of word representations for named-entity recognition}, + booktitle = {NIPS Workshop on Grammar Induction, Representation of Language and Language Learning}, + year = {2009}, + url = {http://www.iro.umontreal.ca/~lisa/pointeurs/wordrepresentations-ner.pdf}, + abstract = {We use different word representations as word features for a named-entity recognition (NER) system with a linear model. This work is part of a larger empirical survey, evaluating different word representations on different NLP tasks. We evaluate Brown clusters, Collobert and Weston (2008) embeddings, and HLBL (Mnih & Hinton, 2009) embeddings of words. All three representations improve accuracy on NER, with the Brown clusters providing a larger improvement than the two embeddings, and the HLBL embeddings more than the Collobert and Weston (2008) embeddings. We also discuss some of the practical issues in using embeddings as features. Brown clusters are simpler than embeddings because they require less hyperparameter tuning.} +} + +@INPROCEEDINGS{Turian+Ratinov+Bengio-2010, + author = {Turian, Joseph and Ratinov, Lev and Bengio, Yoshua}, + title = {Word representations: A simple and general method for semi-supervised learning}, + booktitle = {Association for Computational Linguistics(ACL2010)}, + year = {2010} +} + +@INPROCEEDINGS{Vincent-Bengio-2003, + author = {Vincent, Pascal and Bengio, Yoshua}, + title = {Manifold Parzen Windows}, + year = {2003}, + pages = {825--832}, + crossref = {NIPS15-shorter}, + abstract = {The similarity between objects is a fundamental element of many learning algorithms. Most non-parametric methods take this similarity to be fixed, but much recent work has shown the advantages of learning it, in particular to exploit the local invariances in the data or to capture the possibly non-linear manifold on which most of the data lies. We propose a new non-parametric kernel density estimation method which captures the local structure of an underlying manifold through the leading eigenvectors of regularized local covariance matrices. Experiments in density estimation show significant improvements with respect to Parzen density estimators. The density estimators can also be used within Bayes classifiers, yielding classification rates similar to {SVM}s and much superior to the Parzen classifier.}, +topics={HighDimensional,Kernel,Unsupervised},cat={C}, +} + +@TECHREPORT{Vincent-TR1316, + author = {Vincent, Pascal and Larochelle, Hugo and Bengio, Yoshua and Manzagol, Pierre-Antoine}, + title = {Extracting and Composing Robust Features with Denoising Autoencoders}, + number = {1316}, + year = {2008}, + institution = {D{\'{e}}partement d'Informatique et Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, + url = {http://www.iro.umontreal.ca/~vincentp/Publications/denoising_autoencoders_tr1316.pdf}, + abstract = {Previous work has shown that the difficulties in learning deep generative or discriminative models can be overcome by an initial unsupervised learning step that maps inputs to useful intermediate representations. We introduce and motivate a new training principle for unsupervised learning of a representation based on the idea of making the learned representations robust to partial corruption of the input pattern. This approach can be used to train autoencoders, and these denoising autoencoders can be stacked to initialize deep architectures. The algorithm can be motivated from a manifold learning and information theoretic perspective or from a generative model perspective. Comparative experiments clearly show the surprising advantage of corrupting the input of autoencoders on a pattern classification benchmark suite.} +} + +@PHDTHESIS{Vincent2003, + author = {Vincent, Pascal}, + title = {Mod{\`{e}}les {\`{a}} Noyaux {\`{a}} Structure Locale}, + year = {2003}, + school = {D{\'{e}}partement d'Informatique et Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, +} + +@ARTICLE{vincent:2001, + author = {Vincent, Pascal and Bengio, Yoshua}, + title = {Kernel Matching Pursuit}, + journal = {Machine Learning}, + year = {2001}, + abstract = {We show how Matching Pursuit can be used to build kernel-based solutions to machine-learning problems while keeping control of the sparsity of the solution, and how it can be extended to use non-squared error loss functions. We also deriveMDL motivated generalization bounds for this type of algorithm. Finally, links to boosting algorithms and {RBF} training procedures, as well as extensive experimental comparison with {SVM}s are given, showing comparable results with typically sparser models.}, +topics={HighDimensional,Kernel},cat={J}, +} + +@INPROCEEDINGS{VincentPLarochelleH2008, + author = {Vincent, Pascal and Larochelle, Hugo and Bengio, Yoshua and Manzagol, Pierre-Antoine}, + title = {Extracting and Composing Robust Features with Denoising Autoencoders}, + year = {2008}, + pages = {1096--1103}, + crossref = {ICML08-shorter}, + abstract = {Recently, many applications for Restricted {Boltzmann} Machines (RBMs) have been developed for a large variety of learning problems. However, RBMs are usually used as feature extractors for another learning algorithm or to provide a good initialization +for deep feed-forward neural network classifiers, and are not considered as a standalone solution to classification problems. In +this paper, we argue that RBMs provide a self-contained framework for deriving competitive non-linear classifiers. We present an evaluation of different learning algorithms for +RBMs which aim at introducing a discriminative component to RBM training and improve their performance as classifiers. This +approach is simple in that RBMs are used directly to build a classifier, rather than as a stepping stone. Finally, we demonstrate how discriminative RBMs can also be successfully employed in a semi-supervised setting.} +} + +@TECHREPORT{visualization_techreport, + author = {Erhan, Dumitru and Bengio, Yoshua and Courville, Aaron and Vincent, Pascal}, + title = {Visualizing Higher-Layer Features of a Deep Network}, + number = {1341}, + year = {2009}, + institution = {University of Montreal}, + abstract = {Deep architectures have demonstrated state-of-the-art results in a variety of +settings, especially with vision datasets. Beyond the model definitions and the quantitative analyses, there is a need for qualitative comparisons of the solutions learned by various deep architectures. The goal of this paper is to find good qualitative interpretations of high level features represented by such models. To this end, we contrast and compare several techniques applied on Stacked Denoising Autoencoders and Deep Belief Networks, trained on several vision datasets. We show that, perhaps counter-intuitively, such interpretation is possible at the unit level, that it is simple to accomplish and that the results are consistent across various techniques. We hope that such techniques will allow researchers in deep architectures to understand more of how and why deep architectures work} +} + +@INPROCEEDINGS{xAISTATS2009-short, + title = {Proc. AISTATS'2009}, + booktitle = {Proc. AISTATS'2009}, + year = {2009} +} + + +@MISC{Yoshua+al-snowbird-2008, + author = {Bengio, Yoshua and Larochelle, Hugo and Turian, Joseph}, + title = {Deep Woods}, + year = {2008}, + howpublished = {Poster presented at the Learning@Snowbird Workshop, Snowbird, USA, 2008} +} + +@ARTICLE{Zaccaro-et-al-2005, + author = {Zaccaro, Maria Clara and Boon, Hong and Pattarawarapan, Mookda and Xia, Zebin and Caron, Antoine and {L'Heureux}, Pierre-Jean and Bengio, Yoshua and Burgess, Kevin and Saragori, H. Uri}, + title = {Selective Small Molecule Peptidomimetic Ligands of TrkC and TrkA Receptors Afford Discrete or Complete Neurotrophic Activities}, + journal = {Chemistry \& Biology}, + volume = {12}, + number = {9}, + year = {2005}, + pages = {1015--1028} +} + + + +crossreferenced publications: +@INPROCEEDINGS{ICML09, + editor = {Bottou, {L{\'{e}}on} and Littman, Michael}, + title = {Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML'09)}, + booktitle = {Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML'09)}, + year = {-1}, + publisher = {ACM} +} + +@INPROCEEDINGS{NIPS7, + editor = {Tesauro, G. and Touretzky, D. S. and Leen, T. K.}, + title = {Advances in Neural Information Processing Systems 7 (NIPS'94)}, + booktitle = {Advances in Neural Information Processing Systems 7 (NIPS'94)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS6, + editor = {Cowan, J. D. and Tesauro, G. and Alspector, J.}, + title = {Advances in Neural Information Processing Systems 6 (NIPS'93)}, + booktitle = {Advances in Neural Information Processing Systems 6 (NIPS'93)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS8, + editor = {Touretzky, D. S. and Mozer, M. and Hasselmo, M.E.}, + title = {Advances in Neural Information Processing Systems 8 (NIPS'95)}, + booktitle = {Advances in Neural Information Processing Systems 8 (NIPS'95)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS19, + editor = {{Sch{\"{o}}lkopf}, Bernhard and Platt, John and Hoffman, Thomas}, + title = {Advances in Neural Information Processing Systems 19 (NIPS'06)}, + booktitle = {Advances in Neural Information Processing Systems 19 (NIPS'06)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS10, + editor = {Jordan, M.I. and Kearns, M.J. and Solla, S.A.}, + title = {Advances in Neural Information Processing Systems 10 (NIPS'97)}, + booktitle = {Advances in Neural Information Processing Systems 10 (NIPS'97)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS1, + editor = {Touretzky, D. S.}, + title = {Advances in Neural Information Processing Systems 1 (NIPS'88)}, + booktitle = {Advances in Neural Information Processing Systems 1 (NIPS'88)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{NIPS2, + editor = {Touretzky, D. S.}, + title = {Advances in Neural Information Processing Systems 2 (NIPS'89)}, + booktitle = {Advances in Neural Information Processing Systems 2 (NIPS'89)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{NIPS4, + editor = {Moody, J. E. and Hanson, S. J. and Lipmann, R. P.}, + title = {Advances in Neural Information Processing Systems 4 (NIPS'91)}, + booktitle = {Advances in Neural Information Processing Systems 4 (NIPS'91)}, + year = {-1}, + publisher = {Morgan Kaufmann} +} + +@INPROCEEDINGS{NIPS12, + editor = {Solla, S.A. and Leen, T. K.}, + title = {Advances in Neural Information Processing Systems 12 (NIPS'99)}, + booktitle = {Advances in Neural Information Processing Systems 12 (NIPS'99)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS16, + editor = {Becker, S. and Saul, L. and {Sch{\"{o}}lkopf}, Bernhard}, + title = {Advances in Neural Information Processing Systems 16 (NIPS'03)}, + booktitle = {Advances in Neural Information Processing Systems 16 (NIPS'03)}, + year = {-1} +} + +@INPROCEEDINGS{NIPS22, + editor = {Bengio, Yoshua and Schuurmans, Dale and Williams, Christopher and Lafferty, John and Culotta, Aron}, + title = {Advances in Neural Information Processing Systems 22 (NIPS'09)}, + booktitle = {Advances in Neural Information Processing Systems 22 (NIPS'09)}, + year = {-1} +} + +@INPROCEEDINGS{NIPS20, + editor = {Platt, John and Koller, D. and Singer, Yoram and Roweis, S.}, + title = {Advances in Neural Information Processing Systems 20 (NIPS'07)}, + booktitle = {Advances in Neural Information Processing Systems 20 (NIPS'07)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{xAISTATS2009, + title = {Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009)}, + booktitle = {Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009)}, + year = {2009}, +} + +@INPROCEEDINGS{NIPS9, + editor = {Mozer, M. and Jordan, M.I. and Petsche, T.}, + title = {Advances in Neural Information Processing Systems 9 (NIPS'96)}, + booktitle = {Advances in Neural Information Processing Systems 9 (NIPS'96)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS17, + editor = {Saul, Lawrence K. and Weiss, Yair and Bottou, {L{\'{e}}on}}, + title = {Advances in Neural Information Processing Systems 17 (NIPS'04)}, + booktitle = {Advances in Neural Information Processing Systems 17 (NIPS'04)}, + year = {-1} +} + +@INPROCEEDINGS{ICML08, + editor = {Cohen, William W. and McCallum, Andrew and Roweis, Sam T.}, + title = {Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08)}, + booktitle = {Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08)}, + year = {-1}, + publisher = {ACM} +} + +@INPROCEEDINGS{ICML07, + editor = {Ghahramani, Zoubin}, + title = {Proceedings of the 24th International Conference on Machine Learning (ICML'07)}, + booktitle = {Proceedings of the 24th International Conference on Machine Learning (ICML'07)}, + year = {-1}, + publisher = {ACM} +} + +@TECHREPORT{DIRO, + title = {DIRO}, + year = {-1}, + institution = {D{\'{e}}partement d'Informatique et de Recherche Op{\'{e}}rationnelle, Universit{\'{e}} de Montr{\'{e}}al}, +} + +@INPROCEEDINGS{NIPS18, + editor = {Weiss, Yair and {Sch{\"{o}}lkopf}, Bernhard and Platt, John}, + title = {Advances in Neural Information Processing Systems 18 (NIPS'05)}, + booktitle = {Advances in Neural Information Processing Systems 18 (NIPS'05)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{NIPS13, + editor = {Leen, T. K. and Dietterich, T.G.}, + title = {Advances in Neural Information Processing Systems 13 (NIPS'00)}, + booktitle = {Advances in Neural Information Processing Systems 13 (NIPS'00)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{ICML05, + editor = {Raedt, Luc De and Wrobel, Stefan}, + title = {Proceedings of the Twenty-second International Conference on Machine Learning (ICML'05)}, + booktitle = {Proceedings of the Twenty-second International Conference on Machine Learning (ICML'05)}, + year = {-1}, + publisher = {ACM} +} + +@INPROCEEDINGS{ICML06, + editor = {Cohen, William W. and Moore, Andrew}, + title = {Proceedings of the Twenty-three International Conference on Machine Learning (ICML'06)}, + booktitle = {Proceedings of the Twenty-three International Conference on Machine Learning (ICML'06)}, + year = {-1}, + publisher = {ACM} +} + +@INPROCEEDINGS{NIPS15, + editor = {Becker, S. and Thrun, Sebastian}, + title = {Advances in Neural Information Processing Systems 15 (NIPS'02)}, + booktitle = {Advances in Neural Information Processing Systems 15 (NIPS'02)}, + year = {-1}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{ICML01-shorter, + title = {ICML'01}, + booktitle = {ICML'01}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{ICML02-shorter, + title = {ICML'02}, + booktitle = {ICML'02}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{ICML03-shorter, + title = {ICML'03}, + booktitle = {ICML'03}, + year = {-1}, + publisher = {AAAI Press} +} +@INPROCEEDINGS{ICML04-shorter, + title = {ICML'04}, + booktitle = {ICML'04}, + year = {-1}, + publisher = {ACM} +} +@INPROCEEDINGS{ICML05-shorter, + title = {ICML'05}, + booktitle = {ICML'05}, + year = {-1}, + publisher = {ACM} +} +@INPROCEEDINGS{ICML06-shorter, + title = {ICML'06}, + booktitle = {ICML'06}, + year = {-1}, + publisher = {ACM} +} +@INPROCEEDINGS{ICML07-shorter, + title = {ICML'07}, + booktitle = {ICML'07}, + year = {-1}, + publisher = {ACM} +} +@INPROCEEDINGS{ICML08-shorter, + title = {ICML'08}, + booktitle = {ICML'08}, + year = {-1}, + publisher = {ACM} +} +@INPROCEEDINGS{ICML09-shorter, + title = {ICML'09}, + booktitle = {ICML'09}, + year = {-1}, + publisher = {ACM} +} +@INPROCEEDINGS{ICML96-shorter, + title = {ICML'96}, + booktitle = {ICML'96}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{ICML97-shorter, + title = {ICML'97}, + booktitle = {ICML'97}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{ICML98-shorter, + title = {ICML'98}, + booktitle = {ICML'98}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{ICML99-shorter, + title = {ICML'99}, + booktitle = {ICML'99}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{NIPS1-shorter, + title = {NIPS'88}, + booktitle = {NIPS 1}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{NIPS10-shorter, + title = {NIPS'97}, + booktitle = {NIPS 10}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS11-shorter, + title = {NIPS'98}, + booktitle = {NIPS 11}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS12-shorter, + title = {NIPS'99}, + booktitle = {NIPS 12}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS13-shorter, + title = {NIPS'00}, + booktitle = {NIPS 13}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS14-shorter, + title = {NIPS'01}, + booktitle = {NIPS 14}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS15-shorter, + title = {NIPS'02}, + booktitle = {NIPS 15}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS16-shorter, + title = {NIPS'03}, + booktitle = {NIPS 16}, + year = {-1} +} +@INPROCEEDINGS{NIPS17-shorter, + title = {NIPS'04}, + booktitle = {NIPS 17}, + year = {-1} +} +@INPROCEEDINGS{NIPS18-shorter, + title = {NIPS'05}, + booktitle = {NIPS 18}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS19-shorter, + title = {NIPS'06}, + booktitle = {NIPS 19}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS2-shorter, + title = {NIPS'89}, + booktitle = {NIPS 2}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{NIPS20-shorter, + title = {NIPS'07}, + booktitle = {NIPS 20}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS21-shorter, + title = {NIPS'08}, + booktitle = {NIPS 21}, + year = {-1}, + publisher = {Nips Foundation (http://books.nips.cc)} +} +@INPROCEEDINGS{NIPS22-shorter, + title = {NIPS'09}, + booktitle = {NIPS 22}, + year = {-1} +} +@INPROCEEDINGS{NIPS3-shorter, + title = {NIPS'90}, + booktitle = {NIPS 3}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{NIPS4-shorter, + title = {NIPS'91}, + booktitle = {NIPS 4}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{NIPS5-shorter, + title = {NIPS'92}, + booktitle = {NIPS 5}, + year = {-1}, + publisher = {Morgan Kaufmann} +} +@INPROCEEDINGS{NIPS6-shorter, + title = {NIPS'93}, + booktitle = {NIPS 6}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS7-shorter, + title = {NIPS'94}, + booktitle = {NIPS 7}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS8-shorter, + title = {NIPS'95}, + booktitle = {NIPS 8}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{NIPS9-shorter, + title = {NIPS'96}, + booktitle = {NIPS 9}, + year = {-1}, + publisher = {MIT Press} +} +@INPROCEEDINGS{xAISTATS2009-shorter, + title = {AISTATS'2009}, + booktitle = {AISTATS'2009}, + year = {-1} +} + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/error_rates_charts.eps Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,2121 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%BoundingBox: 28 263 484 456 +%%HiResBoundingBox: 28.014 263.058 483.126 455.640 +%%Pages: 0 +%%Creator: Sun Microsystems, Inc. +%%Title: none +%%CreationDate: none +%%LanguageLevel: 2 +%%EndComments +%%BeginProlog +%%BeginResource: procset SDRes-Prolog 1.0 0 +/b4_inc_state save def +/dict_count countdictstack def +/op_count count 1 sub def +userdict begin +0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath +/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if +/bdef {bind def} bind def +/c {setgray} bdef +/l {neg lineto} bdef +/rl {neg rlineto} bdef +/lc {setlinecap} bdef +/lj {setlinejoin} bdef +/lw {setlinewidth} bdef +/ml {setmiterlimit} bdef +/ld {setdash} bdef +/m {neg moveto} bdef +/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef +/r {rotate} bdef +/t {neg translate} bdef +/s {scale} bdef +/sw {show} bdef +/gs {gsave} bdef +/gr {grestore} bdef +/f {findfont dup length dict begin +{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def +currentdict end /NFont exch definefont pop /NFont findfont} bdef +/p {closepath} bdef +/sf {scalefont setfont} bdef +/ef {eofill}bdef +/pc {closepath stroke}bdef +/ps {stroke}bdef +/pum {matrix currentmatrix}bdef +/pom {setmatrix}bdef +/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef +%%EndResource +%%EndProlog +%%BeginSetup +%%EndSetup +%%Page: 1 1 +%%BeginPageSetup +%%EndPageSetup +pum +0.02833 0.02833 s +0 -25940 t +/tm matrix currentmatrix def +gs +tm setmatrix +-1000 -1000 t +1 1 s +1000 1000 m 20589 1000 l 20589 26939 l 1000 26939 l 1000 1000 l eoclip newpath +gs +0 0 m 19589 0 l 19589 25939 l 0 25939 l 0 0 l eoclip newpath +1000 1000 m 20590 1000 l 20590 26940 l 1000 26940 l 1000 1000 l eoclip newpath +gs +1989 10850 m 11965 10850 l 11965 17654 l 1989 17654 l 1989 10850 l eoclip newpath +gs +tm setmatrix +978.63611 9856.74568 t +0.99962 0.99987 s +gs +gs +0 0 m 9976 0 l 9976 6804 l 0 6804 l 0 0 l eoclip newpath +gs +0 0 m 9976 0 l 9976 6804 l 0 6804 l 0 0 l eoclip newpath +0.996 c 4988 6805 m 0 6805 l 0 0 l 9977 0 l 9977 6805 l 4988 6805 l +p ef +0.699 c 4652 5073 m 1333 5073 l 1333 830 l 7971 830 l 7971 5073 l 4652 5073 l +pc +7971 5072 m 1333 5072 l ps +7971 4541 m 1333 4541 l ps +7971 4011 m 1333 4011 l ps +7971 3480 m 1333 3480 l ps +7971 2950 m 1333 2950 l ps +7971 2420 m 1333 2420 l ps +7971 1889 m 1333 1889 l ps +7971 1359 m 1333 1359 l ps +7971 829 m 1333 829 l ps +gs +gs +pum +1122 6052 t +0.000 c 67 0 m 31 0 l 31 -265 l 67 -265 l 67 -157 l 200 -157 l 200 -265 l +236 -265 l 236 0 l 200 0 l 200 -126 l 67 -126 l 67 0 l p ef +436 0 m 402 0 l 402 -33 l 388 -9 369 3 344 3 ct 334 3 323 0 314 -4 ct 305 -8 298 -14 293 -20 ct +289 -27 285 -35 284 -44 ct 282 -51 282 -61 282 -74 ct 282 -193 l 315 -193 l +315 -89 l 315 -72 316 -61 317 -55 ct 319 -47 323 -40 330 -35 ct 336 -31 344 -28 353 -28 ct +363 -28 371 -31 380 -36 ct 388 -41 394 -47 397 -56 ct 401 -64 402 -76 402 -92 ct +402 -193 l 436 -193 l 436 0 l p ef +524 0 m 490 0 l 490 -193 l 524 -193 l 524 -161 l 530 -172 537 -180 547 -186 ct +556 -192 567 -195 580 -195 ct 593 -195 604 -192 613 -186 ct 622 -179 628 -171 632 -159 ct +647 -183 667 -195 691 -195 ct 710 -195 724 -190 735 -180 ct 745 -169 750 -153 750 -131 ct +750 0 l 717 0 l 717 -118 l 717 -131 715 -140 713 -146 ct 711 -151 708 -156 702 -159 ct +697 -163 690 -164 683 -164 ct 670 -164 659 -160 650 -151 ct 641 -142 637 -128 637 -109 ct +637 0 l 603 0 l 603 -122 l 603 -136 601 -147 596 -154 ct 591 -161 582 -164 570 -164 ct +561 -164 553 -162 545 -157 ct 538 -153 532 -146 529 -137 ct 526 -128 524 -115 524 -97 ct +524 0 l p ef +915 -23 m 904 -14 893 -7 882 -3 ct 871 1 860 3 847 3 ct 827 3 812 -2 801 -13 ct +790 -23 784 -35 784 -51 ct 784 -60 786 -69 791 -76 ct 795 -84 800 -90 807 -95 ct +813 -99 821 -103 829 -105 ct 835 -107 845 -108 857 -110 ct 882 -113 901 -117 913 -121 ct +913 -125 913 -127 913 -129 ct 913 -141 910 -149 904 -154 ct 897 -161 885 -164 870 -164 ct +855 -164 845 -162 838 -157 ct 831 -152 826 -143 823 -131 ct 790 -136 l 792 -150 797 -161 804 -169 ct +810 -178 820 -184 832 -188 ct 845 -193 859 -195 875 -195 ct 892 -195 905 -193 915 -189 ct +925 -185 932 -180 937 -175 ct 942 -169 945 -161 947 -152 ct 948 -146 949 -137 949 -123 ct +949 -83 l 949 -55 950 -36 951 -27 ct 952 -18 955 -9 959 0 ct 926 0 l 920 -7 917 -14 915 -23 ct +p +913 -80 m 913 -90 l 902 -86 885 -83 862 -80 ct 849 -78 840 -76 835 -75 ct +829 -73 825 -70 822 -66 ct 819 -62 818 -58 818 -53 ct 818 -46 821 -40 827 -35 ct +834 -31 843 -28 855 -28 ct 867 -28 878 -31 887 -36 ct 896 -41 903 -47 908 -55 ct +911 -61 913 -69 913 -80 ct p ef +1038 0 m 1005 0 l 1005 -193 l 1038 -193 l 1038 -165 l 1052 -185 1071 -195 1096 -195 ct +1107 -195 1117 -193 1127 -189 ct 1136 -185 1143 -180 1147 -173 ct 1152 -166 1155 -158 1157 -149 ct +1158 -143 1159 -132 1159 -117 ct 1159 0 l 1125 0 l 1125 -114 l 1125 -127 1124 -137 1122 -143 ct +1119 -150 1115 -155 1109 -159 ct 1103 -163 1095 -164 1087 -164 ct 1074 -164 1062 -160 1053 -152 ct +1043 -143 1038 -127 1038 -103 ct 1038 0 l p ef +1178 -59 m 1211 -64 l 1213 -53 1218 -44 1226 -38 ct 1234 -31 1245 -28 1259 -28 ct +1273 -28 1284 -31 1291 -36 ct 1298 -42 1301 -48 1301 -55 ct 1301 -61 1297 -66 1289 -70 ct +1284 -73 1273 -76 1258 -80 ct 1236 -86 1221 -91 1212 -95 ct 1202 -100 1195 -106 1190 -114 ct +1185 -122 1183 -130 1183 -140 ct 1183 -148 1185 -156 1189 -164 ct 1192 -171 1198 -177 1204 -182 ct +1209 -186 1216 -189 1224 -191 ct 1232 -194 1241 -195 1251 -195 ct 1266 -195 1278 -193 1289 -188 ct +1300 -184 1308 -178 1314 -170 ct 1319 -162 1322 -152 1324 -139 ct 1291 -134 l +1290 -143 1286 -151 1280 -156 ct 1274 -162 1265 -164 1253 -164 ct 1240 -164 1231 -162 1225 -158 ct +1219 -154 1216 -149 1216 -143 ct 1216 -139 1218 -136 1220 -133 ct 1222 -130 1226 -128 1231 -126 ct +1234 -125 1243 -122 1257 -119 ct 1277 -112 1292 -107 1302 -103 ct 1312 -99 1320 -94 1326 -86 ct +1332 -79 1335 -69 1335 -58 ct 1335 -47 1331 -37 1325 -28 ct 1319 -18 1310 -11 1298 -5 ct +1287 0 1273 3 1259 3 ct 1234 3 1215 -3 1202 -13 ct 1190 -23 1181 -39 1178 -59 ct +p ef +pom +gr +gr +gs +gs +pum +2286 5658 t +0.000 c 18 -90 m 54 -90 l 55 -76 59 -65 64 -56 ct 70 -47 78 -39 90 -34 ct 101 -28 114 -26 128 -26 ct +141 -26 152 -28 161 -32 ct 171 -36 178 -42 183 -49 ct 188 -56 190 -64 190 -72 ct +190 -80 188 -87 184 -93 ct 181 -99 173 -105 163 -109 ct 156 -112 141 -116 117 -122 ct +94 -128 77 -133 67 -138 ct 54 -145 44 -153 38 -163 ct 31 -173 28 -184 28 -196 ct +28 -210 32 -222 40 -234 ct 47 -246 58 -255 73 -261 ct 87 -267 104 -270 121 -270 ct +141 -270 158 -267 173 -260 ct 188 -254 200 -244 208 -232 ct 216 -220 220 -206 221 -190 ct +185 -190 l 183 -206 177 -218 167 -227 ct 157 -235 142 -239 123 -239 ct 102 -239 88 -235 78 -227 ct +69 -219 64 -210 64 -199 ct 64 -189 68 -181 74 -175 ct 81 -169 98 -163 125 -156 ct +152 -150 171 -144 182 -139 ct 197 -132 208 -123 215 -112 ct 223 -101 226 -89 226 -74 ct +226 -60 222 -47 214 -34 ct 206 -22 195 -12 180 -5 ct 165 2 148 5 129 5 ct 106 5 86 1 70 -6 ct +54 -13 41 -25 32 -39 ct 23 -54 18 -71 18 -90 ct p ef +359 0 m 264 0 l 264 -265 l 355 -265 l 375 -265 391 -263 402 -261 ct 417 -257 430 -251 441 -242 ct +455 -230 465 -215 472 -197 ct 479 -178 482 -157 482 -134 ct 482 -114 480 -96 475 -80 ct +471 -65 465 -52 457 -42 ct 450 -32 442 -24 433 -18 ct 424 -12 414 -8 402 -5 ct +389 -2 375 0 359 0 ct p +300 -234 m 300 -31 l 356 -31 l 373 -31 387 -32 397 -36 ct 406 -39 414 -44 420 -50 ct +428 -58 435 -69 439 -83 ct 444 -97 446 -114 446 -134 ct 446 -162 442 -183 433 -198 ct +424 -213 413 -223 400 -228 ct 391 -232 376 -234 355 -234 ct 300 -234 l p ef +546 0 m 508 0 l 614 -265 l 651 -265 l 757 0 l 719 0 l 688 -82 l +577 -82 l 546 0 l p +618 -187 m 588 -113 l 677 -113 l 651 -182 l 643 -205 637 -222 632 -234 ct +629 -219 624 -203 618 -187 ct p ef +764 -131 m 764 -162 767 -188 773 -208 ct 780 -227 789 -242 802 -252 ct 814 -262 830 -267 849 -267 ct +863 -267 875 -264 886 -259 ct 897 -253 906 -244 912 -234 ct 919 -223 924 -210 928 -194 ct +932 -178 934 -157 934 -131 ct 934 -100 930 -74 924 -55 ct 918 -35 909 -20 896 -10 ct +884 0 868 5 849 5 ct 824 5 804 -4 790 -21 ct 773 -44 764 -81 764 -131 ct p +797 -131 m 797 -88 802 -60 812 -46 ct 822 -32 834 -26 849 -26 ct 863 -26 875 -33 885 -46 ct +895 -60 900 -88 900 -131 ct 900 -173 895 -202 886 -215 ct 876 -229 864 -236 848 -236 ct +834 -236 822 -230 813 -218 ct 803 -202 797 -173 797 -131 ct p ef +pom +gr +gr +gs +gs +pum +3222 6052 t +0.000 c 18 -90 m 54 -90 l 55 -76 59 -65 64 -56 ct 70 -47 78 -39 90 -34 ct 101 -28 114 -26 128 -26 ct +141 -26 152 -28 161 -32 ct 171 -36 178 -42 183 -49 ct 188 -56 190 -64 190 -72 ct +190 -80 188 -87 184 -93 ct 181 -99 173 -105 163 -109 ct 156 -112 141 -116 117 -122 ct +94 -128 77 -133 67 -138 ct 54 -145 44 -153 38 -163 ct 31 -173 28 -184 28 -196 ct +28 -210 32 -222 40 -234 ct 47 -246 58 -255 73 -261 ct 87 -267 104 -270 121 -270 ct +141 -270 158 -267 173 -260 ct 188 -254 200 -244 208 -232 ct 216 -220 220 -206 221 -190 ct +185 -190 l 183 -206 177 -218 167 -227 ct 157 -235 142 -239 123 -239 ct 102 -239 88 -235 78 -227 ct +69 -219 64 -210 64 -199 ct 64 -189 68 -181 74 -175 ct 81 -169 98 -163 125 -156 ct +152 -150 171 -144 182 -139 ct 197 -132 208 -123 215 -112 ct 223 -101 226 -89 226 -74 ct +226 -60 222 -47 214 -34 ct 206 -22 195 -12 180 -5 ct 165 2 148 5 129 5 ct 106 5 86 1 70 -6 ct +54 -13 41 -25 32 -39 ct 23 -54 18 -71 18 -90 ct p ef +359 0 m 264 0 l 264 -265 l 355 -265 l 375 -265 391 -263 402 -261 ct 417 -257 430 -251 441 -242 ct +455 -230 465 -215 472 -197 ct 479 -178 482 -157 482 -134 ct 482 -114 480 -96 475 -80 ct +471 -65 465 -52 457 -42 ct 450 -32 442 -24 433 -18 ct 424 -12 414 -8 402 -5 ct +389 -2 375 0 359 0 ct p +300 -234 m 300 -31 l 356 -31 l 373 -31 387 -32 397 -36 ct 406 -39 414 -44 420 -50 ct +428 -58 435 -69 439 -83 ct 444 -97 446 -114 446 -134 ct 446 -162 442 -183 433 -198 ct +424 -213 413 -223 400 -228 ct 391 -232 376 -234 355 -234 ct 300 -234 l p ef +546 0 m 508 0 l 614 -265 l 651 -265 l 757 0 l 719 0 l 688 -82 l +577 -82 l 546 0 l p +618 -187 m 588 -113 l 677 -113 l 651 -182 l 643 -205 637 -222 632 -234 ct +629 -219 624 -203 618 -187 ct p ef +885 -267 m 885 0 l 851 0 l 851 -208 l 844 -201 833 -193 821 -186 ct 808 -178 797 -173 787 -169 ct +787 -200 l 805 -209 821 -219 835 -232 ct 848 -244 858 -256 863 -267 ct 885 -267 l +p ef +pom +gr +gr +gs +gs +pum +4178 5658 t +0.000 c 18 -90 m 54 -90 l 55 -76 59 -65 64 -56 ct 70 -47 78 -39 90 -34 ct 101 -28 114 -26 128 -26 ct +141 -26 152 -28 161 -32 ct 171 -36 178 -42 183 -49 ct 188 -56 190 -64 190 -72 ct +190 -80 188 -87 184 -93 ct 181 -99 173 -105 163 -109 ct 156 -112 141 -116 117 -122 ct +94 -128 77 -133 67 -138 ct 54 -145 44 -153 38 -163 ct 31 -173 28 -184 28 -196 ct +28 -210 32 -222 40 -234 ct 47 -246 58 -255 73 -261 ct 87 -267 104 -270 121 -270 ct +141 -270 158 -267 173 -260 ct 188 -254 200 -244 208 -232 ct 216 -220 220 -206 221 -190 ct +185 -190 l 183 -206 177 -218 167 -227 ct 157 -235 142 -239 123 -239 ct 102 -239 88 -235 78 -227 ct +69 -219 64 -210 64 -199 ct 64 -189 68 -181 74 -175 ct 81 -169 98 -163 125 -156 ct +152 -150 171 -144 182 -139 ct 197 -132 208 -123 215 -112 ct 223 -101 226 -89 226 -74 ct +226 -60 222 -47 214 -34 ct 206 -22 195 -12 180 -5 ct 165 2 148 5 129 5 ct 106 5 86 1 70 -6 ct +54 -13 41 -25 32 -39 ct 23 -54 18 -71 18 -90 ct p ef +359 0 m 264 0 l 264 -265 l 355 -265 l 375 -265 391 -263 402 -261 ct 417 -257 430 -251 441 -242 ct +455 -230 465 -215 472 -197 ct 479 -178 482 -157 482 -134 ct 482 -114 480 -96 475 -80 ct +471 -65 465 -52 457 -42 ct 450 -32 442 -24 433 -18 ct 424 -12 414 -8 402 -5 ct +389 -2 375 0 359 0 ct p +300 -234 m 300 -31 l 356 -31 l 373 -31 387 -32 397 -36 ct 406 -39 414 -44 420 -50 ct +428 -58 435 -69 439 -83 ct 444 -97 446 -114 446 -134 ct 446 -162 442 -183 433 -198 ct +424 -213 413 -223 400 -228 ct 391 -232 376 -234 355 -234 ct 300 -234 l p ef +546 0 m 508 0 l 614 -265 l 651 -265 l 757 0 l 719 0 l 688 -82 l +577 -82 l 546 0 l p +618 -187 m 588 -113 l 677 -113 l 651 -182 l 643 -205 637 -222 632 -234 ct +629 -219 624 -203 618 -187 ct p ef +801 -33 m 931 -33 l 931 0 l 756 0 l 756 -8 757 -16 760 -23 ct 764 -36 771 -48 781 -60 ct +790 -72 804 -85 822 -99 ct 851 -123 870 -142 880 -155 ct 890 -168 895 -181 895 -193 ct +895 -205 890 -215 881 -224 ct 872 -232 861 -236 846 -236 ct 830 -236 818 -232 809 -223 ct +800 -215 795 -203 795 -188 ct 761 -193 l 764 -217 772 -235 787 -248 ct 802 -261 822 -267 847 -267 ct +872 -267 892 -260 906 -246 ct 921 -232 928 -214 928 -193 ct 928 -183 926 -172 922 -162 ct +918 -151 911 -141 902 -129 ct 892 -118 876 -102 853 -83 ct 834 -67 821 -56 815 -51 ct +810 -45 805 -39 801 -33 ct p ef +pom +gr +gr +gs +gs +pum +5113 6052 t +0.000 c 62 0 m 26 0 l 26 -265 l 81 -265 l 141 -77 l 146 -60 150 -47 153 -38 ct +156 -48 160 -62 166 -80 ct 225 -265 l 280 -265 l 280 0 l 244 0 l 244 -224 l +172 0 l 133 0 l 62 -224 l 62 0 l p ef +497 0 m 335 0 l 335 -265 l 371 -265 l 371 -31 l 497 -31 l 497 0 l +p ef +580 0 m 544 0 l 544 -265 l 642 -265 l 659 -265 672 -264 681 -262 ct 694 -260 704 -256 713 -250 ct +722 -244 729 -235 734 -224 ct 739 -213 742 -201 742 -188 ct 742 -166 735 -147 721 -131 ct +707 -116 682 -108 646 -108 ct 580 -108 l 580 0 l p +580 -234 m 580 -139 l 646 -139 l 667 -139 683 -143 692 -151 ct 701 -160 706 -172 706 -187 ct +706 -198 703 -208 698 -216 ct 692 -224 685 -229 676 -231 ct 671 -233 660 -234 645 -234 ct +580 -234 l p ef +764 -131 m 764 -162 767 -188 773 -208 ct 780 -227 789 -242 802 -252 ct 814 -262 830 -267 849 -267 ct +863 -267 875 -264 886 -259 ct 897 -253 906 -244 912 -234 ct 919 -223 924 -210 928 -194 ct +932 -178 934 -157 934 -131 ct 934 -100 930 -74 924 -55 ct 918 -35 909 -20 896 -10 ct +884 0 868 5 849 5 ct 824 5 804 -4 790 -21 ct 773 -44 764 -81 764 -131 ct p +797 -131 m 797 -88 802 -60 812 -46 ct 822 -32 834 -26 849 -26 ct 863 -26 875 -33 885 -46 ct +895 -60 900 -88 900 -131 ct 900 -173 895 -202 886 -215 ct 876 -229 864 -236 848 -236 ct +834 -236 822 -230 813 -218 ct 803 -202 797 -173 797 -131 ct p ef +pom +gr +gr +gs +gs +pum +6070 5658 t +0.000 c 62 0 m 26 0 l 26 -265 l 81 -265 l 141 -77 l 146 -60 150 -47 153 -38 ct +156 -48 160 -62 166 -80 ct 225 -265 l 280 -265 l 280 0 l 244 0 l 244 -224 l +172 0 l 133 0 l 62 -224 l 62 0 l p ef +497 0 m 335 0 l 335 -265 l 371 -265 l 371 -31 l 497 -31 l 497 0 l +p ef +580 0 m 544 0 l 544 -265 l 642 -265 l 659 -265 672 -264 681 -262 ct 694 -260 704 -256 713 -250 ct +722 -244 729 -235 734 -224 ct 739 -213 742 -201 742 -188 ct 742 -166 735 -147 721 -131 ct +707 -116 682 -108 646 -108 ct 580 -108 l 580 0 l p +580 -234 m 580 -139 l 646 -139 l 667 -139 683 -143 692 -151 ct 701 -160 706 -172 706 -187 ct +706 -198 703 -208 698 -216 ct 692 -224 685 -229 676 -231 ct 671 -233 660 -234 645 -234 ct +580 -234 l p ef +885 -267 m 885 0 l 851 0 l 851 -208 l 844 -201 833 -193 821 -186 ct 808 -178 797 -173 787 -169 ct +787 -200 l 805 -209 821 -219 835 -232 ct 848 -244 858 -256 863 -267 ct 885 -267 l +p ef +pom +gr +gr +gs +gs +pum +7026 6052 t +0.000 c 62 0 m 26 0 l 26 -265 l 81 -265 l 141 -77 l 146 -60 150 -47 153 -38 ct +156 -48 160 -62 166 -80 ct 225 -265 l 280 -265 l 280 0 l 244 0 l 244 -224 l +172 0 l 133 0 l 62 -224 l 62 0 l p ef +497 0 m 335 0 l 335 -265 l 371 -265 l 371 -31 l 497 -31 l 497 0 l +p ef +580 0 m 544 0 l 544 -265 l 642 -265 l 659 -265 672 -264 681 -262 ct 694 -260 704 -256 713 -250 ct +722 -244 729 -235 734 -224 ct 739 -213 742 -201 742 -188 ct 742 -166 735 -147 721 -131 ct +707 -116 682 -108 646 -108 ct 580 -108 l 580 0 l p +580 -234 m 580 -139 l 646 -139 l 667 -139 683 -143 692 -151 ct 701 -160 706 -172 706 -187 ct +706 -198 703 -208 698 -216 ct 692 -224 685 -229 676 -231 ct 671 -233 660 -234 645 -234 ct +580 -234 l p ef +801 -33 m 931 -33 l 931 0 l 756 0 l 756 -8 757 -16 760 -23 ct 764 -36 771 -48 781 -60 ct +790 -72 804 -85 822 -99 ct 851 -123 870 -142 880 -155 ct 890 -168 895 -181 895 -193 ct +895 -205 890 -215 881 -224 ct 872 -232 861 -236 846 -236 ct 830 -236 818 -232 809 -223 ct +800 -215 795 -203 795 -188 ct 761 -193 l 764 -217 772 -235 787 -248 ct 802 -261 822 -267 847 -267 ct +872 -267 892 -260 906 -246 ct 921 -232 928 -214 928 -193 ct 928 -183 926 -172 922 -162 ct +918 -151 911 -141 902 -129 ct 892 -118 876 -102 853 -83 ct 834 -67 821 -56 815 -51 ct +810 -45 805 -39 801 -33 ct p ef +pom +gr +gr +1333 5222 m 1333 5072 l ps +2281 5222 m 2281 5072 l ps +3229 5222 m 3229 5072 l ps +4177 5222 m 4177 5072 l ps +5126 5222 m 5126 5072 l ps +6074 5222 m 6074 5072 l ps +7022 5222 m 7022 5072 l ps +7971 5222 m 7971 5072 l ps +0 lw 1 lj 1333 5072 m 7971 5072 l ps +gs +gs +pum +915 5173 t +0.000 c 14 -100 m 14 -124 16 -143 21 -158 ct 26 -173 33 -185 42 -192 ct 52 -200 64 -204 78 -204 ct +89 -204 98 -201 107 -197 ct 115 -193 122 -186 127 -178 ct 132 -170 136 -160 138 -148 ct +141 -136 143 -120 143 -100 ct 143 -76 141 -57 136 -42 ct 131 -27 124 -15 114 -8 ct +105 0 93 4 78 4 ct 59 4 44 -3 33 -16 ct 20 -34 14 -62 14 -100 ct p +39 -100 m 39 -67 43 -45 50 -35 ct 58 -25 67 -20 78 -20 ct 89 -20 99 -25 106 -35 ct +114 -46 118 -67 118 -100 ct 118 -132 114 -154 106 -164 ct 99 -175 90 -180 78 -180 ct +67 -180 58 -175 51 -166 ct 43 -154 39 -132 39 -100 ct p ef +pom +gr +gr +gs +gs +pum +790 4634 t +0.000 c 106 -204 m 106 0 l 80 0 l 80 -159 l 74 -153 67 -147 57 -142 ct +48 -136 39 -132 31 -129 ct 31 -153 l 45 -159 57 -167 67 -177 ct 78 -186 85 -195 89 -204 ct +106 -204 l p ef +177 -100 m 177 -124 179 -143 184 -158 ct 189 -173 196 -185 205 -192 ct 215 -200 227 -204 241 -204 ct +252 -204 261 -201 270 -197 ct 278 -193 285 -186 290 -178 ct 295 -170 299 -160 301 -148 ct +304 -136 306 -120 306 -100 ct 306 -76 304 -57 299 -42 ct 294 -27 287 -15 277 -8 ct +268 0 256 4 241 4 ct 222 4 207 -3 196 -16 ct 183 -34 177 -62 177 -100 ct p +202 -100 m 202 -67 206 -45 213 -35 ct 221 -25 230 -20 241 -20 ct 252 -20 262 -25 269 -35 ct +277 -46 281 -67 281 -100 ct 281 -132 277 -154 269 -164 ct 262 -175 253 -180 241 -180 ct +230 -180 221 -175 214 -166 ct 206 -154 202 -132 202 -100 ct p ef +pom +gr +gr +gs +gs +pum +790 4115 t +0.000 c 42 -25 m 141 -25 l 141 0 l 8 0 l 8 -6 9 -12 11 -18 ct 14 -27 19 -37 26 -46 ct +34 -55 44 -65 58 -76 ct 80 -94 94 -108 102 -118 ct 110 -128 114 -138 114 -147 ct +114 -156 110 -164 103 -171 ct 96 -177 87 -180 76 -180 ct 64 -180 55 -177 48 -170 ct +41 -164 37 -155 37 -143 ct 12 -147 l 13 -165 20 -179 31 -189 ct 43 -199 58 -204 77 -204 ct +96 -204 111 -198 122 -187 ct 133 -177 139 -163 139 -147 ct 139 -139 137 -131 134 -123 ct +131 -115 126 -107 119 -98 ct 111 -90 99 -78 82 -63 ct 67 -51 57 -43 53 -39 ct 48 -34 45 -30 42 -25 ct +p ef +177 -100 m 177 -124 179 -143 184 -158 ct 189 -173 196 -185 205 -192 ct 215 -200 227 -204 241 -204 ct +252 -204 261 -201 270 -197 ct 278 -193 285 -186 290 -178 ct 295 -170 299 -160 301 -148 ct +304 -136 306 -120 306 -100 ct 306 -76 304 -57 299 -42 ct 294 -27 287 -15 277 -8 ct +268 0 256 4 241 4 ct 222 4 207 -3 196 -16 ct 183 -34 177 -62 177 -100 ct p +202 -100 m 202 -67 206 -45 213 -35 ct 221 -25 230 -20 241 -20 ct 252 -20 262 -25 269 -35 ct +277 -46 281 -67 281 -100 ct 281 -132 277 -154 269 -164 ct 262 -175 253 -180 241 -180 ct +230 -180 221 -175 214 -166 ct 206 -154 202 -132 202 -100 ct p ef +pom +gr +gr +gs +gs +pum +790 3576 t +0.000 c 14 -53 m 39 -57 l 42 -44 46 -34 53 -28 ct 59 -22 67 -20 77 -20 ct 89 -20 99 -24 106 -31 ct +114 -39 118 -49 118 -61 ct 118 -72 114 -81 107 -88 ct 100 -95 90 -99 79 -99 ct +75 -99 69 -98 62 -96 ct 65 -119 l 67 -119 68 -119 69 -119 ct 79 -119 88 -122 96 -127 ct +104 -132 108 -140 108 -151 ct 108 -159 105 -166 99 -172 ct 93 -177 85 -180 76 -180 ct +67 -180 59 -177 53 -172 ct 47 -166 43 -158 41 -147 ct 16 -151 l 19 -168 25 -181 36 -190 ct +46 -199 60 -204 75 -204 ct 86 -204 96 -201 105 -197 ct 114 -192 121 -186 126 -177 ct +131 -169 133 -161 133 -151 ct 133 -143 131 -135 126 -128 ct 121 -121 115 -115 105 -111 ct +117 -108 127 -102 133 -93 ct 140 -85 143 -74 143 -60 ct 143 -42 137 -27 124 -15 ct +112 -2 96 4 76 4 ct 59 4 45 -1 33 -12 ct 22 -22 15 -36 14 -53 ct p ef +177 -100 m 177 -124 179 -143 184 -158 ct 189 -173 196 -185 205 -192 ct 215 -200 227 -204 241 -204 ct +252 -204 261 -201 270 -197 ct 278 -193 285 -186 290 -178 ct 295 -170 299 -160 301 -148 ct +304 -136 306 -120 306 -100 ct 306 -76 304 -57 299 -42 ct 294 -27 287 -15 277 -8 ct +268 0 256 4 241 4 ct 222 4 207 -3 196 -16 ct 183 -34 177 -62 177 -100 ct p +202 -100 m 202 -67 206 -45 213 -35 ct 221 -25 230 -20 241 -20 ct 252 -20 262 -25 269 -35 ct +277 -46 281 -67 281 -100 ct 281 -132 277 -154 269 -164 ct 262 -175 253 -180 241 -180 ct +230 -180 221 -175 214 -166 ct 206 -154 202 -132 202 -100 ct p ef +pom +gr +gr +gs +gs +pum +790 3036 t +0.000 c 118 0 m 92 0 l 92 -49 l 4 -49 l 4 -74 l 98 -200 l 118 -200 l +118 -74 l 143 -74 l 143 -49 l 118 -49 l 118 0 l p +35 -74 m 92 -74 l 92 -150 l 35 -74 l p ef +177 -100 m 177 -124 179 -143 184 -158 ct 189 -173 196 -185 205 -192 ct 215 -200 227 -204 241 -204 ct +252 -204 261 -201 270 -197 ct 278 -193 285 -186 290 -178 ct 295 -170 299 -160 301 -148 ct +304 -136 306 -120 306 -100 ct 306 -76 304 -57 299 -42 ct 294 -27 287 -15 277 -8 ct +268 0 256 4 241 4 ct 222 4 207 -3 196 -16 ct 183 -34 177 -62 177 -100 ct p +202 -100 m 202 -67 206 -45 213 -35 ct 221 -25 230 -20 241 -20 ct 252 -20 262 -25 269 -35 ct +277 -46 281 -67 281 -100 ct 281 -132 277 -154 269 -164 ct 262 -175 253 -180 241 -180 ct +230 -180 221 -175 214 -166 ct 206 -154 202 -132 202 -100 ct p ef +pom +gr +gr +gs +gs +pum +790 2518 t +0.000 c 14 -53 m 39 -55 l 41 -43 45 -34 52 -28 ct 58 -23 66 -20 76 -20 ct 89 -20 99 -24 106 -33 ct +114 -41 118 -53 118 -67 ct 118 -81 114 -92 107 -100 ct 100 -108 90 -112 77 -112 ct +69 -112 62 -110 57 -106 ct 51 -103 47 -98 43 -92 ct 18 -96 l 39 -200 l 133 -200 l +133 -174 l 60 -174 l 49 -122 l 61 -131 72 -135 85 -135 ct 101 -135 115 -129 126 -117 ct +137 -104 143 -88 143 -69 ct 143 -50 138 -34 128 -21 ct 115 -4 98 4 76 4 ct 59 4 44 -1 33 -12 ct +22 -22 15 -36 14 -53 ct p ef +177 -100 m 177 -124 179 -143 184 -158 ct 189 -173 196 -185 205 -192 ct 215 -200 227 -204 241 -204 ct +252 -204 261 -201 270 -197 ct 278 -193 285 -186 290 -178 ct 295 -170 299 -160 301 -148 ct +304 -136 306 -120 306 -100 ct 306 -76 304 -57 299 -42 ct 294 -27 287 -15 277 -8 ct +268 0 256 4 241 4 ct 222 4 207 -3 196 -16 ct 183 -34 177 -62 177 -100 ct p +202 -100 m 202 -67 206 -45 213 -35 ct 221 -25 230 -20 241 -20 ct 252 -20 262 -25 269 -35 ct +277 -46 281 -67 281 -100 ct 281 -132 277 -154 269 -164 ct 262 -175 253 -180 241 -180 ct +230 -180 221 -175 214 -166 ct 206 -154 202 -132 202 -100 ct p ef +pom +gr +gr +gs +gs +pum +790 1978 t +0.000 c 139 -151 m 114 -149 l 111 -158 108 -165 104 -170 ct 98 -177 89 -180 79 -180 ct +72 -180 64 -178 58 -174 ct 51 -168 45 -161 40 -150 ct 36 -140 33 -124 33 -104 ct +39 -113 47 -120 55 -125 ct 64 -129 73 -131 83 -131 ct 99 -131 114 -125 125 -113 ct +137 -101 143 -85 143 -65 ct 143 -53 140 -41 135 -30 ct 129 -19 122 -11 112 -5 ct +102 1 91 4 79 4 ct 58 4 41 -4 28 -19 ct 14 -34 8 -60 8 -95 ct 8 -134 15 -163 30 -180 ct +42 -196 60 -204 81 -204 ct 97 -204 110 -199 121 -190 ct 131 -180 137 -167 139 -151 ct +p +33 -66 m 33 -58 35 -50 39 -43 ct 43 -35 48 -29 55 -25 ct 61 -22 69 -20 77 -20 ct +89 -20 98 -24 106 -32 ct 114 -40 118 -51 118 -65 ct 118 -78 114 -89 106 -96 ct +99 -104 89 -108 76 -108 ct 64 -108 54 -104 46 -96 ct 37 -89 33 -78 33 -66 ct p ef +177 -100 m 177 -124 179 -143 184 -158 ct 189 -173 196 -185 205 -192 ct 215 -200 227 -204 241 -204 ct +252 -204 261 -201 270 -197 ct 278 -193 285 -186 290 -178 ct 295 -170 299 -160 301 -148 ct +304 -136 306 -120 306 -100 ct 306 -76 304 -57 299 -42 ct 294 -27 287 -15 277 -8 ct +268 0 256 4 241 4 ct 222 4 207 -3 196 -16 ct 183 -34 177 -62 177 -100 ct p +202 -100 m 202 -67 206 -45 213 -35 ct 221 -25 230 -20 241 -20 ct 252 -20 262 -25 269 -35 ct +277 -46 281 -67 281 -100 ct 281 -132 277 -154 269 -164 ct 262 -175 253 -180 241 -180 ct +230 -180 221 -175 214 -166 ct 206 -154 202 -132 202 -100 ct p ef +pom +gr +gr +gs +gs +pum +790 1459 t +0.000 c 112 -174 m 12 -174 l 12 -200 l 143 -200 l 143 -179 l 131 -165 118 -147 106 -125 ct +94 -102 84 -79 78 -55 ct 73 -38 70 -20 69 0 ct 43 0 l 43 -16 46 -35 52 -57 ct +58 -80 66 -101 77 -122 ct 88 -143 99 -160 112 -174 ct p ef +177 -100 m 177 -124 179 -143 184 -158 ct 189 -173 196 -185 205 -192 ct 215 -200 227 -204 241 -204 ct +252 -204 261 -201 270 -197 ct 278 -193 285 -186 290 -178 ct 295 -170 299 -160 301 -148 ct +304 -136 306 -120 306 -100 ct 306 -76 304 -57 299 -42 ct 294 -27 287 -15 277 -8 ct +268 0 256 4 241 4 ct 222 4 207 -3 196 -16 ct 183 -34 177 -62 177 -100 ct p +202 -100 m 202 -67 206 -45 213 -35 ct 221 -25 230 -20 241 -20 ct 252 -20 262 -25 269 -35 ct +277 -46 281 -67 281 -100 ct 281 -132 277 -154 269 -164 ct 262 -175 253 -180 241 -180 ct +230 -180 221 -175 214 -166 ct 206 -154 202 -132 202 -100 ct p ef +pom +gr +gr +gs +gs +pum +790 920 t +0.000 c 52 -112 m 41 -116 34 -121 29 -128 ct 24 -135 22 -143 22 -153 ct 22 -167 27 -179 37 -189 ct +47 -199 61 -204 78 -204 ct 95 -204 109 -199 119 -189 ct 130 -179 135 -166 135 -152 ct +135 -143 133 -135 128 -128 ct 123 -121 116 -116 106 -112 ct 118 -108 127 -101 133 -92 ct +140 -83 143 -72 143 -59 ct 143 -41 137 -26 125 -14 ct 113 -2 98 4 78 4 ct 59 4 43 -2 32 -14 ct +20 -26 14 -42 14 -60 ct 14 -73 17 -85 24 -94 ct 30 -103 40 -109 52 -112 ct p +47 -153 m 47 -144 50 -137 55 -132 ct 61 -126 69 -123 79 -123 ct 88 -123 96 -126 101 -131 ct +107 -137 110 -143 110 -151 ct 110 -159 107 -166 101 -172 ct 96 -177 88 -180 78 -180 ct +69 -180 61 -177 55 -172 ct 50 -167 47 -160 47 -153 ct p +39 -60 m 39 -53 41 -46 43 -40 ct 46 -34 51 -28 58 -25 ct 64 -21 71 -20 79 -20 ct +90 -20 100 -23 107 -31 ct 114 -38 118 -48 118 -59 ct 118 -71 114 -81 107 -88 ct +99 -96 90 -100 78 -100 ct 66 -100 57 -96 50 -89 ct 43 -81 39 -71 39 -60 ct p ef +177 -100 m 177 -124 179 -143 184 -158 ct 189 -173 196 -185 205 -192 ct 215 -200 227 -204 241 -204 ct +252 -204 261 -201 270 -197 ct 278 -193 285 -186 290 -178 ct 295 -170 299 -160 301 -148 ct +304 -136 306 -120 306 -100 ct 306 -76 304 -57 299 -42 ct 294 -27 287 -15 277 -8 ct +268 0 256 4 241 4 ct 222 4 207 -3 196 -16 ct 183 -34 177 -62 177 -100 ct p +202 -100 m 202 -67 206 -45 213 -35 ct 221 -25 230 -20 241 -20 ct 252 -20 262 -25 269 -35 ct +277 -46 281 -67 281 -100 ct 281 -132 277 -154 269 -164 ct 262 -175 253 -180 241 -180 ct +230 -180 221 -175 214 -166 ct 206 -154 202 -132 202 -100 ct p ef +pom +gr +gr +1 lw 0 lj 1183 5072 m 1333 5072 l ps +1183 4541 m 1333 4541 l ps +1183 4011 m 1333 4011 l ps +1183 3480 m 1333 3480 l ps +1183 2950 m 1333 2950 l ps +1183 2420 m 1333 2420 l ps +1183 1889 m 1333 1889 l ps +1183 1359 m 1333 1359 l ps +1183 829 m 1333 829 l ps +0 lw 1 lj 1333 5072 m 1333 829 l ps +0.996 c 7180 5072 m 7496 5072 l 7496 3783 l 7180 3783 l 7180 5072 l +p ef +0.000 c 7180 5072 m 7496 5072 l 7496 3783 l 7180 3783 l 7180 5072 l +pc +0.996 c 6232 5072 m 6548 5072 l 6548 3852 l 6232 3852 l 6232 5072 l +p ef +0.000 c 6232 5072 m 6548 5072 l 6548 3852 l 6232 3852 l 6232 5072 l +pc +0.996 c 5284 5072 m 5600 5072 l 5600 3788 l 5284 3788 l 5284 5072 l +p ef +0.000 c 5284 5072 m 5600 5072 l 5600 3788 l 5284 3788 l 5284 5072 l +pc +0.996 c 4335 5072 m 4651 5072 l 4651 4080 l 4335 4080 l 4335 5072 l +p ef +0.000 c 4335 5072 m 4651 5072 l 4651 4080 l 4335 4080 l 4335 5072 l +pc +0.996 c 3387 5072 m 3703 5072 l 3703 4165 l 3387 4165 l 3387 5072 l +p ef +100 lw 0.000 c 3387 5072 m 3703 5072 l 3703 4165 l 3387 4165 l 3387 5072 l +pc +0.996 c 2439 5072 m 2755 5072 l 2755 3815 l 2439 3815 l 2439 5072 l +p ef +0 lw 0.000 c 2439 5072 m 2755 5072 l 2755 3815 l 2439 3815 l 2439 5072 l +pc +0.398 c 1491 5072 m 1807 5072 l 1807 4106 l 1491 4106 l 1491 5072 l +p ef +0.000 c 1491 5072 m 1807 5072 l 1807 4106 l 1491 4106 l 1491 5072 l +pc +gs +1 lw 0 lj 7496 2718 m 7582 2632 l ps +7496 2850 m 7714 2632 l ps +7496 2982 m 7812 2666 l ps +7496 3114 m 7812 2798 l ps +7496 3246 m 7812 2930 l ps +7496 3378 m 7812 3062 l ps +7496 3510 m 7812 3194 l ps +7496 3642 m 7812 3326 l ps +7496 3774 m 7812 3458 l ps +7496 3906 m 7812 3590 l ps +7496 4038 m 7812 3722 l ps +7496 4170 m 7812 3854 l ps +7496 4302 m 7812 3986 l ps +7496 4434 m 7812 4118 l ps +7496 4566 m 7812 4250 l ps +7496 4698 m 7812 4382 l ps +7496 4830 m 7812 4514 l ps +7496 4962 m 7812 4646 l ps +7518 5072 m 7812 4778 l ps +7650 5072 m 7812 4910 l ps +7782 5072 m 7812 5042 l ps +gr +7496 5072 m 7812 5072 l 7812 2632 l 7496 2632 l 7496 5072 l pc +gs +1 lw 0 lj 6548 2941 m 6634 2855 l ps +6548 3073 m 6766 2855 l ps +6548 3205 m 6864 2889 l ps +6548 3337 m 6864 3021 l ps +6548 3469 m 6864 3153 l ps +6548 3601 m 6864 3285 l ps +6548 3733 m 6864 3417 l ps +6548 3865 m 6864 3549 l ps +6548 3997 m 6864 3681 l ps +6548 4129 m 6864 3813 l ps +6548 4261 m 6864 3945 l ps +6548 4393 m 6864 4077 l ps +6548 4525 m 6864 4209 l ps +6548 4657 m 6864 4341 l ps +6548 4789 m 6864 4473 l ps +6548 4921 m 6864 4605 l ps +6548 5053 m 6864 4737 l ps +6661 5072 m 6864 4869 l ps +6793 5072 m 6864 5001 l ps +gr +6548 5072 m 6864 5072 l 6864 2855 l 6548 2855 l 6548 5072 l pc +gs +1 lw 0 lj 5600 1509 m 5686 1423 l ps +5600 1641 m 5818 1423 l ps +5600 1773 m 5916 1457 l ps +5600 1905 m 5916 1589 l ps +5600 2037 m 5916 1721 l ps +5600 2169 m 5916 1853 l ps +5600 2301 m 5916 1985 l ps +5600 2433 m 5916 2117 l ps +5600 2565 m 5916 2249 l ps +5600 2697 m 5916 2381 l ps +5600 2829 m 5916 2513 l ps +5600 2961 m 5916 2645 l ps +5600 3093 m 5916 2777 l ps +5600 3225 m 5916 2909 l ps +5600 3357 m 5916 3041 l ps +5600 3489 m 5916 3173 l ps +5600 3621 m 5916 3305 l ps +5600 3753 m 5916 3437 l ps +5600 3885 m 5916 3569 l ps +5600 4017 m 5916 3701 l ps +5600 4149 m 5916 3833 l ps +5600 4281 m 5916 3965 l ps +5600 4413 m 5916 4097 l ps +5600 4545 m 5916 4229 l ps +5600 4677 m 5916 4361 l ps +5600 4809 m 5916 4493 l ps +5600 4941 m 5916 4625 l ps +5601 5072 m 5916 4757 l ps +5733 5072 m 5916 4889 l ps +5865 5072 m 5916 5021 l ps +gr +5600 5072 m 5916 5072 l 5916 1423 l 5600 1423 l 5600 5072 l pc +gs +1 lw 0 lj 4652 3375 m 4738 3289 l ps +4652 3507 m 4870 3289 l ps +4652 3639 m 4968 3323 l ps +4652 3771 m 4968 3455 l ps +4652 3903 m 4968 3587 l ps +4652 4035 m 4968 3719 l ps +4652 4167 m 4968 3851 l ps +4652 4299 m 4968 3983 l ps +4652 4431 m 4968 4115 l ps +4652 4563 m 4968 4247 l ps +4652 4695 m 4968 4379 l ps +4652 4827 m 4968 4511 l ps +4652 4959 m 4968 4643 l ps +4671 5072 m 4968 4775 l ps +4803 5072 m 4968 4907 l ps +4935 5072 m 4968 5039 l ps +gr +4652 5072 m 4968 5072 l 4968 3289 l 4652 3289 l 4652 5072 l pc +0.750 c 3703 5072 m 4019 5072 l 4019 3496 l 3703 3496 l 3703 5072 l +p ef +gs +1 lw 0 lj 0.000 c 3703 3582 m 3789 3496 l ps +3703 3714 m 3921 3496 l ps +3703 3846 m 4019 3530 l ps +3703 3978 m 4019 3662 l ps +3703 4110 m 4019 3794 l ps +3703 4242 m 4019 3926 l ps +3703 4374 m 4019 4058 l ps +3703 4506 m 4019 4190 l ps +3703 4638 m 4019 4322 l ps +3703 4770 m 4019 4454 l ps +3703 4902 m 4019 4586 l ps +3703 5034 m 4019 4718 l ps +3797 5072 m 4019 4850 l ps +3929 5072 m 4019 4982 l ps +gr +100 lw 0.000 c 3703 5072 m 4019 5072 l 4019 3496 l 3703 3496 l 3703 5072 l +pc +gs +1 lw 0 lj 2755 1699 m 2841 1613 l ps +2755 1831 m 2973 1613 l ps +2755 1963 m 3071 1647 l ps +2755 2095 m 3071 1779 l ps +2755 2227 m 3071 1911 l ps +2755 2359 m 3071 2043 l ps +2755 2491 m 3071 2175 l ps +2755 2623 m 3071 2307 l ps +2755 2755 m 3071 2439 l ps +2755 2887 m 3071 2571 l ps +2755 3019 m 3071 2703 l ps +2755 3151 m 3071 2835 l ps +2755 3283 m 3071 2967 l ps +2755 3415 m 3071 3099 l ps +2755 3547 m 3071 3231 l ps +2755 3679 m 3071 3363 l ps +2755 3811 m 3071 3495 l ps +2755 3943 m 3071 3627 l ps +2755 4075 m 3071 3759 l ps +2755 4207 m 3071 3891 l ps +2755 4339 m 3071 4023 l ps +2755 4471 m 3071 4155 l ps +2755 4603 m 3071 4287 l ps +2755 4735 m 3071 4419 l ps +2755 4867 m 3071 4551 l ps +2755 4999 m 3071 4683 l ps +2814 5072 m 3071 4815 l ps +2946 5072 m 3071 4947 l ps +gr +0 lw 2755 5072 m 3071 5072 l 3071 1613 l 2755 1613 l 2755 5072 l pc +0.398 c 1807 5072 m 2123 5072 l 2123 2982 l 1807 2982 l 1807 5072 l +p ef +gs +1 lw 0 lj 0.000 c 1807 3068 m 1893 2982 l ps +1807 3200 m 2025 2982 l ps +1807 3332 m 2123 3016 l ps +1807 3464 m 2123 3148 l ps +1807 3596 m 2123 3280 l ps +1807 3728 m 2123 3412 l ps +1807 3860 m 2123 3544 l ps +1807 3992 m 2123 3676 l ps +1807 4124 m 2123 3808 l ps +1807 4256 m 2123 3940 l ps +1807 4388 m 2123 4072 l ps +1807 4520 m 2123 4204 l ps +1807 4652 m 2123 4336 l ps +1807 4784 m 2123 4468 l ps +1807 4916 m 2123 4600 l ps +1807 5048 m 2123 4732 l ps +1915 5072 m 2123 4864 l ps +2047 5072 m 2123 4996 l ps +gr +0.000 c 1807 5072 m 2123 5072 l 2123 2982 l 1807 2982 l 1807 5072 l +pc +1 lw 0 lj 1649 4117 m 1649 4106 l 1649 4096 l ps +1749 4117 m 1549 4117 l ps +1549 4096 m 1749 4096 l ps +2597 3829 m 2597 3815 l 2597 3800 l ps +2697 3829 m 2497 3829 l ps +2497 3800 m 2697 3800 l ps +3545 4178 m 3545 4165 l 3545 4151 l ps +3645 4178 m 3445 4178 l ps +3445 4151 m 3645 4151 l ps +4493 4093 m 4493 4080 l 4493 4066 l ps +4593 4093 m 4393 4093 l ps +4393 4066 m 4593 4066 l ps +5442 3804 m 5442 3788 l 5442 3772 l ps +5542 3804 m 5342 3804 l ps +5342 3772 m 5542 3772 l ps +6390 3868 m 6390 3852 l 6390 3836 l ps +6490 3868 m 6290 3868 l ps +6290 3836 m 6490 3836 l ps +7338 3799 m 7338 3783 l 7338 3767 l ps +7438 3799 m 7238 3799 l ps +7238 3767 m 7438 3767 l ps +1965 2992 m 1965 2982 l 1965 2971 l ps +2065 2992 m 1865 2992 l ps +1865 2971 m 2065 2971 l ps +2913 1650 m 2913 1613 l 2913 1577 l ps +3013 1650 m 2813 1650 l ps +2813 1577 m 3013 1577 l ps +3861 3528 m 3861 3496 l 3861 3464 l ps +3961 3528 m 3761 3528 l ps +3761 3464 m 3961 3464 l ps +4810 3321 m 4810 3289 l 4810 3258 l ps +4910 3321 m 4710 3321 l ps +4710 3258 m 4910 3258 l ps +5758 1458 m 5758 1423 l 5758 1388 l ps +5858 1458 m 5658 1458 l ps +5658 1388 m 5858 1388 l ps +6706 2892 m 6706 2855 l 6706 2817 l ps +6806 2892 m 6606 2892 l ps +6606 2817 m 6806 2817 l ps +7654 2669 m 7654 2632 l 7654 2595 l ps +7754 2669 m 7554 2669 l ps +7554 2595 m 7754 2595 l ps +gs +gs +pum +956 425 t +59 0 m 27 0 l 27 -232 l 61 -232 l 176 -55 l 176 -232 l 208 -232 l +208 0 l 174 0 l 59 -177 l 59 0 l p ef +294 0 m 262 0 l 262 -232 l 294 -232 l 294 0 l p ef +342 -79 m 373 -79 l 375 -67 378 -57 382 -49 ct 387 -41 395 -35 405 -30 ct +415 -25 426 -23 438 -23 ct 449 -23 459 -24 468 -28 ct 476 -32 483 -37 487 -43 ct +491 -50 493 -56 493 -63 ct 493 -70 491 -77 488 -82 ct 485 -87 478 -92 469 -96 ct +463 -98 450 -102 429 -107 ct 408 -112 394 -117 385 -122 ct 373 -127 365 -135 359 -143 ct +354 -152 351 -162 351 -172 ct 351 -184 354 -195 361 -206 ct 367 -216 377 -224 390 -229 ct +403 -234 417 -237 433 -237 ct 450 -237 465 -234 478 -229 ct 491 -223 502 -215 509 -204 ct +516 -193 520 -181 520 -167 ct 488 -167 l 487 -181 482 -192 473 -199 ct 464 -206 451 -210 434 -210 ct +416 -210 403 -206 395 -200 ct 387 -193 382 -184 382 -175 ct 382 -166 385 -159 391 -154 ct +397 -148 412 -143 436 -137 ct 460 -131 477 -127 486 -122 ct 499 -116 509 -108 515 -98 ct +521 -89 525 -78 525 -65 ct 525 -53 521 -41 514 -30 ct 507 -19 497 -11 484 -5 ct +471 1 456 5 440 5 ct 419 5 401 1 387 -5 ct 373 -12 362 -22 354 -35 ct 346 -48 342 -62 342 -79 ct +p ef +652 0 m 621 0 l 621 -205 l 544 -205 l 544 -232 l 729 -232 l 729 -205 l +652 -205 l 652 0 l p ef +952 -174 m 923 -172 l 920 -183 917 -191 912 -196 ct 904 -204 895 -208 884 -208 ct +875 -208 866 -205 859 -200 ct 850 -194 844 -185 838 -173 ct 833 -161 831 -143 830 -120 ct +837 -131 846 -139 856 -144 ct 866 -149 876 -151 887 -151 ct 907 -151 923 -144 936 -130 ct +950 -116 957 -98 957 -75 ct 957 -61 954 -47 947 -34 ct 941 -22 932 -12 921 -6 ct +910 1 897 5 883 5 ct 859 5 839 -4 824 -22 ct 809 -40 801 -69 801 -109 ct 801 -154 809 -187 826 -208 ct +841 -226 861 -235 885 -235 ct 904 -235 919 -229 931 -219 ct 943 -208 950 -193 952 -174 ct +p +830 -76 m 830 -67 833 -58 837 -49 ct 841 -40 847 -34 855 -29 ct 863 -25 871 -23 881 -23 ct +894 -23 905 -27 914 -37 ct 923 -46 927 -58 927 -74 ct 927 -90 923 -102 914 -111 ct +906 -120 894 -124 879 -124 ct 866 -124 854 -120 845 -111 ct 835 -102 830 -90 830 -76 ct +p ef +1027 -29 m 1141 -29 l 1141 0 l 988 0 l 988 -7 989 -14 991 -21 ct 995 -31 1001 -42 1009 -52 ct +1018 -63 1030 -74 1046 -87 ct 1071 -108 1088 -124 1097 -136 ct 1105 -148 1110 -159 1110 -169 ct +1110 -180 1106 -189 1098 -197 ct 1090 -204 1080 -208 1067 -208 ct 1053 -208 1042 -204 1034 -196 ct +1026 -189 1022 -178 1022 -165 ct 993 -169 l 995 -191 1002 -207 1015 -218 ct +1028 -229 1045 -235 1067 -235 ct 1089 -235 1107 -228 1120 -216 ct 1133 -204 1139 -188 1139 -170 ct +1139 -160 1137 -151 1134 -142 ct 1130 -133 1124 -123 1116 -113 ct 1107 -103 1093 -90 1073 -73 ct +1056 -59 1045 -49 1040 -44 ct 1035 -39 1031 -34 1027 -29 ct p ef +1366 -63 m 1395 -59 l 1392 -40 1384 -25 1372 -14 ct 1359 -3 1344 2 1325 2 ct +1302 2 1284 -5 1270 -20 ct 1256 -35 1249 -56 1249 -84 ct 1249 -102 1252 -118 1257 -131 ct +1263 -145 1272 -155 1285 -161 ct 1297 -168 1310 -172 1324 -172 ct 1342 -172 1357 -167 1369 -158 ct +1380 -149 1387 -136 1391 -120 ct 1361 -115 l 1359 -125 1354 -132 1348 -137 ct +1341 -142 1334 -144 1325 -144 ct 1311 -144 1299 -140 1291 -130 ct 1282 -121 1278 -105 1278 -85 ct +1278 -64 1282 -49 1291 -39 ct 1299 -30 1310 -25 1324 -25 ct 1335 -25 1344 -28 1352 -34 ct +1359 -41 1364 -50 1366 -63 ct p ef +1450 0 m 1421 0 l 1421 -232 l 1450 -232 l 1450 -146 l 1463 -163 1479 -172 1499 -172 ct +1511 -172 1522 -169 1531 -164 ct 1540 -159 1546 -153 1550 -144 ct 1554 -135 1556 -123 1556 -106 ct +1556 0 l 1527 0 l 1527 -104 l 1527 -118 1524 -129 1518 -135 ct 1512 -141 1503 -144 1493 -144 ct +1485 -144 1477 -142 1470 -138 ct 1463 -134 1457 -128 1454 -121 ct 1451 -113 1450 -103 1450 -90 ct +1450 0 l p ef +1690 -20 m 1679 -12 1670 -6 1660 -3 ct 1651 1 1641 2 1630 2 ct 1612 2 1598 -2 1589 -11 ct +1579 -20 1575 -31 1575 -45 ct 1575 -53 1576 -60 1580 -67 ct 1584 -74 1588 -79 1594 -83 ct +1600 -87 1607 -90 1614 -92 ct 1619 -94 1627 -95 1638 -96 ct 1660 -99 1677 -102 1687 -106 ct +1687 -110 1687 -112 1687 -113 ct 1687 -124 1685 -131 1680 -136 ct 1673 -141 1663 -144 1649 -144 ct +1637 -144 1628 -142 1622 -138 ct 1616 -134 1611 -126 1608 -115 ct 1579 -120 l +1582 -132 1586 -141 1591 -149 ct 1597 -156 1606 -162 1616 -166 ct 1627 -170 1640 -172 1654 -172 ct +1669 -172 1680 -170 1689 -166 ct 1698 -163 1705 -159 1709 -153 ct 1713 -148 1716 -141 1718 -133 ct +1719 -128 1719 -120 1719 -108 ct 1719 -73 l 1719 -48 1720 -32 1721 -24 ct 1722 -15 1724 -8 1728 0 ct +1699 0 l 1694 -6 1691 -13 1690 -20 ct p +1687 -71 m 1687 -79 l 1677 -76 1662 -73 1642 -70 ct 1631 -69 1623 -67 1619 -65 ct +1614 -64 1610 -61 1608 -58 ct 1605 -54 1604 -51 1604 -47 ct 1604 -40 1607 -35 1612 -31 ct +1618 -27 1626 -25 1637 -25 ct 1647 -25 1656 -27 1665 -31 ct 1673 -36 1679 -41 1683 -48 ct +1686 -53 1687 -61 1687 -71 ct p ef +1800 0 m 1771 0 l 1771 -169 l 1795 -169 l 1795 -145 l 1802 -156 1808 -163 1813 -166 ct +1819 -170 1825 -172 1832 -172 ct 1841 -172 1851 -169 1861 -164 ct 1851 -138 l +1844 -142 1838 -144 1831 -144 ct 1825 -144 1819 -143 1815 -139 ct 1810 -135 1807 -130 1804 -123 ct +1801 -113 1800 -101 1800 -89 ct 1800 0 l p ef +1970 -20 m 1959 -12 1950 -6 1940 -3 ct 1931 1 1921 2 1910 2 ct 1892 2 1878 -2 1869 -11 ct +1859 -20 1855 -31 1855 -45 ct 1855 -53 1856 -60 1860 -67 ct 1864 -74 1868 -79 1874 -83 ct +1880 -87 1887 -90 1894 -92 ct 1899 -94 1907 -95 1918 -96 ct 1940 -99 1957 -102 1967 -106 ct +1967 -110 1967 -112 1967 -113 ct 1967 -124 1965 -131 1960 -136 ct 1953 -141 1943 -144 1929 -144 ct +1917 -144 1908 -142 1902 -138 ct 1896 -134 1891 -126 1888 -115 ct 1859 -120 l +1862 -132 1866 -141 1871 -149 ct 1877 -156 1886 -162 1896 -166 ct 1907 -170 1920 -172 1934 -172 ct +1949 -172 1960 -170 1969 -166 ct 1978 -163 1985 -159 1989 -153 ct 1993 -148 1996 -141 1998 -133 ct +1999 -128 1999 -120 1999 -108 ct 1999 -73 l 1999 -48 2000 -32 2001 -24 ct 2002 -15 2004 -8 2008 0 ct +1979 0 l 1974 -6 1971 -13 1970 -20 ct p +1967 -71 m 1967 -79 l 1957 -76 1942 -73 1922 -70 ct 1911 -69 1903 -67 1899 -65 ct +1894 -64 1890 -61 1888 -58 ct 1885 -54 1884 -51 1884 -47 ct 1884 -40 1887 -35 1892 -31 ct +1898 -27 1906 -25 1917 -25 ct 1927 -25 1936 -27 1945 -31 ct 1953 -36 1959 -41 1963 -48 ct +1966 -53 1967 -61 1967 -71 ct p ef +2158 -63 m 2187 -59 l 2184 -40 2176 -25 2164 -14 ct 2151 -3 2136 2 2117 2 ct +2094 2 2076 -5 2062 -20 ct 2048 -35 2041 -56 2041 -84 ct 2041 -102 2044 -118 2049 -131 ct +2055 -145 2064 -155 2077 -161 ct 2089 -168 2102 -172 2116 -172 ct 2134 -172 2149 -167 2161 -158 ct +2172 -149 2179 -136 2183 -120 ct 2153 -115 l 2151 -125 2146 -132 2140 -137 ct +2133 -142 2126 -144 2117 -144 ct 2103 -144 2091 -140 2083 -130 ct 2074 -121 2070 -105 2070 -85 ct +2070 -64 2074 -49 2083 -39 ct 2091 -30 2102 -25 2116 -25 ct 2127 -25 2136 -28 2144 -34 ct +2151 -41 2156 -50 2158 -63 ct p ef +2274 -26 m 2278 0 l 2270 1 2263 2 2257 2 ct 2246 2 2238 1 2233 -3 ct 2227 -6 2223 -10 2221 -15 ct +2218 -20 2217 -31 2217 -48 ct 2217 -142 l 2197 -142 l 2197 -169 l 2217 -169 l +2217 -211 l 2246 -228 l 2246 -169 l 2274 -169 l 2274 -142 l 2246 -142 l +2246 -47 l 2246 -39 2247 -34 2248 -32 ct 2249 -30 2250 -28 2252 -27 ct 2255 -25 2258 -25 2262 -25 ct +2265 -25 2269 -25 2274 -26 ct p ef +2397 -54 m 2426 -50 l 2421 -33 2413 -20 2400 -11 ct 2388 -2 2371 2 2352 2 ct +2327 2 2307 -5 2293 -20 ct 2279 -35 2271 -56 2271 -83 ct 2271 -111 2279 -133 2293 -148 ct +2308 -164 2327 -172 2350 -172 ct 2373 -172 2391 -164 2406 -149 ct 2420 -133 2427 -112 2427 -84 ct +2427 -83 2427 -80 2427 -77 ct 2301 -77 l 2302 -60 2307 -47 2317 -38 ct 2326 -29 2338 -25 2352 -25 ct +2363 -25 2372 -27 2379 -32 ct 2387 -36 2393 -44 2397 -54 ct p +2301 -104 m 2398 -104 l 2396 -116 2393 -125 2387 -131 ct 2377 -140 2365 -144 2350 -144 ct +2337 -144 2325 -141 2316 -133 ct 2307 -126 2302 -116 2301 -104 ct p ef +2499 0 m 2470 0 l 2470 -169 l 2494 -169 l 2494 -145 l 2501 -156 2507 -163 2512 -166 ct +2518 -170 2524 -172 2531 -172 ct 2540 -172 2550 -169 2560 -164 ct 2550 -138 l +2543 -142 2537 -144 2530 -144 ct 2524 -144 2518 -143 2514 -139 ct 2509 -135 2506 -130 2503 -123 ct +2500 -113 2499 -101 2499 -89 ct 2499 0 l p ef +2764 -63 m 2793 -59 l 2790 -40 2782 -25 2770 -14 ct 2757 -3 2742 2 2723 2 ct +2700 2 2682 -5 2668 -20 ct 2654 -35 2647 -56 2647 -84 ct 2647 -102 2650 -118 2655 -131 ct +2661 -145 2670 -155 2683 -161 ct 2695 -168 2708 -172 2722 -172 ct 2740 -172 2755 -167 2767 -158 ct +2778 -149 2785 -136 2789 -120 ct 2759 -115 l 2757 -125 2752 -132 2746 -137 ct +2739 -142 2732 -144 2723 -144 ct 2709 -144 2697 -140 2689 -130 ct 2680 -121 2676 -105 2676 -85 ct +2676 -64 2680 -49 2689 -39 ct 2697 -30 2708 -25 2722 -25 ct 2733 -25 2742 -28 2750 -34 ct +2757 -41 2762 -50 2764 -63 ct p ef +2848 0 m 2819 0 l 2819 -232 l 2848 -232 l 2848 0 l p ef +2995 -20 m 2984 -12 2975 -6 2965 -3 ct 2956 1 2946 2 2935 2 ct 2917 2 2903 -2 2894 -11 ct +2884 -20 2880 -31 2880 -45 ct 2880 -53 2881 -60 2885 -67 ct 2889 -74 2893 -79 2899 -83 ct +2905 -87 2912 -90 2919 -92 ct 2924 -94 2932 -95 2943 -96 ct 2965 -99 2982 -102 2992 -106 ct +2992 -110 2992 -112 2992 -113 ct 2992 -124 2990 -131 2985 -136 ct 2978 -141 2968 -144 2954 -144 ct +2942 -144 2933 -142 2927 -138 ct 2921 -134 2916 -126 2913 -115 ct 2884 -120 l +2887 -132 2891 -141 2896 -149 ct 2902 -156 2911 -162 2921 -166 ct 2932 -170 2945 -172 2959 -172 ct +2974 -172 2985 -170 2994 -166 ct 3003 -163 3010 -159 3014 -153 ct 3018 -148 3021 -141 3023 -133 ct +3024 -128 3024 -120 3024 -108 ct 3024 -73 l 3024 -48 3025 -32 3026 -24 ct 3027 -15 3029 -8 3033 0 ct +3004 0 l 2999 -6 2996 -13 2995 -20 ct p +2992 -71 m 2992 -79 l 2982 -76 2967 -73 2947 -70 ct 2936 -69 2928 -67 2924 -65 ct +2919 -64 2915 -61 2913 -58 ct 2910 -54 2909 -51 2909 -47 ct 2909 -40 2912 -35 2917 -31 ct +2923 -27 2931 -25 2942 -25 ct 2952 -25 2961 -27 2970 -31 ct 2978 -36 2984 -41 2988 -48 ct +2991 -53 2992 -61 2992 -71 ct p ef +3040 -52 m 3070 -56 l 3071 -46 3075 -38 3082 -33 ct 3089 -28 3099 -25 3111 -25 ct +3124 -25 3133 -27 3139 -32 ct 3146 -36 3149 -42 3149 -48 ct 3149 -54 3145 -58 3138 -62 ct +3134 -64 3124 -67 3110 -70 ct 3092 -75 3078 -80 3070 -84 ct 3062 -88 3055 -93 3051 -100 ct +3047 -107 3045 -114 3045 -123 ct 3045 -130 3046 -137 3050 -144 ct 3053 -150 3058 -155 3063 -160 ct +3068 -163 3073 -166 3081 -168 ct 3088 -170 3096 -172 3105 -172 ct 3117 -172 3128 -170 3138 -166 ct +3148 -162 3155 -156 3159 -149 ct 3164 -142 3167 -133 3169 -122 ct 3140 -117 l +3138 -126 3135 -133 3130 -137 ct 3124 -142 3117 -144 3107 -144 ct 3095 -144 3087 -143 3082 -139 ct +3077 -135 3074 -131 3074 -126 ct 3074 -122 3075 -120 3077 -117 ct 3079 -114 3083 -112 3087 -110 ct +3090 -109 3097 -107 3110 -104 ct 3128 -99 3141 -94 3150 -91 ct 3159 -87 3165 -82 3170 -76 ct +3175 -69 3178 -61 3178 -51 ct 3178 -42 3175 -33 3170 -24 ct 3164 -16 3156 -9 3146 -5 ct +3136 0 3124 2 3111 2 ct 3090 2 3073 -2 3062 -11 ct 3051 -21 3043 -34 3040 -52 ct +p ef +3203 -52 m 3233 -56 l 3234 -46 3238 -38 3245 -33 ct 3252 -28 3262 -25 3274 -25 ct +3287 -25 3296 -27 3302 -32 ct 3309 -36 3312 -42 3312 -48 ct 3312 -54 3308 -58 3301 -62 ct +3297 -64 3287 -67 3273 -70 ct 3255 -75 3241 -80 3233 -84 ct 3225 -88 3218 -93 3214 -100 ct +3210 -107 3208 -114 3208 -123 ct 3208 -130 3209 -137 3213 -144 ct 3216 -150 3221 -155 3226 -160 ct +3231 -163 3236 -166 3244 -168 ct 3251 -170 3259 -172 3268 -172 ct 3280 -172 3291 -170 3301 -166 ct +3311 -162 3318 -156 3322 -149 ct 3327 -142 3330 -133 3332 -122 ct 3303 -117 l +3301 -126 3298 -133 3293 -137 ct 3287 -142 3280 -144 3270 -144 ct 3258 -144 3250 -143 3245 -139 ct +3240 -135 3237 -131 3237 -126 ct 3237 -122 3238 -120 3240 -117 ct 3242 -114 3246 -112 3250 -110 ct +3253 -109 3260 -107 3273 -104 ct 3291 -99 3304 -94 3313 -91 ct 3322 -87 3328 -82 3333 -76 ct +3338 -69 3341 -61 3341 -51 ct 3341 -42 3338 -33 3333 -24 ct 3327 -16 3319 -9 3309 -5 ct +3299 0 3287 2 3274 2 ct 3253 2 3236 -2 3225 -11 ct 3214 -21 3206 -34 3203 -52 ct +p ef +3493 -54 m 3522 -50 l 3517 -33 3509 -20 3496 -11 ct 3484 -2 3467 2 3448 2 ct +3423 2 3403 -5 3389 -20 ct 3375 -35 3367 -56 3367 -83 ct 3367 -111 3375 -133 3389 -148 ct +3404 -164 3423 -172 3446 -172 ct 3469 -172 3487 -164 3502 -149 ct 3516 -133 3523 -112 3523 -84 ct +3523 -83 3523 -80 3523 -77 ct 3397 -77 l 3398 -60 3403 -47 3413 -38 ct 3422 -29 3434 -25 3448 -25 ct +3459 -25 3468 -27 3475 -32 ct 3483 -36 3489 -44 3493 -54 ct p +3397 -104 m 3494 -104 l 3492 -116 3489 -125 3483 -131 ct 3473 -140 3461 -144 3446 -144 ct +3433 -144 3421 -141 3412 -133 ct 3403 -126 3398 -116 3397 -104 ct p ef +3530 -52 m 3560 -56 l 3561 -46 3565 -38 3572 -33 ct 3579 -28 3589 -25 3601 -25 ct +3614 -25 3623 -27 3629 -32 ct 3636 -36 3639 -42 3639 -48 ct 3639 -54 3635 -58 3628 -62 ct +3624 -64 3614 -67 3600 -70 ct 3582 -75 3568 -80 3560 -84 ct 3552 -88 3545 -93 3541 -100 ct +3537 -107 3535 -114 3535 -123 ct 3535 -130 3536 -137 3540 -144 ct 3543 -150 3548 -155 3553 -160 ct +3558 -163 3563 -166 3571 -168 ct 3578 -170 3586 -172 3595 -172 ct 3607 -172 3618 -170 3628 -166 ct +3638 -162 3645 -156 3649 -149 ct 3654 -142 3657 -133 3659 -122 ct 3630 -117 l +3628 -126 3625 -133 3620 -137 ct 3614 -142 3607 -144 3597 -144 ct 3585 -144 3577 -143 3572 -139 ct +3567 -135 3564 -131 3564 -126 ct 3564 -122 3565 -120 3567 -117 ct 3569 -114 3573 -112 3577 -110 ct +3580 -109 3587 -107 3600 -104 ct 3618 -99 3631 -94 3640 -91 ct 3649 -87 3655 -82 3660 -76 ct +3665 -69 3668 -61 3668 -51 ct 3668 -42 3665 -33 3660 -24 ct 3654 -16 3646 -9 3636 -5 ct +3626 0 3614 2 3601 2 ct 3580 2 3563 -2 3552 -11 ct 3541 -21 3533 -34 3530 -52 ct +p ef +3874 65 m 3854 65 l 3838 46 3824 23 3812 -3 ct 3801 -29 3795 -56 3795 -84 ct +3795 -108 3800 -132 3808 -154 ct 3818 -180 3833 -207 3854 -232 ct 3874 -232 l +3861 -211 3852 -196 3848 -186 ct 3841 -172 3836 -157 3832 -142 ct 3827 -122 3825 -103 3825 -84 ct +3825 -34 3841 16 3874 65 ct p ef +3920 0 m 3891 0 l 3891 -232 l 3920 -232 l 3920 -146 l 3933 -163 3949 -172 3969 -172 ct +3981 -172 3992 -169 4001 -164 ct 4010 -159 4016 -153 4020 -144 ct 4024 -135 4026 -123 4026 -106 ct +4026 0 l 3997 0 l 3997 -104 l 3997 -118 3994 -129 3988 -135 ct 3982 -141 3973 -144 3963 -144 ct +3955 -144 3947 -142 3940 -138 ct 3933 -134 3927 -128 3924 -121 ct 3921 -113 3920 -103 3920 -90 ct +3920 0 l p ef +4213 0 m 4184 0 l 4184 -29 l 4171 -8 4154 2 4133 2 ct 4123 2 4114 0 4106 -3 ct +4098 -7 4092 -12 4088 -18 ct 4084 -23 4081 -30 4079 -39 ct 4078 -44 4078 -53 4078 -65 ct +4078 -169 l 4107 -169 l 4107 -78 l 4107 -63 4107 -53 4109 -48 ct 4110 -41 4114 -35 4120 -31 ct +4125 -27 4132 -25 4140 -25 ct 4149 -25 4156 -27 4164 -31 ct 4171 -36 4176 -41 4179 -49 ct +4182 -56 4184 -67 4184 -81 ct 4184 -169 l 4213 -169 l 4213 0 l p ef +4269 0 m 4239 0 l 4239 -169 l 4269 -169 l 4269 -142 l 4274 -151 4281 -158 4289 -163 ct +4297 -169 4307 -172 4318 -172 ct 4330 -172 4340 -169 4347 -163 ct 4355 -158 4360 -150 4364 -140 ct +4377 -161 4394 -172 4415 -172 ct 4432 -172 4445 -167 4454 -158 ct 4463 -148 4467 -134 4467 -115 ct +4467 0 l 4438 0 l 4438 -104 l 4438 -115 4437 -123 4435 -128 ct 4433 -133 4430 -137 4425 -140 ct +4421 -143 4415 -144 4409 -144 ct 4397 -144 4387 -141 4380 -133 ct 4372 -125 4368 -113 4368 -96 ct +4368 0 l 4339 0 l 4339 -107 l 4339 -120 4336 -129 4332 -135 ct 4327 -141 4320 -144 4310 -144 ct +4302 -144 4294 -142 4288 -138 ct 4281 -134 4276 -128 4273 -120 ct 4270 -112 4269 -101 4269 -86 ct +4269 0 l p ef +4626 -20 m 4615 -12 4606 -6 4596 -3 ct 4587 1 4577 2 4566 2 ct 4548 2 4534 -2 4525 -11 ct +4515 -20 4511 -31 4511 -45 ct 4511 -53 4512 -60 4516 -67 ct 4520 -74 4524 -79 4530 -83 ct +4536 -87 4543 -90 4550 -92 ct 4555 -94 4563 -95 4574 -96 ct 4596 -99 4613 -102 4623 -106 ct +4623 -110 4623 -112 4623 -113 ct 4623 -124 4621 -131 4616 -136 ct 4609 -141 4599 -144 4585 -144 ct +4573 -144 4564 -142 4558 -138 ct 4552 -134 4547 -126 4544 -115 ct 4515 -120 l +4518 -132 4522 -141 4527 -149 ct 4533 -156 4542 -162 4552 -166 ct 4563 -170 4576 -172 4590 -172 ct +4605 -172 4616 -170 4625 -166 ct 4634 -163 4641 -159 4645 -153 ct 4649 -148 4652 -141 4654 -133 ct +4655 -128 4655 -120 4655 -108 ct 4655 -73 l 4655 -48 4656 -32 4657 -24 ct 4658 -15 4660 -8 4664 0 ct +4635 0 l 4630 -6 4627 -13 4626 -20 ct p +4623 -71 m 4623 -79 l 4613 -76 4598 -73 4578 -70 ct 4567 -69 4559 -67 4555 -65 ct +4550 -64 4546 -61 4544 -58 ct 4541 -54 4540 -51 4540 -47 ct 4540 -40 4543 -35 4548 -31 ct +4554 -27 4562 -25 4573 -25 ct 4583 -25 4592 -27 4601 -31 ct 4609 -36 4615 -41 4619 -48 ct +4622 -53 4623 -61 4623 -71 ct p ef +4713 0 m 4684 0 l 4684 -169 l 4713 -169 l 4713 -145 l 4725 -163 4742 -172 4764 -172 ct +4774 -172 4783 -170 4791 -166 ct 4799 -162 4805 -158 4809 -152 ct 4813 -146 4816 -139 4817 -131 ct +4818 -126 4819 -116 4819 -103 ct 4819 0 l 4790 0 l 4790 -100 l 4790 -112 4789 -120 4786 -126 ct +4784 -132 4781 -136 4775 -139 ct 4770 -143 4763 -144 4756 -144 ct 4744 -144 4734 -141 4726 -133 ct +4717 -126 4713 -111 4713 -90 ct 4713 0 l p ef +4858 -52 m 4888 -56 l 4889 -46 4893 -38 4900 -33 ct 4907 -28 4917 -25 4929 -25 ct +4942 -25 4951 -27 4957 -32 ct 4964 -36 4967 -42 4967 -48 ct 4967 -54 4963 -58 4956 -62 ct +4952 -64 4942 -67 4928 -70 ct 4910 -75 4896 -80 4888 -84 ct 4880 -88 4873 -93 4869 -100 ct +4865 -107 4863 -114 4863 -123 ct 4863 -130 4864 -137 4868 -144 ct 4871 -150 4876 -155 4881 -160 ct +4886 -163 4891 -166 4899 -168 ct 4906 -170 4914 -172 4923 -172 ct 4935 -172 4946 -170 4956 -166 ct +4966 -162 4973 -156 4977 -149 ct 4982 -142 4985 -133 4987 -122 ct 4958 -117 l +4956 -126 4953 -133 4948 -137 ct 4942 -142 4935 -144 4925 -144 ct 4913 -144 4905 -143 4900 -139 ct +4895 -135 4892 -131 4892 -126 ct 4892 -122 4893 -120 4895 -117 ct 4897 -114 4901 -112 4905 -110 ct +4908 -109 4915 -107 4928 -104 ct 4946 -99 4959 -94 4968 -91 ct 4977 -87 4983 -82 4988 -76 ct +4993 -69 4996 -61 4996 -51 ct 4996 -42 4993 -33 4988 -24 ct 4982 -16 4974 -9 4964 -5 ct +4954 0 4942 2 4929 2 ct 4908 2 4891 -2 4880 -11 ct 4869 -21 4861 -34 4858 -52 ct +p ef +5031 0 m 5016 0 l 5016 -29 l 5046 -29 l 5046 0 l 5046 12 5044 22 5040 30 ct +5037 37 5031 43 5023 47 ct 5016 36 l 5021 33 5025 29 5027 24 ct 5029 18 5031 10 5031 0 ct +p ef +5227 0 m 5196 0 l 5196 -232 l 5244 -232 l 5297 -68 l 5302 -52 5305 -41 5307 -33 ct +5310 -42 5314 -54 5319 -71 ct 5371 -232 l 5419 -232 l 5419 0 l 5387 0 l +5387 -196 l 5324 0 l 5290 0 l 5227 -196 l 5227 0 l p ef +5599 0 m 5457 0 l 5457 -232 l 5489 -232 l 5489 -27 l 5599 -27 l 5599 0 l +p ef +5675 0 m 5643 0 l 5643 -232 l 5729 -232 l 5744 -232 5756 -232 5764 -230 ct +5775 -228 5784 -225 5792 -219 ct 5799 -214 5805 -207 5810 -197 ct 5815 -187 5817 -177 5817 -165 ct +5817 -146 5811 -129 5799 -115 ct 5786 -102 5764 -95 5732 -95 ct 5675 -95 l 5675 0 l +p +5675 -205 m 5675 -122 l 5732 -122 l 5752 -122 5765 -126 5773 -133 ct 5781 -140 5785 -151 5785 -164 ct +5785 -174 5783 -183 5778 -190 ct 5773 -196 5767 -201 5759 -203 ct 5755 -205 5745 -205 5732 -205 ct +5675 -205 l p ef +5838 -52 m 5868 -56 l 5869 -46 5873 -38 5880 -33 ct 5887 -28 5897 -25 5909 -25 ct +5922 -25 5931 -27 5937 -32 ct 5944 -36 5947 -42 5947 -48 ct 5947 -54 5943 -58 5936 -62 ct +5932 -64 5922 -67 5908 -70 ct 5890 -75 5876 -80 5868 -84 ct 5860 -88 5853 -93 5849 -100 ct +5845 -107 5843 -114 5843 -123 ct 5843 -130 5844 -137 5848 -144 ct 5851 -150 5856 -155 5861 -160 ct +5866 -163 5871 -166 5879 -168 ct 5886 -170 5894 -172 5903 -172 ct 5915 -172 5926 -170 5936 -166 ct +5946 -162 5953 -156 5957 -149 ct 5962 -142 5965 -133 5967 -122 ct 5938 -117 l +5936 -126 5933 -133 5928 -137 ct 5922 -142 5915 -144 5905 -144 ct 5893 -144 5885 -143 5880 -139 ct +5875 -135 5872 -131 5872 -126 ct 5872 -122 5873 -120 5875 -117 ct 5877 -114 5881 -112 5885 -110 ct +5888 -109 5895 -107 5908 -104 ct 5926 -99 5939 -94 5948 -91 ct 5957 -87 5963 -82 5968 -76 ct +5973 -69 5976 -61 5976 -51 ct 5976 -42 5973 -33 5968 -24 ct 5962 -16 5954 -9 5944 -5 ct +5934 0 5922 2 5909 2 ct 5888 2 5871 -2 5860 -11 ct 5849 -21 5841 -34 5838 -52 ct +p ef +6010 0 m 5995 0 l 5995 -29 l 6025 -29 l 6025 0 l 6025 12 6023 22 6019 30 ct +6016 37 6010 43 6002 47 ct 5995 36 l 6000 33 6004 29 6006 24 ct 6008 18 6010 10 6010 0 ct +p ef +6168 -79 m 6199 -79 l 6201 -67 6204 -57 6208 -49 ct 6213 -41 6221 -35 6231 -30 ct +6241 -25 6252 -23 6264 -23 ct 6275 -23 6285 -24 6294 -28 ct 6302 -32 6309 -37 6313 -43 ct +6317 -50 6319 -56 6319 -63 ct 6319 -70 6317 -77 6314 -82 ct 6311 -87 6304 -92 6295 -96 ct +6289 -98 6276 -102 6255 -107 ct 6234 -112 6220 -117 6211 -122 ct 6199 -127 6191 -135 6185 -143 ct +6180 -152 6177 -162 6177 -172 ct 6177 -184 6180 -195 6187 -206 ct 6193 -216 6203 -224 6216 -229 ct +6229 -234 6243 -237 6259 -237 ct 6276 -237 6291 -234 6304 -229 ct 6317 -223 6328 -215 6335 -204 ct +6342 -193 6346 -181 6346 -167 ct 6314 -167 l 6313 -181 6308 -192 6299 -199 ct +6290 -206 6277 -210 6260 -210 ct 6242 -210 6229 -206 6221 -200 ct 6213 -193 6208 -184 6208 -175 ct +6208 -166 6211 -159 6217 -154 ct 6223 -148 6238 -143 6262 -137 ct 6286 -131 6303 -127 6312 -122 ct +6325 -116 6335 -108 6341 -98 ct 6347 -89 6351 -78 6351 -65 ct 6351 -53 6347 -41 6340 -30 ct +6333 -19 6323 -11 6310 -5 ct 6297 1 6282 5 6266 5 ct 6245 5 6227 1 6213 -5 ct 6199 -12 6188 -22 6180 -35 ct +6172 -48 6168 -62 6168 -79 ct p ef +6474 0 m 6390 0 l 6390 -232 l 6470 -232 l 6488 -232 6502 -231 6511 -229 ct +6525 -226 6536 -221 6545 -212 ct 6558 -202 6567 -189 6573 -173 ct 6579 -157 6582 -138 6582 -118 ct +6582 -100 6580 -84 6576 -71 ct 6572 -57 6566 -46 6560 -37 ct 6553 -28 6546 -21 6539 -16 ct +6531 -10 6522 -7 6511 -4 ct 6500 -1 6488 0 6474 0 ct p +6422 -205 m 6422 -27 l 6471 -27 l 6486 -27 6498 -29 6507 -31 ct 6515 -34 6522 -38 6527 -43 ct +6535 -51 6540 -61 6544 -73 ct 6548 -85 6550 -100 6550 -118 ct 6550 -142 6546 -161 6538 -174 ct +6531 -187 6521 -196 6510 -201 ct 6501 -204 6488 -205 6470 -205 ct 6422 -205 l +p ef +6624 0 m 6591 0 l 6684 -232 l 6716 -232 l 6809 0 l 6776 0 l 6749 -72 l +6651 -72 l 6624 0 l p +6687 -164 m 6661 -99 l 6739 -99 l 6717 -160 l 6709 -180 6704 -195 6700 -205 ct +6697 -192 6692 -179 6687 -164 ct p ef +6815 -52 m 6845 -56 l 6846 -46 6850 -38 6857 -33 ct 6864 -28 6874 -25 6886 -25 ct +6899 -25 6908 -27 6914 -32 ct 6921 -36 6924 -42 6924 -48 ct 6924 -54 6920 -58 6913 -62 ct +6909 -64 6899 -67 6885 -70 ct 6867 -75 6853 -80 6845 -84 ct 6837 -88 6830 -93 6826 -100 ct +6822 -107 6820 -114 6820 -123 ct 6820 -130 6821 -137 6825 -144 ct 6828 -150 6833 -155 6838 -160 ct +6843 -163 6848 -166 6856 -168 ct 6863 -170 6871 -172 6880 -172 ct 6892 -172 6903 -170 6913 -166 ct +6923 -162 6930 -156 6934 -149 ct 6939 -142 6942 -133 6944 -122 ct 6915 -117 l +6913 -126 6910 -133 6905 -137 ct 6899 -142 6892 -144 6882 -144 ct 6870 -144 6862 -143 6857 -139 ct +6852 -135 6849 -131 6849 -126 ct 6849 -122 6850 -120 6852 -117 ct 6854 -114 6858 -112 6862 -110 ct +6865 -109 6872 -107 6885 -104 ct 6903 -99 6916 -94 6925 -91 ct 6934 -87 6940 -82 6945 -76 ct +6950 -69 6953 -61 6953 -51 ct 6953 -42 6950 -33 6945 -24 ct 6939 -16 6931 -9 6921 -5 ct +6911 0 6899 2 6886 2 ct 6865 2 6848 -2 6837 -11 ct 6826 -21 6818 -34 6815 -52 ct +p ef +6982 65 m 6962 65 l 6995 16 7012 -34 7012 -84 ct 7012 -103 7009 -122 7005 -141 ct +7001 -157 6996 -172 6989 -186 ct 6984 -195 6976 -211 6962 -232 ct 6982 -232 l +7003 -207 7018 -180 7028 -154 ct 7037 -132 7041 -108 7041 -84 ct 7041 -56 7035 -29 7024 -3 ct +7013 23 6999 46 6982 65 ct p ef +pom +gr +gr +0.996 c 8188 3062 m 8113 3062 l 8113 2913 l 8263 2913 l 8263 3062 l +8188 3062 l p ef +0 lw 1 lj 0.000 c 8188 3062 m 8113 3062 l 8113 2913 l 8263 2913 l 8263 3062 l +8188 3062 l pc +gs +1 lw 0 lj 8113 3272 m 8199 3186 l ps +8182 3335 m 8263 3254 l ps +gr +8188 3335 m 8113 3335 l 8113 3186 l 8263 3186 l 8263 3335 l 8188 3335 l +pc +gs +gs +pum +8335 3070 t +36 0 m 17 0 l 17 -142 l 37 -142 l 108 -34 l 108 -142 l 127 -142 l +127 0 l 107 0 l 36 -108 l 36 0 l p ef +177 0 m 158 0 l 158 -142 l 177 -142 l 177 0 l p ef +220 -48 m 239 -48 l 240 -41 242 -35 245 -30 ct 247 -25 252 -21 258 -18 ct +264 -15 271 -14 279 -14 ct 286 -14 292 -15 297 -17 ct 302 -19 306 -23 308 -26 ct +311 -30 312 -34 312 -39 ct 312 -43 311 -47 309 -50 ct 307 -53 303 -56 297 -58 ct +294 -60 286 -62 273 -65 ct 260 -69 251 -72 246 -74 ct 239 -78 234 -82 230 -88 ct +227 -93 225 -99 225 -106 ct 225 -113 227 -120 231 -126 ct 235 -132 241 -137 249 -140 ct +257 -143 266 -145 275 -145 ct 286 -145 295 -143 303 -140 ct 311 -137 318 -132 322 -125 ct +326 -118 329 -111 329 -102 ct 309 -102 l 309 -111 305 -117 300 -122 ct 295 -126 287 -129 276 -129 ct +265 -129 257 -126 252 -122 ct 247 -118 245 -113 245 -107 ct 245 -102 246 -98 250 -94 ct +253 -91 263 -87 277 -84 ct 292 -81 302 -77 308 -75 ct 316 -71 322 -66 326 -60 ct +330 -54 332 -48 332 -40 ct 332 -32 329 -25 325 -19 ct 321 -12 315 -7 307 -3 ct +299 1 290 3 280 3 ct 267 3 256 1 248 -3 ct 239 -7 232 -13 227 -21 ct 223 -29 220 -38 220 -48 ct +p ef +396 0 m 377 0 l 377 -126 l 330 -126 l 330 -142 l 443 -142 l 443 -126 l +396 -126 l 396 0 l p ef +pom +gr +gr +gs +gs +pum +8335 3340 t +36 0 m 17 0 l 17 -142 l 37 -142 l 108 -34 l 108 -142 l 127 -142 l +127 0 l 107 0 l 36 -108 l 36 0 l p ef +177 0 m 158 0 l 158 -142 l 177 -142 l 177 0 l p ef +220 -48 m 239 -48 l 240 -41 242 -35 245 -30 ct 247 -25 252 -21 258 -18 ct +264 -15 271 -14 279 -14 ct 286 -14 292 -15 297 -17 ct 302 -19 306 -23 308 -26 ct +311 -30 312 -34 312 -39 ct 312 -43 311 -47 309 -50 ct 307 -53 303 -56 297 -58 ct +294 -60 286 -62 273 -65 ct 260 -69 251 -72 246 -74 ct 239 -78 234 -82 230 -88 ct +227 -93 225 -99 225 -106 ct 225 -113 227 -120 231 -126 ct 235 -132 241 -137 249 -140 ct +257 -143 266 -145 275 -145 ct 286 -145 295 -143 303 -140 ct 311 -137 318 -132 322 -125 ct +326 -118 329 -111 329 -102 ct 309 -102 l 309 -111 305 -117 300 -122 ct 295 -126 287 -129 276 -129 ct +265 -129 257 -126 252 -122 ct 247 -118 245 -113 245 -107 ct 245 -102 246 -98 250 -94 ct +253 -91 263 -87 277 -84 ct 292 -81 302 -77 308 -75 ct 316 -71 322 -66 326 -60 ct +330 -54 332 -48 332 -40 ct 332 -32 329 -25 325 -19 ct 321 -12 315 -7 307 -3 ct +299 1 290 3 280 3 ct 267 3 256 1 248 -3 ct 239 -7 232 -13 227 -21 ct 223 -29 220 -38 220 -48 ct +p ef +396 0 m 377 0 l 377 -126 l 330 -126 l 330 -142 l 443 -142 l 443 -126 l +396 -126 l 396 0 l p ef +479 0 m 460 0 l 460 -142 l 512 -142 l 521 -142 528 -142 533 -141 ct 540 -140 546 -138 551 -134 ct +555 -131 559 -127 562 -121 ct 565 -115 566 -108 566 -101 ct 566 -89 562 -79 555 -71 ct +547 -62 534 -58 514 -58 ct 479 -58 l 479 0 l p +479 -126 m 479 -75 l 514 -75 l 526 -75 534 -77 539 -81 ct 544 -86 547 -92 547 -101 ct +547 -107 545 -112 542 -116 ct 539 -120 536 -123 531 -124 ct 528 -125 522 -126 514 -126 ct +479 -126 l p ef +pom +gr +gr +gs +gs +pum +4053 6546 t +50 0 m 21 0 l 21 -215 l 65 -215 l 114 -63 l 119 -48 122 -38 124 -31 ct +126 -39 130 -50 135 -65 ct 183 -215 l 227 -215 l 227 0 l 198 0 l 198 -181 l +140 0 l 108 0 l 50 -181 l 50 0 l p ef +268 -78 m 268 -107 276 -128 292 -141 ct 305 -153 321 -158 339 -158 ct 360 -158 377 -151 390 -138 ct +404 -124 410 -105 410 -80 ct 410 -61 407 -45 401 -34 ct 396 -22 387 -14 376 -7 ct +365 -1 353 2 339 2 ct 318 2 301 -5 288 -19 ct 275 -32 268 -52 268 -78 ct p +296 -78 m 296 -60 300 -46 308 -37 ct 316 -28 327 -23 339 -23 ct 352 -23 362 -28 371 -37 ct +379 -46 383 -60 383 -79 ct 383 -97 379 -110 371 -120 ct 362 -129 352 -133 339 -133 ct +327 -133 316 -129 308 -120 ct 300 -110 296 -97 296 -78 ct p ef +589 0 m 562 0 l 562 -25 l 552 -7 538 2 519 2 ct 507 2 496 -1 486 -8 ct 475 -15 467 -24 462 -36 ct +456 -48 453 -62 453 -78 ct 453 -93 456 -107 461 -120 ct 466 -132 474 -142 484 -148 ct +495 -155 506 -158 519 -158 ct 528 -158 537 -156 544 -152 ct 551 -147 557 -141 562 -134 ct +562 -215 l 589 -215 l 589 0 l p +480 -78 m 480 -60 485 -46 493 -37 ct 501 -27 510 -23 522 -23 ct 533 -23 542 -27 550 -36 ct +558 -45 562 -58 562 -76 ct 562 -96 558 -110 550 -119 ct 542 -129 532 -133 520 -133 ct +509 -133 500 -129 492 -120 ct 484 -111 480 -97 480 -78 ct p ef +733 -50 m 759 -46 l 755 -31 747 -19 735 -10 ct 724 -2 709 2 691 2 ct 668 2 650 -5 636 -19 ct +623 -32 616 -52 616 -77 ct 616 -103 623 -123 637 -137 ct 650 -151 668 -158 689 -158 ct +710 -158 727 -151 740 -137 ct 754 -123 760 -103 760 -78 ct 760 -76 760 -74 760 -71 ct +643 -71 l 644 -55 649 -43 658 -35 ct 667 -27 678 -23 691 -23 ct 701 -23 709 -25 716 -29 ct +723 -34 729 -41 733 -50 ct p +643 -96 m 733 -96 l 732 -107 728 -115 723 -121 ct 714 -129 703 -133 689 -133 ct +677 -133 666 -130 658 -123 ct 649 -116 644 -107 643 -96 ct p ef +840 0 m 813 0 l 813 -215 l 840 -215 l 840 0 l p ef +pom +gr +gr +gs +gs +pum +451 4794 t +90.0 r 16 -152 m 16 -167 19 -180 26 -190 ct 33 -200 44 -206 57 -206 ct 69 -206 80 -201 88 -192 ct +96 -182 100 -169 100 -151 ct 100 -133 96 -120 88 -110 ct 79 -101 69 -96 57 -96 ct +45 -96 35 -101 28 -110 ct 20 -119 16 -133 16 -152 ct p +58 -188 m 51 -188 46 -185 42 -180 ct 37 -174 35 -164 35 -150 ct 35 -136 37 -127 42 -122 ct +46 -116 51 -114 58 -114 ct 64 -114 70 -116 74 -122 ct 78 -127 80 -137 80 -152 ct +80 -165 78 -174 74 -180 ct 70 -185 64 -188 58 -188 ct p +80 8 m 58 8 l 170 -206 l 192 -206 l 80 8 l p +149 -48 m 149 -63 152 -76 159 -86 ct 166 -97 177 -102 190 -102 ct 203 -102 213 -97 221 -88 ct +229 -79 233 -65 233 -47 ct 233 -29 229 -16 221 -6 ct 213 3 202 8 190 8 ct 179 8 169 3 161 -6 ct +153 -16 149 -30 149 -48 ct p +191 -84 m 184 -84 179 -81 175 -76 ct 171 -71 168 -61 168 -46 ct 168 -33 171 -23 175 -18 ct +179 -13 184 -10 191 -10 ct 197 -10 203 -13 207 -18 ct 211 -23 213 -33 213 -48 ct +213 -61 211 -71 207 -76 ct 203 -82 197 -84 191 -84 ct p ef +445 -47 m 470 -43 l 466 -29 459 -18 448 -10 ct 437 -2 423 2 406 2 ct 384 2 367 -5 355 -18 ct +342 -31 336 -49 336 -72 ct 336 -96 342 -115 355 -129 ct 368 -142 384 -149 404 -149 ct +424 -149 440 -142 452 -129 ct 465 -116 471 -97 471 -73 ct 471 -72 471 -70 471 -67 ct +361 -67 l 362 -52 367 -41 375 -33 ct 383 -25 394 -22 406 -22 ct 415 -22 423 -24 430 -28 ct +436 -32 441 -38 445 -47 ct p +361 -90 m 445 -90 l 444 -100 441 -108 436 -113 ct 428 -121 417 -125 404 -125 ct +392 -125 383 -122 375 -116 ct 367 -109 362 -101 361 -90 ct p ef +534 0 m 509 0 l 509 -147 l 530 -147 l 530 -125 l 536 -135 541 -141 546 -144 ct +551 -147 556 -149 562 -149 ct 570 -149 578 -147 587 -142 ct 578 -119 l 573 -123 567 -125 561 -125 ct +556 -125 551 -124 547 -120 ct 543 -117 540 -112 538 -107 ct 535 -98 534 -88 534 -77 ct +534 0 l p ef +627 0 m 602 0 l 602 -147 l 623 -147 l 623 -125 l 629 -135 634 -141 639 -144 ct +644 -147 649 -149 655 -149 ct 663 -149 671 -147 680 -142 ct 671 -119 l 666 -123 660 -125 654 -125 ct +649 -125 644 -124 640 -120 ct 636 -117 633 -112 631 -107 ct 628 -98 627 -88 627 -77 ct +627 0 l p ef +687 -73 m 687 -100 694 -120 709 -133 ct 721 -143 736 -149 753 -149 ct 773 -149 789 -142 801 -129 ct +814 -116 820 -98 820 -75 ct 820 -57 817 -42 812 -32 ct 806 -21 798 -13 788 -7 ct +777 -1 766 2 753 2 ct 734 2 717 -5 705 -17 ct 693 -30 687 -49 687 -73 ct p +712 -73 m 712 -56 716 -43 724 -35 ct 732 -26 742 -22 753 -22 ct 765 -22 775 -26 783 -35 ct +791 -43 794 -56 794 -74 ct 794 -91 791 -104 783 -112 ct 775 -121 765 -125 753 -125 ct +742 -125 732 -121 724 -112 ct 716 -104 712 -91 712 -73 ct p ef +861 0 m 836 0 l 836 -147 l 857 -147 l 857 -125 l 863 -135 868 -141 873 -144 ct +878 -147 883 -149 889 -149 ct 897 -149 905 -147 914 -142 ct 905 -119 l 900 -123 894 -125 888 -125 ct +883 -125 878 -124 874 -120 ct 870 -117 867 -112 865 -107 ct 862 -98 861 -88 861 -77 ct +861 0 l p ef +1047 0 m 1022 0 l 1022 -147 l 1043 -147 l 1043 -125 l 1049 -135 1054 -141 1059 -144 ct +1064 -147 1069 -149 1075 -149 ct 1083 -149 1091 -147 1100 -142 ct 1091 -119 l +1086 -123 1080 -125 1074 -125 ct 1069 -125 1064 -124 1060 -120 ct 1056 -117 1053 -112 1051 -107 ct +1048 -98 1047 -88 1047 -77 ct 1047 0 l p ef +1207 -18 m 1198 -10 1189 -5 1181 -2 ct 1173 0 1164 2 1155 2 ct 1139 2 1127 -2 1119 -10 ct +1111 -17 1107 -27 1107 -39 ct 1107 -46 1108 -52 1111 -58 ct 1115 -64 1119 -69 1124 -72 ct +1129 -76 1135 -78 1141 -80 ct 1146 -81 1153 -83 1162 -84 ct 1181 -86 1195 -89 1205 -92 ct +1205 -95 1205 -97 1205 -98 ct 1205 -107 1202 -114 1198 -118 ct 1192 -123 1183 -125 1172 -125 ct +1161 -125 1153 -123 1148 -120 ct 1142 -116 1139 -109 1136 -100 ct 1111 -104 l +1113 -114 1116 -123 1121 -129 ct 1126 -135 1134 -140 1143 -144 ct 1153 -147 1164 -149 1176 -149 ct +1188 -149 1198 -147 1206 -144 ct 1214 -141 1220 -138 1223 -133 ct 1227 -128 1229 -123 1231 -116 ct +1232 -111 1232 -104 1232 -94 ct 1232 -63 l 1232 -42 1233 -28 1234 -21 ct 1235 -13 1237 -7 1240 0 ct +1214 0 l 1210 -5 1208 -11 1207 -18 ct p +1205 -61 m 1205 -69 l 1196 -66 1183 -63 1166 -61 ct 1156 -60 1149 -58 1145 -57 ct +1141 -55 1138 -53 1136 -50 ct 1133 -47 1132 -44 1132 -41 ct 1132 -35 1135 -31 1139 -27 ct +1144 -23 1151 -22 1161 -22 ct 1170 -22 1178 -23 1185 -27 ct 1192 -31 1197 -36 1201 -42 ct +1203 -46 1205 -53 1205 -61 ct p ef +1307 -22 m 1311 0 l 1304 1 1298 2 1293 2 ct 1284 2 1277 1 1272 -2 ct 1267 -5 1264 -9 1262 -13 ct +1260 -18 1259 -27 1259 -42 ct 1259 -123 l 1241 -123 l 1241 -147 l 1259 -147 l +1259 -183 l 1284 -198 l 1284 -147 l 1307 -147 l 1307 -123 l 1284 -123 l +1284 -41 l 1284 -34 1284 -30 1285 -28 ct 1286 -26 1287 -24 1289 -23 ct 1291 -22 1294 -22 1297 -22 ct +1300 -22 1303 -22 1307 -22 ct p ef +1447 -47 m 1472 -43 l 1468 -29 1461 -18 1450 -10 ct 1439 -2 1425 2 1408 2 ct +1386 2 1369 -5 1357 -18 ct 1344 -31 1338 -49 1338 -72 ct 1338 -96 1344 -115 1357 -129 ct +1370 -142 1386 -149 1406 -149 ct 1426 -149 1442 -142 1454 -129 ct 1467 -116 1473 -97 1473 -73 ct +1473 -72 1473 -70 1473 -67 ct 1363 -67 l 1364 -52 1369 -41 1377 -33 ct 1385 -25 1396 -22 1408 -22 ct +1417 -22 1425 -24 1432 -28 ct 1438 -32 1443 -38 1447 -47 ct p +1363 -90 m 1447 -90 l 1446 -100 1443 -108 1438 -113 ct 1430 -121 1419 -125 1406 -125 ct +1394 -125 1385 -122 1377 -116 ct 1369 -109 1364 -101 1363 -90 ct p ef +1655 -33 m 1632 -33 l 1632 -88 l 1577 -88 l 1577 -112 l 1632 -112 l +1632 -166 l 1655 -166 l 1655 -112 l 1710 -112 l 1710 -88 l 1655 -88 l +1655 -33 l p ef +1747 0 m 1725 0 l 1784 -202 l 1806 -202 l 1747 0 l p ef +1880 -61 m 1804 -61 l 1804 -84 l 1880 -84 l 1880 -61 l p ef +1975 -49 m 2000 -51 l 2002 -40 2006 -32 2011 -27 ct 2016 -22 2023 -20 2031 -20 ct +2038 -20 2044 -21 2050 -25 ct 2056 -28 2060 -32 2063 -38 ct 2066 -43 2069 -51 2071 -60 ct +2073 -70 2075 -80 2075 -90 ct 2075 -91 2075 -93 2075 -95 ct 2070 -87 2063 -81 2055 -76 ct +2047 -71 2038 -69 2028 -69 ct 2012 -69 1999 -75 1987 -87 ct 1976 -99 1971 -115 1971 -135 ct +1971 -156 1977 -172 1988 -185 ct 2000 -197 2015 -204 2033 -204 ct 2045 -204 2057 -200 2068 -193 ct +2078 -186 2086 -176 2092 -163 ct 2097 -149 2100 -130 2100 -105 ct 2100 -79 2097 -59 2092 -43 ct +2086 -28 2078 -16 2068 -8 ct 2057 0 2044 4 2030 4 ct 2014 4 2002 -1 1992 -10 ct +1982 -19 1977 -32 1975 -49 ct p +2075 -136 m 2075 -149 2071 -160 2064 -168 ct 2057 -176 2048 -180 2036 -180 ct +2025 -180 2015 -176 2008 -167 ct 2000 -159 1996 -147 1996 -134 ct 1996 -121 2000 -111 2007 -104 ct +2014 -96 2024 -92 2036 -92 ct 2047 -92 2056 -96 2064 -104 ct 2071 -111 2075 -122 2075 -136 ct +p ef +2135 -53 m 2160 -55 l 2162 -43 2166 -34 2173 -28 ct 2179 -23 2187 -20 2197 -20 ct +2210 -20 2220 -24 2227 -33 ct 2235 -41 2239 -53 2239 -67 ct 2239 -81 2235 -92 2228 -100 ct +2221 -108 2211 -112 2198 -112 ct 2190 -112 2183 -110 2178 -106 ct 2172 -103 2168 -98 2164 -92 ct +2139 -96 l 2160 -200 l 2254 -200 l 2254 -174 l 2181 -174 l 2170 -122 l +2182 -131 2193 -135 2206 -135 ct 2222 -135 2236 -129 2247 -117 ct 2258 -104 2264 -88 2264 -69 ct +2264 -50 2259 -34 2249 -21 ct 2236 -4 2219 4 2197 4 ct 2180 4 2165 -1 2154 -12 ct +2143 -22 2136 -36 2135 -53 ct p ef +2300 -152 m 2300 -167 2303 -180 2310 -190 ct 2317 -200 2328 -206 2341 -206 ct +2353 -206 2364 -201 2372 -192 ct 2380 -182 2384 -169 2384 -151 ct 2384 -133 2380 -120 2372 -110 ct +2363 -101 2353 -96 2341 -96 ct 2329 -96 2319 -101 2312 -110 ct 2304 -119 2300 -133 2300 -152 ct +p +2342 -188 m 2335 -188 2330 -185 2326 -180 ct 2321 -174 2319 -164 2319 -150 ct +2319 -136 2321 -127 2326 -122 ct 2330 -116 2335 -114 2342 -114 ct 2348 -114 2354 -116 2358 -122 ct +2362 -127 2364 -137 2364 -152 ct 2364 -165 2362 -174 2358 -180 ct 2354 -185 2348 -188 2342 -188 ct +p +2364 8 m 2342 8 l 2454 -206 l 2476 -206 l 2364 8 l p +2433 -48 m 2433 -63 2436 -76 2443 -86 ct 2450 -97 2461 -102 2474 -102 ct 2487 -102 2497 -97 2505 -88 ct +2513 -79 2517 -65 2517 -47 ct 2517 -29 2513 -16 2505 -6 ct 2497 3 2486 8 2474 8 ct +2463 8 2453 3 2445 -6 ct 2437 -16 2433 -30 2433 -48 ct p +2475 -84 m 2468 -84 2463 -81 2459 -76 ct 2455 -71 2452 -61 2452 -46 ct 2452 -33 2455 -23 2459 -18 ct +2463 -13 2468 -10 2475 -10 ct 2481 -10 2487 -13 2491 -18 ct 2495 -23 2497 -33 2497 -48 ct +2497 -61 2495 -71 2491 -76 ct 2487 -82 2481 -84 2475 -84 ct p ef +2724 -55 m 2749 -51 l 2746 -34 2740 -21 2729 -12 ct 2718 -3 2704 2 2688 2 ct +2668 2 2652 -4 2640 -17 ct 2628 -30 2622 -49 2622 -73 ct 2622 -88 2624 -102 2629 -114 ct +2635 -125 2643 -134 2653 -140 ct 2664 -146 2675 -149 2688 -149 ct 2703 -149 2716 -145 2726 -137 ct +2736 -129 2742 -118 2745 -104 ct 2720 -100 l 2717 -108 2714 -115 2708 -119 ct +2702 -123 2696 -125 2688 -125 ct 2676 -125 2666 -121 2658 -113 ct 2651 -105 2647 -91 2647 -74 ct +2647 -55 2651 -42 2658 -34 ct 2666 -26 2675 -22 2687 -22 ct 2697 -22 2705 -24 2711 -30 ct +2718 -35 2722 -44 2724 -55 ct p ef +2762 -73 m 2762 -100 2769 -120 2784 -133 ct 2796 -143 2811 -149 2828 -149 ct +2848 -149 2864 -142 2876 -129 ct 2889 -116 2895 -98 2895 -75 ct 2895 -57 2892 -42 2887 -32 ct +2881 -21 2873 -13 2863 -7 ct 2852 -1 2841 2 2828 2 ct 2809 2 2792 -5 2780 -17 ct +2768 -30 2762 -49 2762 -73 ct p +2787 -73 m 2787 -56 2791 -43 2799 -35 ct 2807 -26 2817 -22 2828 -22 ct 2840 -22 2850 -26 2858 -35 ct +2866 -43 2869 -56 2869 -74 ct 2869 -91 2866 -104 2858 -112 ct 2850 -121 2840 -125 2828 -125 ct +2817 -125 2807 -121 2799 -112 ct 2791 -104 2787 -91 2787 -73 ct p ef +2935 0 m 2910 0 l 2910 -147 l 2935 -147 l 2935 -126 l 2945 -141 2960 -149 2979 -149 ct +2988 -149 2996 -147 3003 -144 ct 3010 -141 3015 -137 3018 -132 ct 3022 -127 3024 -120 3026 -113 ct +3027 -109 3027 -101 3027 -90 ct 3027 0 l 3002 0 l 3002 -87 l 3002 -97 3001 -104 2999 -109 ct +2997 -114 2994 -118 2989 -121 ct 2984 -124 2979 -125 2972 -125 ct 2962 -125 2953 -122 2946 -115 ct +2939 -109 2935 -96 2935 -78 ct 2935 0 l p ef +3103 0 m 3078 0 l 3078 -123 l 3056 -123 l 3056 -147 l 3078 -147 l +3078 -162 l 3078 -172 3078 -179 3080 -184 ct 3083 -191 3087 -196 3093 -200 ct +3099 -204 3108 -206 3119 -206 ct 3126 -206 3133 -205 3142 -203 ct 3138 -181 l +3133 -182 3128 -182 3124 -182 ct 3116 -182 3111 -181 3108 -177 ct 3105 -174 3103 -169 3103 -160 ct +3103 -147 l 3130 -147 l 3130 -123 l 3103 -123 l 3103 0 l p ef +3168 -176 m 3143 -176 l 3143 -202 l 3168 -202 l 3168 -176 l p +3168 0 m 3143 0 l 3143 -147 l 3168 -147 l 3168 0 l p ef +3329 0 m 3304 0 l 3304 -23 l 3295 -6 3281 2 3264 2 ct 3252 2 3242 -1 3232 -8 ct +3222 -14 3215 -23 3210 -34 ct 3204 -45 3202 -59 3202 -73 ct 3202 -88 3204 -101 3209 -112 ct +3214 -124 3221 -133 3231 -139 ct 3241 -146 3251 -149 3263 -149 ct 3272 -149 3280 -147 3287 -142 ct +3294 -138 3299 -133 3304 -126 ct 3304 -202 l 3329 -202 l 3329 0 l p +3227 -73 m 3227 -56 3231 -43 3239 -34 ct 3246 -26 3255 -22 3266 -22 ct 3276 -22 3285 -26 3293 -34 ct +3300 -42 3304 -55 3304 -71 ct 3304 -90 3300 -104 3292 -112 ct 3285 -121 3276 -125 3265 -125 ct +3254 -125 3245 -121 3238 -113 ct 3231 -104 3227 -91 3227 -73 ct p ef +3475 -47 m 3500 -43 l 3496 -29 3489 -18 3478 -10 ct 3467 -2 3453 2 3436 2 ct +3414 2 3397 -5 3385 -18 ct 3372 -31 3366 -49 3366 -72 ct 3366 -96 3372 -115 3385 -129 ct +3398 -142 3414 -149 3434 -149 ct 3454 -149 3470 -142 3482 -129 ct 3495 -116 3501 -97 3501 -73 ct +3501 -72 3501 -70 3501 -67 ct 3391 -67 l 3392 -52 3397 -41 3405 -33 ct 3413 -25 3424 -22 3436 -22 ct +3445 -22 3453 -24 3460 -28 ct 3466 -32 3471 -38 3475 -47 ct p +3391 -90 m 3475 -90 l 3474 -100 3471 -108 3466 -113 ct 3458 -121 3447 -125 3434 -125 ct +3422 -125 3413 -122 3405 -116 ct 3397 -109 3392 -101 3391 -90 ct p ef +3540 0 m 3515 0 l 3515 -147 l 3540 -147 l 3540 -126 l 3550 -141 3565 -149 3584 -149 ct +3593 -149 3601 -147 3608 -144 ct 3615 -141 3620 -137 3623 -132 ct 3627 -127 3629 -120 3631 -113 ct +3632 -109 3632 -101 3632 -90 ct 3632 0 l 3607 0 l 3607 -87 l 3607 -97 3606 -104 3604 -109 ct +3602 -114 3599 -118 3594 -121 ct 3589 -124 3584 -125 3577 -125 ct 3567 -125 3558 -122 3551 -115 ct +3544 -109 3540 -96 3540 -78 ct 3540 0 l p ef +3773 -55 m 3798 -51 l 3795 -34 3789 -21 3778 -12 ct 3767 -3 3753 2 3737 2 ct +3717 2 3701 -4 3689 -17 ct 3677 -30 3671 -49 3671 -73 ct 3671 -88 3673 -102 3678 -114 ct +3684 -125 3692 -134 3702 -140 ct 3713 -146 3724 -149 3737 -149 ct 3752 -149 3765 -145 3775 -137 ct +3785 -129 3791 -118 3794 -104 ct 3769 -100 l 3766 -108 3763 -115 3757 -119 ct +3751 -123 3745 -125 3737 -125 ct 3725 -125 3715 -121 3707 -113 ct 3700 -105 3696 -91 3696 -74 ct +3696 -55 3700 -42 3707 -34 ct 3715 -26 3724 -22 3736 -22 ct 3746 -22 3754 -24 3760 -30 ct +3767 -35 3771 -44 3773 -55 ct p ef +3918 -47 m 3943 -43 l 3939 -29 3932 -18 3921 -10 ct 3910 -2 3896 2 3879 2 ct +3857 2 3840 -5 3828 -18 ct 3815 -31 3809 -49 3809 -72 ct 3809 -96 3815 -115 3828 -129 ct +3841 -142 3857 -149 3877 -149 ct 3897 -149 3913 -142 3925 -129 ct 3938 -116 3944 -97 3944 -73 ct +3944 -72 3944 -70 3944 -67 ct 3834 -67 l 3835 -52 3840 -41 3848 -33 ct 3856 -25 3867 -22 3879 -22 ct +3888 -22 3896 -24 3903 -28 ct 3909 -32 3914 -38 3918 -47 ct p +3834 -90 m 3918 -90 l 3917 -100 3914 -108 3909 -113 ct 3901 -121 3890 -125 3877 -125 ct +3865 -125 3856 -122 3848 -116 ct 3840 -109 3835 -101 3834 -90 ct p ef +pom +gr +gr +gr +gs +0 0 m 9976 0 l 9976 6804 l 0 6804 l 0 0 l eoclip newpath +gr +gr +gr +gr +gr +gs +10900 10903 m 18053 10903 l 18053 17400 l 10900 17400 l 10900 10903 l eoclip newpath +gs +tm setmatrix +9903.36999 9903.60629 t +0.99993 1.00056 s +gs +gs +0 0 m 7153 0 l 7153 6497 l 0 6497 l 0 0 l eoclip newpath +gs +0 0 m 7153 0 l 7153 6497 l 0 6497 l 0 0 l eoclip newpath +0.996 c 3577 6498 m 0 6498 l 0 0 l 7154 0 l 7154 6498 l 3577 6498 l +p ef +0.699 c 4256 4816 m 1362 4816 l 1362 795 l 7150 795 l 7150 4816 l 4256 4816 l +pc +7150 4815 m 1362 4815 l ps +7150 4144 m 1362 4144 l ps +7150 3474 m 1362 3474 l ps +7150 2804 m 1362 2804 l ps +7150 2134 m 1362 2134 l ps +7150 1464 m 1362 1464 l ps +7150 793 m 1362 793 l ps +gs +gs +pum +1099 5786 t +0.000 c 67 0 m 31 0 l 31 -265 l 67 -265 l 67 -157 l 200 -157 l 200 -265 l +236 -265 l 236 0 l 200 0 l 200 -126 l 67 -126 l 67 0 l p ef +436 0 m 402 0 l 402 -33 l 388 -9 369 3 344 3 ct 334 3 323 0 314 -4 ct 305 -8 298 -14 293 -20 ct +289 -27 285 -35 284 -44 ct 282 -51 282 -61 282 -74 ct 282 -193 l 315 -193 l +315 -89 l 315 -72 316 -61 317 -55 ct 319 -47 323 -40 330 -35 ct 336 -31 344 -28 353 -28 ct +363 -28 371 -31 380 -36 ct 388 -41 394 -47 397 -56 ct 401 -64 402 -76 402 -92 ct +402 -193 l 436 -193 l 436 0 l p ef +524 0 m 490 0 l 490 -193 l 524 -193 l 524 -161 l 530 -172 537 -180 547 -186 ct +556 -192 567 -195 580 -195 ct 593 -195 604 -192 613 -186 ct 622 -179 628 -171 632 -159 ct +647 -183 667 -195 691 -195 ct 710 -195 724 -190 735 -180 ct 745 -169 750 -153 750 -131 ct +750 0 l 717 0 l 717 -118 l 717 -131 715 -140 713 -146 ct 711 -151 708 -156 702 -159 ct +697 -163 690 -164 683 -164 ct 670 -164 659 -160 650 -151 ct 641 -142 637 -128 637 -109 ct +637 0 l 603 0 l 603 -122 l 603 -136 601 -147 596 -154 ct 591 -161 582 -164 570 -164 ct +561 -164 553 -162 545 -157 ct 538 -153 532 -146 529 -137 ct 526 -128 524 -115 524 -97 ct +524 0 l p ef +915 -23 m 904 -14 893 -7 882 -3 ct 871 1 860 3 847 3 ct 827 3 812 -2 801 -13 ct +790 -23 784 -35 784 -51 ct 784 -60 786 -69 791 -76 ct 795 -84 800 -90 807 -95 ct +813 -99 821 -103 829 -105 ct 835 -107 845 -108 857 -110 ct 882 -113 901 -117 913 -121 ct +913 -125 913 -127 913 -129 ct 913 -141 910 -149 904 -154 ct 897 -161 885 -164 870 -164 ct +855 -164 845 -162 838 -157 ct 831 -152 826 -143 823 -131 ct 790 -136 l 792 -150 797 -161 804 -169 ct +810 -178 820 -184 832 -188 ct 845 -193 859 -195 875 -195 ct 892 -195 905 -193 915 -189 ct +925 -185 932 -180 937 -175 ct 942 -169 945 -161 947 -152 ct 948 -146 949 -137 949 -123 ct +949 -83 l 949 -55 950 -36 951 -27 ct 952 -18 955 -9 959 0 ct 926 0 l 920 -7 917 -14 915 -23 ct +p +913 -80 m 913 -90 l 902 -86 885 -83 862 -80 ct 849 -78 840 -76 835 -75 ct +829 -73 825 -70 822 -66 ct 819 -62 818 -58 818 -53 ct 818 -46 821 -40 827 -35 ct +834 -31 843 -28 855 -28 ct 867 -28 878 -31 887 -36 ct 896 -41 903 -47 908 -55 ct +911 -61 913 -69 913 -80 ct p ef +1038 0 m 1005 0 l 1005 -193 l 1038 -193 l 1038 -165 l 1052 -185 1071 -195 1096 -195 ct +1107 -195 1117 -193 1127 -189 ct 1136 -185 1143 -180 1147 -173 ct 1152 -166 1155 -158 1157 -149 ct +1158 -143 1159 -132 1159 -117 ct 1159 0 l 1125 0 l 1125 -114 l 1125 -127 1124 -137 1122 -143 ct +1119 -150 1115 -155 1109 -159 ct 1103 -163 1095 -164 1087 -164 ct 1074 -164 1062 -160 1053 -152 ct +1043 -143 1038 -127 1038 -103 ct 1038 0 l p ef +1178 -59 m 1211 -64 l 1213 -53 1218 -44 1226 -38 ct 1234 -31 1245 -28 1259 -28 ct +1273 -28 1284 -31 1291 -36 ct 1298 -42 1301 -48 1301 -55 ct 1301 -61 1297 -66 1289 -70 ct +1284 -73 1273 -76 1258 -80 ct 1236 -86 1221 -91 1212 -95 ct 1202 -100 1195 -106 1190 -114 ct +1185 -122 1183 -130 1183 -140 ct 1183 -148 1185 -156 1189 -164 ct 1192 -171 1198 -177 1204 -182 ct +1209 -186 1216 -189 1224 -191 ct 1232 -194 1241 -195 1251 -195 ct 1266 -195 1278 -193 1289 -188 ct +1300 -184 1308 -178 1314 -170 ct 1319 -162 1322 -152 1324 -139 ct 1291 -134 l +1290 -143 1286 -151 1280 -156 ct 1274 -162 1265 -164 1253 -164 ct 1240 -164 1231 -162 1225 -158 ct +1219 -154 1216 -149 1216 -143 ct 1216 -139 1218 -136 1220 -133 ct 1222 -130 1226 -128 1231 -126 ct +1234 -125 1243 -122 1257 -119 ct 1277 -112 1292 -107 1302 -103 ct 1312 -99 1320 -94 1326 -86 ct +1332 -79 1335 -69 1335 -58 ct 1335 -47 1331 -37 1325 -28 ct 1319 -18 1310 -11 1298 -5 ct +1287 0 1273 3 1259 3 ct 1234 3 1215 -3 1202 -13 ct 1190 -23 1181 -39 1178 -59 ct +p ef +pom +gr +gr +gs +gs +pum +2115 5391 t +0.000 c 18 -90 m 54 -90 l 55 -76 59 -65 64 -56 ct 70 -47 78 -39 90 -34 ct 101 -28 114 -26 128 -26 ct +141 -26 152 -28 161 -32 ct 171 -36 178 -42 183 -49 ct 188 -56 190 -64 190 -72 ct +190 -80 188 -87 184 -93 ct 181 -99 173 -105 163 -109 ct 156 -112 141 -116 117 -122 ct +94 -128 77 -133 67 -138 ct 54 -145 44 -153 38 -163 ct 31 -173 28 -184 28 -196 ct +28 -210 32 -222 40 -234 ct 47 -246 58 -255 73 -261 ct 87 -267 104 -270 121 -270 ct +141 -270 158 -267 173 -260 ct 188 -254 200 -244 208 -232 ct 216 -220 220 -206 221 -190 ct +185 -190 l 183 -206 177 -218 167 -227 ct 157 -235 142 -239 123 -239 ct 102 -239 88 -235 78 -227 ct +69 -219 64 -210 64 -199 ct 64 -189 68 -181 74 -175 ct 81 -169 98 -163 125 -156 ct +152 -150 171 -144 182 -139 ct 197 -132 208 -123 215 -112 ct 223 -101 226 -89 226 -74 ct +226 -60 222 -47 214 -34 ct 206 -22 195 -12 180 -5 ct 165 2 148 5 129 5 ct 106 5 86 1 70 -6 ct +54 -13 41 -25 32 -39 ct 23 -54 18 -71 18 -90 ct p ef +359 0 m 264 0 l 264 -265 l 355 -265 l 375 -265 391 -263 402 -261 ct 417 -257 430 -251 441 -242 ct +455 -230 465 -215 472 -197 ct 479 -178 482 -157 482 -134 ct 482 -114 480 -96 475 -80 ct +471 -65 465 -52 457 -42 ct 450 -32 442 -24 433 -18 ct 424 -12 414 -8 402 -5 ct +389 -2 375 0 359 0 ct p +300 -234 m 300 -31 l 356 -31 l 373 -31 387 -32 397 -36 ct 406 -39 414 -44 420 -50 ct +428 -58 435 -69 439 -83 ct 444 -97 446 -114 446 -134 ct 446 -162 442 -183 433 -198 ct +424 -213 413 -223 400 -228 ct 391 -232 376 -234 355 -234 ct 300 -234 l p ef +546 0 m 508 0 l 614 -265 l 651 -265 l 757 0 l 719 0 l 688 -82 l +577 -82 l 546 0 l p +618 -187 m 588 -113 l 677 -113 l 651 -182 l 643 -205 637 -222 632 -234 ct +629 -219 624 -203 618 -187 ct p ef +885 -267 m 885 0 l 851 0 l 851 -208 l 844 -201 833 -193 821 -186 ct 808 -178 797 -173 787 -169 ct +787 -200 l 805 -209 821 -219 835 -232 ct 848 -244 858 -256 863 -267 ct 885 -267 l +p ef +pom +gr +gr +gs +gs +pum +2945 5786 t +0.000 c 62 0 m 26 0 l 26 -265 l 81 -265 l 141 -77 l 146 -60 150 -47 153 -38 ct +156 -48 160 -62 166 -80 ct 225 -265 l 280 -265 l 280 0 l 244 0 l 244 -224 l +172 0 l 133 0 l 62 -224 l 62 0 l p ef +497 0 m 335 0 l 335 -265 l 371 -265 l 371 -31 l 497 -31 l 497 0 l +p ef +580 0 m 544 0 l 544 -265 l 642 -265 l 659 -265 672 -264 681 -262 ct 694 -260 704 -256 713 -250 ct +722 -244 729 -235 734 -224 ct 739 -213 742 -201 742 -188 ct 742 -166 735 -147 721 -131 ct +707 -116 682 -108 646 -108 ct 580 -108 l 580 0 l p +580 -234 m 580 -139 l 646 -139 l 667 -139 683 -143 692 -151 ct 701 -160 706 -172 706 -187 ct +706 -198 703 -208 698 -216 ct 692 -224 685 -229 676 -231 ct 671 -233 660 -234 645 -234 ct +580 -234 l p ef +764 -131 m 764 -162 767 -188 773 -208 ct 780 -227 789 -242 802 -252 ct 814 -262 830 -267 849 -267 ct +863 -267 875 -264 886 -259 ct 897 -253 906 -244 912 -234 ct 919 -223 924 -210 928 -194 ct +932 -178 934 -157 934 -131 ct 934 -100 930 -74 924 -55 ct 918 -35 909 -20 896 -10 ct +884 0 868 5 849 5 ct 824 5 804 -4 790 -21 ct 773 -44 764 -81 764 -131 ct p +797 -131 m 797 -88 802 -60 812 -46 ct 822 -32 834 -26 849 -26 ct 863 -26 875 -33 885 -46 ct +895 -60 900 -88 900 -131 ct 900 -173 895 -202 886 -215 ct 876 -229 864 -236 848 -236 ct +834 -236 822 -230 813 -218 ct 803 -202 797 -173 797 -131 ct p ef +pom +gr +gr +gs +gs +pum +3961 5391 t +0.000 c 92 75 m 23 75 l 23 -265 l 92 -265 l 92 -234 l 57 -234 l 57 44 l +92 44 l 92 75 l p ef +148 -33 m 278 -33 l 278 0 l 103 0 l 103 -8 104 -16 107 -23 ct 111 -36 118 -48 128 -60 ct +137 -72 151 -85 169 -99 ct 198 -123 217 -142 227 -155 ct 237 -168 242 -181 242 -193 ct +242 -205 237 -215 228 -224 ct 219 -232 208 -236 193 -236 ct 177 -236 165 -232 156 -223 ct +147 -215 142 -203 142 -188 ct 108 -193 l 111 -217 119 -235 134 -248 ct 149 -261 169 -267 194 -267 ct +219 -267 239 -260 253 -246 ct 268 -232 275 -214 275 -193 ct 275 -183 273 -172 269 -162 ct +265 -151 258 -141 249 -129 ct 239 -118 223 -102 200 -83 ct 181 -67 168 -56 162 -51 ct +157 -45 152 -39 148 -33 ct p ef +321 -131 m 321 -162 324 -188 330 -208 ct 337 -227 346 -242 359 -252 ct 371 -262 387 -267 406 -267 ct +420 -267 432 -264 443 -259 ct 454 -253 463 -244 469 -234 ct 476 -223 481 -210 485 -194 ct +489 -178 491 -157 491 -131 ct 491 -100 487 -74 481 -55 ct 475 -35 466 -20 453 -10 ct +441 0 425 5 406 5 ct 381 5 361 -4 347 -21 ct 330 -44 321 -81 321 -131 ct p +354 -131 m 354 -88 359 -60 369 -46 ct 379 -32 391 -26 406 -26 ct 420 -26 432 -33 442 -46 ct +452 -60 457 -88 457 -131 ct 457 -173 452 -202 443 -215 ct 433 -229 421 -236 405 -236 ct +391 -236 379 -230 370 -218 ct 360 -202 354 -173 354 -131 ct p ef +593 -265 m 593 75 l 523 75 l 523 44 l 559 44 l 559 -234 l 523 -234 l +523 -265 l 593 -265 l p ef +pom +gr +gr +gs +gs +pum +4790 5786 t +0.000 c 92 75 m 23 75 l 23 -265 l 92 -265 l 92 -234 l 57 -234 l 57 44 l +92 44 l 92 75 l p ef +148 -33 m 278 -33 l 278 0 l 103 0 l 103 -8 104 -16 107 -23 ct 111 -36 118 -48 128 -60 ct +137 -72 151 -85 169 -99 ct 198 -123 217 -142 227 -155 ct 237 -168 242 -181 242 -193 ct +242 -205 237 -215 228 -224 ct 219 -232 208 -236 193 -236 ct 177 -236 165 -232 156 -223 ct +147 -215 142 -203 142 -188 ct 108 -193 l 111 -217 119 -235 134 -248 ct 149 -261 169 -267 194 -267 ct +219 -267 239 -260 253 -246 ct 268 -232 275 -214 275 -193 ct 275 -183 273 -172 269 -162 ct +265 -151 258 -141 249 -129 ct 239 -118 223 -102 200 -83 ct 181 -67 168 -56 162 -51 ct +157 -45 152 -39 148 -33 ct p ef +442 -267 m 442 0 l 408 0 l 408 -208 l 401 -201 390 -193 378 -186 ct 365 -178 354 -173 344 -169 ct +344 -200 l 362 -209 378 -219 392 -232 ct 405 -244 415 -256 420 -267 ct 442 -267 l +p ef +593 -265 m 593 75 l 523 75 l 523 44 l 559 44 l 559 -234 l 523 -234 l +523 -265 l 593 -265 l p ef +pom +gr +gr +gs +gs +pum +5599 5391 t +0.000 c 92 75 m 23 75 l 23 -265 l 92 -265 l 92 -234 l 57 -234 l 57 44 l +92 44 l 92 75 l p ef +148 -33 m 278 -33 l 278 0 l 103 0 l 103 -8 104 -16 107 -23 ct 111 -36 118 -48 128 -60 ct +137 -72 151 -85 169 -99 ct 198 -123 217 -142 227 -155 ct 237 -168 242 -181 242 -193 ct +242 -205 237 -215 228 -224 ct 219 -232 208 -236 193 -236 ct 177 -236 165 -232 156 -223 ct +147 -215 142 -203 142 -188 ct 108 -193 l 111 -217 119 -235 134 -248 ct 149 -261 169 -267 194 -267 ct +219 -267 239 -260 253 -246 ct 268 -232 275 -214 275 -193 ct 275 -183 273 -172 269 -162 ct +265 -151 258 -141 249 -129 ct 239 -118 223 -102 200 -83 ct 181 -67 168 -56 162 -51 ct +157 -45 152 -39 148 -33 ct p ef +358 -33 m 488 -33 l 488 0 l 313 0 l 313 -8 314 -16 317 -23 ct 321 -36 328 -48 338 -60 ct +347 -72 361 -85 379 -99 ct 408 -123 427 -142 437 -155 ct 447 -168 452 -181 452 -193 ct +452 -205 447 -215 438 -224 ct 429 -232 418 -236 403 -236 ct 387 -236 375 -232 366 -223 ct +357 -215 352 -203 352 -188 ct 318 -193 l 321 -217 329 -235 344 -248 ct 359 -261 379 -267 404 -267 ct +429 -267 449 -260 463 -246 ct 478 -232 485 -214 485 -193 ct 485 -183 483 -172 479 -162 ct +475 -151 468 -141 459 -129 ct 449 -118 433 -102 410 -83 ct 391 -67 378 -56 372 -51 ct +367 -45 362 -39 358 -33 ct p ef +593 -265 m 593 75 l 523 75 l 523 44 l 559 44 l 559 -234 l 523 -234 l +523 -265 l 593 -265 l p ef +pom +gr +gr +gs +gs +pum +6429 5786 t +0.000 c 92 75 m 23 75 l 23 -265 l 92 -265 l 92 -234 l 57 -234 l 57 44 l +92 44 l 92 75 l p ef +148 -33 m 278 -33 l 278 0 l 103 0 l 103 -8 104 -16 107 -23 ct 111 -36 118 -48 128 -60 ct +137 -72 151 -85 169 -99 ct 198 -123 217 -142 227 -155 ct 237 -168 242 -181 242 -193 ct +242 -205 237 -215 228 -224 ct 219 -232 208 -236 193 -236 ct 177 -236 165 -232 156 -223 ct +147 -215 142 -203 142 -188 ct 108 -193 l 111 -217 119 -235 134 -248 ct 149 -261 169 -267 194 -267 ct +219 -267 239 -260 253 -246 ct 268 -232 275 -214 275 -193 ct 275 -183 273 -172 269 -162 ct +265 -151 258 -141 249 -129 ct 239 -118 223 -102 200 -83 ct 181 -67 168 -56 162 -51 ct +157 -45 152 -39 148 -33 ct p ef +321 -69 m 354 -75 l 358 -57 364 -45 372 -37 ct 380 -30 391 -26 404 -26 ct +420 -26 433 -31 443 -41 ct 452 -51 457 -64 457 -79 ct 457 -94 452 -106 443 -115 ct +434 -125 422 -130 407 -130 ct 401 -130 394 -128 385 -126 ct 388 -157 l 390 -156 392 -156 393 -156 ct +406 -156 418 -160 429 -167 ct 439 -173 444 -184 444 -198 ct 444 -209 440 -218 433 -225 ct +425 -233 415 -236 403 -236 ct 391 -236 381 -233 373 -225 ct 364 -218 359 -207 357 -193 ct +324 -198 l 327 -220 336 -237 350 -249 ct 364 -261 381 -267 402 -267 ct 416 -267 429 -264 441 -258 ct +453 -252 462 -243 468 -233 ct 475 -222 478 -211 478 -199 ct 478 -187 475 -177 469 -168 ct +462 -158 453 -151 441 -145 ct 457 -142 469 -134 478 -123 ct 486 -111 491 -97 491 -79 ct +491 -56 482 -36 466 -19 ct 449 -3 429 5 403 5 ct 381 5 362 -2 347 -16 ct 332 -29 323 -47 321 -69 ct +p ef +593 -265 m 593 75 l 523 75 l 523 44 l 559 44 l 559 -234 l 523 -234 l +523 -265 l 593 -265 l p ef +pom +gr +gr +1362 4965 m 1362 4815 l ps +2188 4965 m 2188 4815 l ps +3015 4965 m 3015 4815 l ps +3842 4965 m 3842 4815 l ps +4669 4965 m 4669 4815 l ps +5496 4965 m 5496 4815 l ps +6323 4965 m 6323 4815 l ps +7150 4965 m 7150 4815 l ps +0 lw 1 lj 1362 4815 m 7150 4815 l ps +gs +gs +pum +954 4906 t +0.000 c 14 -100 m 14 -124 16 -143 21 -158 ct 26 -173 33 -185 42 -192 ct 52 -200 64 -204 78 -204 ct +89 -204 98 -201 107 -197 ct 115 -193 122 -186 127 -178 ct 132 -170 136 -160 138 -148 ct +141 -136 143 -120 143 -100 ct 143 -76 141 -57 136 -42 ct 131 -27 124 -15 114 -8 ct +105 0 93 4 78 4 ct 59 4 44 -3 33 -16 ct 20 -34 14 -62 14 -100 ct p +39 -100 m 39 -67 43 -45 50 -35 ct 58 -25 67 -20 78 -20 ct 89 -20 99 -25 106 -35 ct +114 -46 118 -67 118 -100 ct 118 -132 114 -154 106 -164 ct 99 -175 90 -180 78 -180 ct +67 -180 58 -175 51 -166 ct 43 -154 39 -132 39 -100 ct p ef +pom +gr +gr +gs +gs +pum +954 4242 t +0.000 c 106 -204 m 106 0 l 80 0 l 80 -159 l 74 -153 67 -147 57 -142 ct +48 -136 39 -132 31 -129 ct 31 -153 l 45 -159 57 -167 67 -177 ct 78 -186 85 -195 89 -204 ct +106 -204 l p ef +pom +gr +gr +gs +gs +pum +954 3578 t +0.000 c 42 -25 m 141 -25 l 141 0 l 8 0 l 8 -6 9 -12 11 -18 ct 14 -27 19 -37 26 -46 ct +34 -55 44 -65 58 -76 ct 80 -94 94 -108 102 -118 ct 110 -128 114 -138 114 -147 ct +114 -156 110 -164 103 -171 ct 96 -177 87 -180 76 -180 ct 64 -180 55 -177 48 -170 ct +41 -164 37 -155 37 -143 ct 12 -147 l 13 -165 20 -179 31 -189 ct 43 -199 58 -204 77 -204 ct +96 -204 111 -198 122 -187 ct 133 -177 139 -163 139 -147 ct 139 -139 137 -131 134 -123 ct +131 -115 126 -107 119 -98 ct 111 -90 99 -78 82 -63 ct 67 -51 57 -43 53 -39 ct 48 -34 45 -30 42 -25 ct +p ef +pom +gr +gr +gs +gs +pum +954 2892 t +0.000 c 14 -53 m 39 -57 l 42 -44 46 -34 53 -28 ct 59 -22 67 -20 77 -20 ct 89 -20 99 -24 106 -31 ct +114 -39 118 -49 118 -61 ct 118 -72 114 -81 107 -88 ct 100 -95 90 -99 79 -99 ct +75 -99 69 -98 62 -96 ct 65 -119 l 67 -119 68 -119 69 -119 ct 79 -119 88 -122 96 -127 ct +104 -132 108 -140 108 -151 ct 108 -159 105 -166 99 -172 ct 93 -177 85 -180 76 -180 ct +67 -180 59 -177 53 -172 ct 47 -166 43 -158 41 -147 ct 16 -151 l 19 -168 25 -181 36 -190 ct +46 -199 60 -204 75 -204 ct 86 -204 96 -201 105 -197 ct 114 -192 121 -186 126 -177 ct +131 -169 133 -161 133 -151 ct 133 -143 131 -135 126 -128 ct 121 -121 115 -115 105 -111 ct +117 -108 127 -102 133 -93 ct 140 -85 143 -74 143 -60 ct 143 -42 137 -27 124 -15 ct +112 -2 96 4 76 4 ct 59 4 45 -1 33 -12 ct 22 -22 15 -36 14 -53 ct p ef +pom +gr +gr +gs +gs +pum +954 2228 t +0.000 c 118 0 m 92 0 l 92 -49 l 4 -49 l 4 -74 l 98 -200 l 118 -200 l +118 -74 l 143 -74 l 143 -49 l 118 -49 l 118 0 l p +35 -74 m 92 -74 l 92 -150 l 35 -74 l p ef +pom +gr +gr +gs +gs +pum +954 1564 t +0.000 c 14 -53 m 39 -55 l 41 -43 45 -34 52 -28 ct 58 -23 66 -20 76 -20 ct 89 -20 99 -24 106 -33 ct +114 -41 118 -53 118 -67 ct 118 -81 114 -92 107 -100 ct 100 -108 90 -112 77 -112 ct +69 -112 62 -110 57 -106 ct 51 -103 47 -98 43 -92 ct 18 -96 l 39 -200 l 133 -200 l +133 -174 l 60 -174 l 49 -122 l 61 -131 72 -135 85 -135 ct 101 -135 115 -129 126 -117 ct +137 -104 143 -88 143 -69 ct 143 -50 138 -34 128 -21 ct 115 -4 98 4 76 4 ct 59 4 44 -1 33 -12 ct +22 -22 15 -36 14 -53 ct p ef +pom +gr +gr +gs +gs +pum +954 879 t +0.000 c 139 -151 m 114 -149 l 111 -158 108 -165 104 -170 ct 98 -177 89 -180 79 -180 ct +72 -180 64 -178 58 -174 ct 51 -168 45 -161 40 -150 ct 36 -140 33 -124 33 -104 ct +39 -113 47 -120 55 -125 ct 64 -129 73 -131 83 -131 ct 99 -131 114 -125 125 -113 ct +137 -101 143 -85 143 -65 ct 143 -53 140 -41 135 -30 ct 129 -19 122 -11 112 -5 ct +102 1 91 4 79 4 ct 58 4 41 -4 28 -19 ct 14 -34 8 -60 8 -95 ct 8 -134 15 -163 30 -180 ct +42 -196 60 -204 81 -204 ct 97 -204 110 -199 121 -190 ct 131 -180 137 -167 139 -151 ct +p +33 -66 m 33 -58 35 -50 39 -43 ct 43 -35 48 -29 55 -25 ct 61 -22 69 -20 77 -20 ct +89 -20 98 -24 106 -32 ct 114 -40 118 -51 118 -65 ct 118 -78 114 -89 106 -96 ct +99 -104 89 -108 76 -108 ct 64 -108 54 -104 46 -96 ct 37 -89 33 -78 33 -66 ct p ef +pom +gr +gr +1 lw 0 lj 1212 4815 m 1362 4815 l ps +1212 4144 m 1362 4144 l ps +1212 3474 m 1362 3474 l ps +1212 2804 m 1362 2804 l ps +1212 2134 m 1362 2134 l ps +1212 1464 m 1362 1464 l ps +1212 793 m 1362 793 l ps +0 lw 1 lj 1362 4815 m 1362 793 l ps +0.796 c 6529 4815 m 6943 4815 l 6943 3407 l 6529 3407 l 6529 4815 l +p ef +0.000 c 6529 4815 m 6943 4815 l 6943 3407 l 6529 3407 l 6529 4815 l +pc +0.796 c 5703 4815 m 6116 4815 l 6116 3206 l 5703 3206 l 5703 4815 l +p ef +0.000 c 5703 4815 m 6116 4815 l 6116 3206 l 5703 3206 l 5703 4815 l +pc +0.796 c 4876 4815 m 5289 4815 l 5289 2328 l 4876 2328 l 4876 4815 l +p ef +0.000 c 4876 4815 m 5289 4815 l 5289 2328 l 4876 2328 l 4876 4815 l +pc +0.796 c 4049 4815 m 4462 4815 l 4462 1497 l 4049 1497 l 4049 4815 l +p ef +0.000 c 4049 4815 m 4462 4815 l 4462 1497 l 4049 1497 l 4049 4815 l +pc +0.796 c 3222 4815 m 3635 4815 l 3635 2502 l 3222 2502 l 3222 4815 l +p ef +0.000 c 3222 4815 m 3635 4815 l 3635 2502 l 3222 2502 l 3222 4815 l +pc +0.750 c 2395 4815 m 2809 4815 l 2809 3876 l 2395 3876 l 2395 4815 l +p ef +100 lw 0.000 c 2395 4815 m 2809 4815 l 2809 3876 l 2395 3876 l 2395 4815 l +pc +0.398 c 1568 4815 m 1982 4815 l 1982 3876 l 1568 3876 l 1568 4815 l +p ef +0 lw 0.000 c 1568 4815 m 1982 4815 l 1982 3876 l 1568 3876 l 1568 4815 l +pc +1 lw 0 lj 1775 4010 m 1775 3876 l 1775 3742 l ps +1875 4010 m 1675 4010 l ps +1675 3742 m 1875 3742 l ps +2602 4010 m 2602 3876 l 2602 3742 l ps +2702 4010 m 2502 4010 l ps +2502 3742 m 2702 3742 l ps +3429 2703 m 3429 2502 l 3429 2301 l ps +3529 2703 m 3329 2703 l ps +3329 2301 m 3529 2301 l ps +4256 1738 m 4256 1497 l 4256 1256 l ps +4356 1738 m 4156 1738 l ps +4156 1256 m 4356 1256 l ps +5082 2543 m 5082 2328 l 5082 2114 l ps +5182 2543 m 4982 2543 l ps +4982 2114 m 5182 2114 l ps +5909 3380 m 5909 3206 l 5909 3032 l ps +6009 3380 m 5809 3380 l ps +5809 3032 m 6009 3032 l ps +6736 3568 m 6736 3407 l 6736 3246 l ps +6836 3568 m 6636 3568 l ps +6636 3246 m 6836 3246 l ps +gs +gs +pum +1866 405 t +57 0 m 26 0 l 26 -227 l 59 -227 l 172 -54 l 172 -227 l 203 -227 l +203 0 l 170 0 l 57 -173 l 57 0 l p ef +293 0 m 262 0 l 262 -227 l 293 -227 l 293 0 l p ef +341 -77 m 372 -77 l 374 -65 377 -56 381 -48 ct 386 -40 393 -34 403 -29 ct +413 -24 424 -22 436 -22 ct 447 -22 456 -24 465 -27 ct 473 -31 479 -36 483 -42 ct +487 -49 489 -55 489 -62 ct 489 -69 488 -75 484 -80 ct 481 -85 475 -90 466 -93 ct +460 -96 447 -100 427 -105 ct 407 -110 392 -114 384 -119 ct 372 -125 364 -132 359 -140 ct +353 -149 350 -158 350 -169 ct 350 -180 354 -191 360 -201 ct 367 -211 376 -219 389 -224 ct +401 -229 415 -232 430 -232 ct 447 -232 462 -229 475 -224 ct 488 -218 498 -210 505 -200 ct +512 -189 515 -177 516 -163 ct 485 -163 l 484 -177 478 -188 470 -195 ct 461 -202 448 -205 432 -205 ct +414 -205 401 -202 393 -195 ct 385 -189 381 -180 381 -171 ct 381 -163 384 -156 390 -151 ct +395 -145 410 -140 433 -134 ct 457 -129 473 -124 482 -120 ct 495 -114 505 -106 511 -96 ct +517 -87 520 -76 520 -64 ct 520 -52 517 -40 510 -30 ct 503 -19 493 -11 481 -5 ct +468 1 453 4 437 4 ct 417 4 400 1 386 -5 ct 372 -12 362 -21 354 -34 ct 346 -47 342 -61 341 -77 ct +p ef +649 0 m 618 0 l 618 -201 l 543 -201 l 543 -227 l 724 -227 l 724 -201 l +649 -201 l 649 0 l p ef +947 0 m 918 0 l 918 -26 l 908 -7 893 2 873 2 ct 860 2 848 -1 837 -9 ct 826 -16 818 -26 812 -38 ct +806 -51 803 -66 803 -83 ct 803 -99 806 -114 811 -127 ct 817 -140 825 -150 836 -157 ct +847 -164 859 -168 873 -168 ct 882 -168 891 -165 899 -161 ct 907 -156 913 -150 918 -142 ct +918 -227 l 947 -227 l 947 0 l p +832 -83 m 832 -63 836 -49 845 -39 ct 853 -29 864 -24 875 -24 ct 887 -24 897 -29 905 -38 ct +914 -47 918 -62 918 -81 ct 918 -102 914 -117 905 -127 ct 897 -136 886 -141 874 -141 ct +862 -141 852 -137 844 -127 ct 836 -118 832 -103 832 -83 ct p ef +1030 -199 m 1001 -199 l 1001 -227 l 1030 -227 l 1030 -199 l p +1030 0 m 1001 0 l 1001 -166 l 1030 -166 l 1030 0 l p ef +1062 11 m 1090 15 l 1091 23 1095 29 1100 33 ct 1106 37 1115 40 1127 40 ct +1140 40 1149 37 1156 33 ct 1163 28 1168 21 1170 13 ct 1171 8 1172 -3 1172 -20 ct +1160 -7 1145 0 1127 0 ct 1105 0 1088 -8 1076 -24 ct 1063 -41 1057 -60 1057 -83 ct +1057 -99 1060 -113 1065 -126 ct 1071 -140 1079 -150 1089 -157 ct 1100 -164 1112 -168 1126 -168 ct +1145 -168 1160 -160 1172 -144 ct 1172 -166 l 1201 -166 l 1201 -23 l 1201 3 1198 21 1193 32 ct +1188 42 1180 51 1168 57 ct 1157 63 1143 66 1127 66 ct 1107 66 1091 62 1079 52 ct +1067 43 1061 29 1062 11 ct p +1086 -85 m 1086 -65 1090 -50 1098 -40 ct 1106 -31 1117 -26 1129 -26 ct 1141 -26 1151 -31 1160 -40 ct +1168 -50 1172 -64 1172 -84 ct 1172 -103 1168 -117 1159 -127 ct 1151 -137 1140 -141 1128 -141 ct +1117 -141 1107 -137 1098 -127 ct 1090 -118 1086 -104 1086 -85 ct p ef +1263 -199 m 1234 -199 l 1234 -227 l 1263 -227 l 1263 -199 l p +1263 0 m 1234 0 l 1234 -166 l 1263 -166 l 1263 0 l p ef +1363 -25 m 1367 0 l 1359 1 1352 2 1346 2 ct 1336 2 1328 1 1323 -2 ct 1317 -6 1313 -10 1311 -15 ct +1309 -20 1307 -31 1307 -47 ct 1307 -139 l 1288 -139 l 1288 -166 l 1307 -166 l +1307 -206 l 1336 -223 l 1336 -166 l 1363 -166 l 1363 -139 l 1336 -139 l +1336 -46 l 1336 -39 1337 -34 1338 -31 ct 1339 -29 1340 -28 1342 -26 ct 1344 -25 1347 -24 1351 -24 ct +1354 -24 1358 -25 1363 -25 ct p ef +1386 -51 m 1415 -55 l 1416 -45 1420 -38 1427 -32 ct 1434 -27 1443 -24 1456 -24 ct +1468 -24 1477 -27 1483 -31 ct 1489 -36 1492 -41 1492 -47 ct 1492 -53 1489 -57 1482 -60 ct +1477 -62 1468 -65 1455 -69 ct 1436 -74 1423 -78 1415 -82 ct 1407 -86 1401 -91 1397 -98 ct +1393 -105 1390 -112 1390 -120 ct 1390 -127 1392 -134 1395 -141 ct 1399 -147 1403 -152 1409 -156 ct +1413 -159 1418 -162 1426 -164 ct 1433 -167 1441 -168 1449 -168 ct 1461 -168 1472 -166 1482 -162 ct +1491 -158 1498 -153 1503 -146 ct 1507 -139 1510 -130 1512 -119 ct 1483 -115 l +1482 -123 1479 -130 1474 -134 ct 1468 -139 1461 -141 1451 -141 ct 1440 -141 1431 -139 1427 -136 ct +1422 -132 1419 -128 1419 -123 ct 1419 -120 1420 -117 1422 -114 ct 1424 -112 1427 -110 1432 -108 ct +1434 -107 1442 -105 1454 -102 ct 1471 -97 1485 -92 1493 -89 ct 1502 -85 1509 -81 1513 -74 ct +1518 -68 1521 -60 1521 -50 ct 1521 -41 1518 -32 1513 -24 ct 1507 -15 1500 -9 1490 -5 ct +1480 0 1468 2 1455 2 ct 1434 2 1418 -2 1407 -11 ct 1396 -20 1389 -33 1386 -51 ct +p ef +1581 0 m 1567 0 l 1567 -29 l 1595 -29 l 1595 0 l 1595 12 1594 22 1590 29 ct +1587 37 1581 42 1573 46 ct 1567 35 l 1571 33 1575 29 1577 23 ct 1579 18 1581 10 1581 0 ct +p ef +1751 0 m 1722 0 l 1722 -166 l 1751 -166 l 1751 -139 l 1756 -147 1762 -155 1771 -160 ct +1779 -165 1788 -168 1799 -168 ct 1810 -168 1820 -165 1827 -160 ct 1835 -154 1840 -147 1843 -137 ct +1856 -157 1873 -168 1894 -168 ct 1911 -168 1923 -163 1932 -154 ct 1941 -145 1945 -131 1945 -113 ct +1945 0 l 1916 0 l 1916 -102 l 1916 -113 1915 -120 1914 -125 ct 1912 -130 1909 -134 1904 -137 ct +1899 -140 1894 -141 1888 -141 ct 1876 -141 1867 -138 1859 -130 ct 1852 -122 1848 -110 1848 -94 ct +1848 0 l 1819 0 l 1819 -105 l 1819 -117 1817 -126 1812 -132 ct 1808 -138 1801 -141 1791 -141 ct +1783 -141 1776 -139 1769 -135 ct 1763 -131 1758 -125 1755 -117 ct 1752 -110 1751 -98 1751 -84 ct +1751 0 l p ef +2107 -20 m 2097 -12 2087 -6 2078 -3 ct 2069 1 2059 2 2048 2 ct 2031 2 2018 -2 2008 -11 ct +1999 -19 1994 -31 1994 -44 ct 1994 -52 1996 -59 2000 -66 ct 2003 -72 2008 -77 2013 -81 ct +2019 -85 2026 -88 2033 -90 ct 2038 -92 2046 -93 2057 -94 ct 2078 -97 2094 -100 2104 -104 ct +2105 -107 2105 -110 2105 -110 ct 2105 -121 2102 -128 2097 -133 ct 2091 -138 2081 -141 2068 -141 ct +2055 -141 2046 -139 2040 -135 ct 2035 -131 2030 -123 2027 -113 ct 1999 -117 l +2001 -129 2005 -138 2011 -145 ct 2016 -153 2025 -158 2035 -162 ct 2046 -166 2058 -168 2072 -168 ct +2086 -168 2098 -166 2106 -163 ct 2115 -159 2121 -155 2126 -150 ct 2130 -145 2133 -138 2134 -131 ct +2135 -126 2136 -118 2136 -106 ct 2136 -71 l 2136 -47 2136 -31 2137 -23 ct 2139 -15 2141 -7 2144 0 ct +2116 0 l 2111 -6 2108 -12 2107 -20 ct p +2104 -69 m 2105 -77 l 2095 -74 2080 -71 2061 -69 ct 2050 -67 2042 -66 2037 -64 ct +2033 -62 2029 -60 2027 -57 ct 2024 -53 2023 -50 2023 -46 ct 2023 -40 2026 -34 2031 -30 ct +2037 -26 2044 -24 2055 -24 ct 2065 -24 2074 -26 2082 -31 ct 2090 -35 2096 -41 2100 -47 ct +2103 -52 2104 -59 2104 -69 ct p ef +2272 -62 m 2301 -57 l 2298 -39 2290 -24 2278 -14 ct 2265 -3 2250 2 2232 2 ct +2210 2 2192 -5 2178 -20 ct 2164 -34 2157 -55 2157 -82 ct 2157 -100 2160 -115 2166 -128 ct +2172 -141 2181 -151 2193 -158 ct 2204 -165 2217 -168 2231 -168 ct 2249 -168 2264 -163 2275 -155 ct +2286 -146 2293 -133 2296 -117 ct 2268 -113 l 2265 -122 2261 -129 2254 -134 ct +2248 -139 2241 -141 2232 -141 ct 2218 -141 2207 -137 2199 -127 ct 2190 -118 2186 -103 2186 -83 ct +2186 -62 2190 -48 2199 -38 ct 2207 -29 2218 -24 2231 -24 ct 2242 -24 2251 -27 2258 -34 ct +2266 -40 2270 -49 2272 -62 ct p ef +2358 0 m 2329 0 l 2329 -227 l 2358 -227 l 2358 -143 l 2371 -160 2387 -168 2406 -168 ct +2418 -168 2428 -165 2437 -161 ct 2446 -156 2452 -149 2456 -141 ct 2460 -132 2462 -120 2462 -104 ct +2462 0 l 2433 0 l 2433 -102 l 2433 -116 2430 -126 2424 -132 ct 2418 -138 2410 -141 2400 -141 ct +2392 -141 2384 -139 2377 -135 ct 2370 -131 2365 -125 2362 -118 ct 2359 -111 2358 -101 2358 -88 ct +2358 0 l p ef +2521 -199 m 2492 -199 l 2492 -227 l 2521 -227 l 2521 -199 l p +2521 0 m 2492 0 l 2492 -166 l 2521 -166 l 2521 0 l p ef +2590 0 m 2561 0 l 2561 -166 l 2590 -166 l 2590 -142 l 2601 -159 2618 -168 2640 -168 ct +2649 -168 2658 -166 2666 -163 ct 2674 -159 2680 -154 2684 -149 ct 2688 -143 2691 -136 2692 -128 ct +2693 -123 2694 -114 2694 -101 ct 2694 0 l 2665 0 l 2665 -98 l 2665 -109 2664 -118 2662 -123 ct +2660 -129 2656 -133 2651 -136 ct 2645 -140 2639 -141 2632 -141 ct 2620 -141 2611 -138 2602 -130 ct +2594 -123 2590 -109 2590 -88 ct 2590 0 l p ef +2860 -53 m 2888 -49 l 2884 -32 2875 -20 2863 -11 ct 2851 -2 2835 2 2816 2 ct +2792 2 2772 -5 2758 -20 ct 2744 -34 2737 -55 2737 -81 ct 2737 -109 2744 -130 2759 -145 ct +2773 -160 2791 -168 2814 -168 ct 2836 -168 2854 -160 2868 -145 ct 2882 -131 2889 -110 2889 -83 ct +2889 -81 2889 -78 2889 -75 ct 2766 -75 l 2767 -59 2772 -46 2781 -37 ct 2791 -29 2802 -24 2816 -24 ct +2827 -24 2836 -27 2843 -31 ct 2850 -36 2856 -43 2860 -53 ct p +2766 -102 m 2861 -102 l 2859 -113 2856 -122 2850 -128 ct 2841 -137 2829 -141 2814 -141 ct +2801 -141 2790 -138 2781 -131 ct 2772 -123 2767 -114 2766 -102 ct p ef +2901 -51 m 2930 -55 l 2931 -45 2935 -38 2942 -32 ct 2949 -27 2958 -24 2971 -24 ct +2983 -24 2992 -27 2998 -31 ct 3004 -36 3007 -41 3007 -47 ct 3007 -53 3004 -57 2997 -60 ct +2992 -62 2983 -65 2970 -69 ct 2951 -74 2938 -78 2930 -82 ct 2922 -86 2916 -91 2912 -98 ct +2908 -105 2905 -112 2905 -120 ct 2905 -127 2907 -134 2910 -141 ct 2914 -147 2918 -152 2924 -156 ct +2928 -159 2933 -162 2941 -164 ct 2948 -167 2956 -168 2964 -168 ct 2976 -168 2987 -166 2997 -162 ct +3006 -158 3013 -153 3018 -146 ct 3022 -139 3025 -130 3027 -119 ct 2998 -115 l +2997 -123 2994 -130 2989 -134 ct 2983 -139 2976 -141 2966 -141 ct 2955 -141 2946 -139 2942 -136 ct +2937 -132 2934 -128 2934 -123 ct 2934 -120 2935 -117 2937 -114 ct 2939 -112 2942 -110 2947 -108 ct +2949 -107 2957 -105 2969 -102 ct 2986 -97 3000 -92 3008 -89 ct 3017 -85 3024 -81 3028 -74 ct +3033 -68 3036 -60 3036 -50 ct 3036 -41 3033 -32 3028 -24 ct 3022 -15 3015 -9 3005 -5 ct +2995 0 2983 2 2970 2 ct 2949 2 2933 -2 2922 -11 ct 2911 -20 2904 -33 2901 -51 ct +p ef +3243 0 m 3211 0 l 3150 -166 l 3181 -166 l 3216 -66 l 3220 -56 3223 -45 3227 -33 ct +3229 -42 3233 -52 3237 -65 ct 3272 -166 l 3303 -166 l 3243 0 l p ef +3320 -51 m 3349 -55 l 3350 -45 3354 -38 3361 -32 ct 3368 -27 3377 -24 3390 -24 ct +3402 -24 3411 -27 3417 -31 ct 3423 -36 3426 -41 3426 -47 ct 3426 -53 3423 -57 3416 -60 ct +3411 -62 3402 -65 3389 -69 ct 3370 -74 3357 -78 3349 -82 ct 3341 -86 3335 -91 3331 -98 ct +3327 -105 3324 -112 3324 -120 ct 3324 -127 3326 -134 3329 -141 ct 3333 -147 3337 -152 3343 -156 ct +3347 -159 3352 -162 3360 -164 ct 3367 -167 3375 -168 3383 -168 ct 3395 -168 3406 -166 3416 -162 ct +3425 -158 3432 -153 3437 -146 ct 3441 -139 3444 -130 3446 -119 ct 3417 -115 l +3416 -123 3413 -130 3408 -134 ct 3402 -139 3395 -141 3385 -141 ct 3374 -141 3365 -139 3361 -136 ct +3356 -132 3353 -128 3353 -123 ct 3353 -120 3354 -117 3356 -114 ct 3358 -112 3361 -110 3366 -108 ct +3368 -107 3376 -105 3388 -102 ct 3405 -97 3419 -92 3427 -89 ct 3436 -85 3443 -81 3447 -74 ct +3452 -68 3455 -60 3455 -50 ct 3455 -41 3452 -32 3447 -24 ct 3441 -15 3434 -9 3424 -5 ct +3414 0 3402 2 3389 2 ct 3368 2 3352 -2 3341 -11 ct 3330 -20 3323 -33 3320 -51 ct +p ef +3593 0 m 3564 0 l 3564 -227 l 3593 -227 l 3593 -143 l 3606 -160 3622 -168 3641 -168 ct +3653 -168 3663 -165 3672 -161 ct 3681 -156 3687 -149 3691 -141 ct 3695 -132 3697 -120 3697 -104 ct +3697 0 l 3668 0 l 3668 -102 l 3668 -116 3665 -126 3659 -132 ct 3653 -138 3645 -141 3635 -141 ct +3627 -141 3619 -139 3612 -135 ct 3605 -131 3600 -125 3597 -118 ct 3594 -111 3593 -101 3593 -88 ct +3593 0 l p ef +3883 0 m 3854 0 l 3854 -28 l 3842 -8 3825 2 3804 2 ct 3795 2 3786 0 3778 -3 ct +3770 -7 3764 -12 3760 -17 ct 3756 -23 3753 -30 3752 -38 ct 3751 -43 3750 -52 3750 -64 ct +3750 -166 l 3779 -166 l 3779 -76 l 3779 -62 3779 -52 3780 -47 ct 3782 -40 3786 -35 3791 -30 ct +3797 -26 3804 -24 3812 -24 ct 3820 -24 3827 -26 3834 -31 ct 3841 -35 3846 -41 3849 -48 ct +3852 -55 3854 -66 3854 -79 ct 3854 -166 l 3883 -166 l 3883 0 l p ef +3942 0 m 3913 0 l 3913 -166 l 3942 -166 l 3942 -139 l 3947 -147 3953 -155 3962 -160 ct +3970 -165 3979 -168 3990 -168 ct 4001 -168 4011 -165 4018 -160 ct 4026 -154 4031 -147 4034 -137 ct +4047 -157 4064 -168 4085 -168 ct 4102 -168 4114 -163 4123 -154 ct 4132 -145 4136 -131 4136 -113 ct +4136 0 l 4107 0 l 4107 -102 l 4107 -113 4106 -120 4105 -125 ct 4103 -130 4100 -134 4095 -137 ct +4090 -140 4085 -141 4079 -141 ct 4067 -141 4058 -138 4050 -130 ct 4043 -122 4039 -110 4039 -94 ct +4039 0 l 4010 0 l 4010 -105 l 4010 -117 4008 -126 4003 -132 ct 3999 -138 3992 -141 3982 -141 ct +3974 -141 3967 -139 3960 -135 ct 3954 -131 3949 -125 3946 -117 ct 3943 -110 3942 -98 3942 -84 ct +3942 0 l p ef +4274 -20 m 4264 -12 4254 -6 4245 -3 ct 4236 1 4226 2 4215 2 ct 4198 2 4185 -2 4175 -11 ct +4166 -19 4161 -31 4161 -44 ct 4161 -52 4163 -59 4167 -66 ct 4170 -72 4175 -77 4180 -81 ct +4186 -85 4193 -88 4200 -90 ct 4205 -92 4213 -93 4224 -94 ct 4245 -97 4261 -100 4271 -104 ct +4272 -107 4272 -110 4272 -110 ct 4272 -121 4269 -128 4264 -133 ct 4258 -138 4248 -141 4235 -141 ct +4222 -141 4213 -139 4207 -135 ct 4202 -131 4197 -123 4194 -113 ct 4166 -117 l +4168 -129 4172 -138 4178 -145 ct 4183 -153 4192 -158 4202 -162 ct 4213 -166 4225 -168 4239 -168 ct +4253 -168 4265 -166 4273 -163 ct 4282 -159 4288 -155 4293 -150 ct 4297 -145 4300 -138 4301 -131 ct +4302 -126 4303 -118 4303 -106 ct 4303 -71 l 4303 -47 4303 -31 4304 -23 ct 4306 -15 4308 -7 4311 0 ct +4283 0 l 4278 -6 4275 -12 4274 -20 ct p +4271 -69 m 4272 -77 l 4262 -74 4247 -71 4228 -69 ct 4217 -67 4209 -66 4204 -64 ct +4200 -62 4196 -60 4194 -57 ct 4191 -53 4190 -50 4190 -46 ct 4190 -40 4193 -34 4198 -30 ct +4204 -26 4211 -24 4222 -24 ct 4232 -24 4241 -26 4249 -31 ct 4257 -35 4263 -41 4267 -47 ct +4270 -52 4271 -59 4271 -69 ct p ef +4385 0 m 4356 0 l 4356 -166 l 4385 -166 l 4385 -142 l 4396 -159 4413 -168 4435 -168 ct +4444 -168 4453 -166 4461 -163 ct 4469 -159 4475 -154 4479 -149 ct 4483 -143 4486 -136 4487 -128 ct +4488 -123 4489 -114 4489 -101 ct 4489 0 l 4460 0 l 4460 -98 l 4460 -109 4459 -118 4457 -123 ct +4455 -129 4451 -133 4446 -136 ct 4440 -140 4434 -141 4427 -141 ct 4415 -141 4406 -138 4397 -130 ct +4389 -123 4385 -109 4385 -88 ct 4385 0 l p ef +4508 -51 m 4537 -55 l 4538 -45 4542 -38 4549 -32 ct 4556 -27 4565 -24 4578 -24 ct +4590 -24 4599 -27 4605 -31 ct 4611 -36 4614 -41 4614 -47 ct 4614 -53 4611 -57 4604 -60 ct +4599 -62 4590 -65 4577 -69 ct 4558 -74 4545 -78 4537 -82 ct 4529 -86 4523 -91 4519 -98 ct +4515 -105 4512 -112 4512 -120 ct 4512 -127 4514 -134 4517 -141 ct 4521 -147 4525 -152 4531 -156 ct +4535 -159 4540 -162 4548 -164 ct 4555 -167 4563 -168 4571 -168 ct 4583 -168 4594 -166 4604 -162 ct +4613 -158 4620 -153 4625 -146 ct 4629 -139 4632 -130 4634 -119 ct 4605 -115 l +4604 -123 4601 -130 4596 -134 ct 4590 -139 4583 -141 4573 -141 ct 4562 -141 4553 -139 4549 -136 ct +4544 -132 4541 -128 4541 -123 ct 4541 -120 4542 -117 4544 -114 ct 4546 -112 4549 -110 4554 -108 ct +4556 -107 4564 -105 4576 -102 ct 4593 -97 4607 -92 4615 -89 ct 4624 -85 4631 -81 4635 -74 ct +4640 -68 4643 -60 4643 -50 ct 4643 -41 4640 -32 4635 -24 ct 4629 -15 4622 -9 4612 -5 ct +4602 0 4590 2 4577 2 ct 4556 2 4540 -2 4529 -11 ct 4518 -20 4511 -33 4508 -51 ct +p ef +pom +gr +gr +gs +gs +pum +3297 6297 t +45 0 m 19 0 l 19 -195 l 59 -195 l 103 -57 l 108 -44 111 -34 112 -28 ct +114 -35 118 -45 122 -59 ct 166 -195 l 206 -195 l 206 0 l 179 0 l 179 -164 l +127 0 l 98 0 l 45 -164 l 45 0 l p ef +245 -71 m 245 -97 252 -116 266 -128 ct 278 -138 293 -144 310 -144 ct 328 -144 344 -137 356 -125 ct +368 -112 374 -95 374 -73 ct 374 -55 371 -41 366 -31 ct 361 -20 353 -12 343 -7 ct +333 -1 322 2 310 2 ct 290 2 275 -4 263 -17 ct 251 -29 245 -47 245 -71 ct p +270 -71 m 270 -54 274 -42 281 -33 ct 289 -25 298 -21 310 -21 ct 321 -21 330 -25 338 -33 ct +345 -42 349 -54 349 -72 ct 349 -88 345 -100 338 -108 ct 330 -117 321 -121 310 -121 ct +298 -121 289 -117 281 -108 ct 274 -100 270 -88 270 -71 ct p ef +528 0 m 504 0 l 504 -22 l 495 -6 482 2 465 2 ct 454 2 444 -1 435 -7 ct 425 -13 418 -22 413 -33 ct +408 -44 405 -56 405 -71 ct 405 -85 408 -97 412 -108 ct 417 -120 424 -128 433 -135 ct +443 -141 453 -144 465 -144 ct 473 -144 481 -142 488 -137 ct 494 -133 500 -128 504 -121 ct +504 -195 l 528 -195 l 528 0 l p +430 -71 m 430 -54 434 -42 441 -33 ct 448 -25 457 -21 467 -21 ct 477 -21 486 -25 493 -33 ct +500 -41 504 -53 504 -69 ct 504 -87 500 -100 493 -108 ct 486 -117 477 -121 466 -121 ct +456 -121 447 -117 440 -109 ct 433 -101 430 -88 430 -71 ct p ef +651 -45 m 675 -42 l 671 -28 664 -17 653 -10 ct 643 -2 629 2 613 2 ct 592 2 576 -4 564 -17 ct +551 -29 545 -47 545 -70 ct 545 -93 552 -111 564 -124 ct 576 -137 592 -144 611 -144 ct +630 -144 646 -137 658 -124 ct 670 -112 676 -94 676 -71 ct 676 -69 676 -67 676 -64 ct +570 -64 l 571 -50 575 -39 583 -32 ct 591 -25 601 -21 613 -21 ct 622 -21 630 -23 636 -27 ct +642 -31 647 -37 651 -45 ct p +570 -87 m 651 -87 l 650 -97 647 -104 642 -109 ct 634 -117 624 -121 611 -121 ct +600 -121 591 -118 583 -112 ct 575 -105 571 -97 570 -87 ct p ef +742 0 m 718 0 l 718 -195 l 742 -195 l 742 0 l p ef +pom +gr +gr +gs +gs +pum +735 4724 t +90.0 r 16 -152 m 16 -167 19 -180 26 -190 ct 33 -200 44 -206 57 -206 ct 69 -206 80 -201 88 -192 ct +96 -182 100 -169 100 -151 ct 100 -133 96 -120 88 -110 ct 79 -101 69 -96 57 -96 ct +45 -96 35 -101 28 -110 ct 20 -119 16 -133 16 -152 ct p +58 -188 m 51 -188 46 -185 42 -180 ct 37 -174 35 -164 35 -150 ct 35 -136 37 -127 42 -122 ct +46 -116 51 -114 58 -114 ct 64 -114 70 -116 74 -122 ct 78 -127 80 -137 80 -152 ct +80 -165 78 -174 74 -180 ct 70 -185 64 -188 58 -188 ct p +80 8 m 58 8 l 170 -206 l 192 -206 l 80 8 l p +149 -48 m 149 -63 152 -76 159 -86 ct 166 -97 177 -102 190 -102 ct 203 -102 213 -97 221 -88 ct +229 -79 233 -65 233 -47 ct 233 -29 229 -16 221 -6 ct 213 3 202 8 190 8 ct 179 8 169 3 161 -6 ct +153 -16 149 -30 149 -48 ct p +191 -84 m 184 -84 179 -81 175 -76 ct 171 -71 168 -61 168 -46 ct 168 -33 171 -23 175 -18 ct +179 -13 184 -10 191 -10 ct 197 -10 203 -13 207 -18 ct 211 -23 213 -33 213 -48 ct +213 -61 211 -71 207 -76 ct 203 -82 197 -84 191 -84 ct p ef +445 -47 m 470 -43 l 466 -29 459 -18 448 -10 ct 437 -2 423 2 406 2 ct 384 2 367 -5 355 -18 ct +342 -31 336 -49 336 -72 ct 336 -96 342 -115 355 -129 ct 368 -142 384 -149 404 -149 ct +424 -149 440 -142 452 -129 ct 465 -116 471 -97 471 -73 ct 471 -72 471 -70 471 -67 ct +361 -67 l 362 -52 367 -41 375 -33 ct 383 -25 394 -22 406 -22 ct 415 -22 423 -24 430 -28 ct +436 -32 441 -38 445 -47 ct p +361 -90 m 445 -90 l 444 -100 441 -108 436 -113 ct 428 -121 417 -125 404 -125 ct +392 -125 383 -122 375 -116 ct 367 -109 362 -101 361 -90 ct p ef +534 0 m 509 0 l 509 -147 l 530 -147 l 530 -125 l 536 -135 541 -141 546 -144 ct +551 -147 556 -149 562 -149 ct 570 -149 578 -147 587 -142 ct 578 -119 l 573 -123 567 -125 561 -125 ct +556 -125 551 -124 547 -120 ct 543 -117 540 -112 538 -107 ct 535 -98 534 -88 534 -77 ct +534 0 l p ef +627 0 m 602 0 l 602 -147 l 623 -147 l 623 -125 l 629 -135 634 -141 639 -144 ct +644 -147 649 -149 655 -149 ct 663 -149 671 -147 680 -142 ct 671 -119 l 666 -123 660 -125 654 -125 ct +649 -125 644 -124 640 -120 ct 636 -117 633 -112 631 -107 ct 628 -98 627 -88 627 -77 ct +627 0 l p ef +687 -73 m 687 -100 694 -120 709 -133 ct 721 -143 736 -149 753 -149 ct 773 -149 789 -142 801 -129 ct +814 -116 820 -98 820 -75 ct 820 -57 817 -42 812 -32 ct 806 -21 798 -13 788 -7 ct +777 -1 766 2 753 2 ct 734 2 717 -5 705 -17 ct 693 -30 687 -49 687 -73 ct p +712 -73 m 712 -56 716 -43 724 -35 ct 732 -26 742 -22 753 -22 ct 765 -22 775 -26 783 -35 ct +791 -43 794 -56 794 -74 ct 794 -91 791 -104 783 -112 ct 775 -121 765 -125 753 -125 ct +742 -125 732 -121 724 -112 ct 716 -104 712 -91 712 -73 ct p ef +861 0 m 836 0 l 836 -147 l 857 -147 l 857 -125 l 863 -135 868 -141 873 -144 ct +878 -147 883 -149 889 -149 ct 897 -149 905 -147 914 -142 ct 905 -119 l 900 -123 894 -125 888 -125 ct +883 -125 878 -124 874 -120 ct 870 -117 867 -112 865 -107 ct 862 -98 861 -88 861 -77 ct +861 0 l p ef +1047 0 m 1022 0 l 1022 -147 l 1043 -147 l 1043 -125 l 1049 -135 1054 -141 1059 -144 ct +1064 -147 1069 -149 1075 -149 ct 1083 -149 1091 -147 1100 -142 ct 1091 -119 l +1086 -123 1080 -125 1074 -125 ct 1069 -125 1064 -124 1060 -120 ct 1056 -117 1053 -112 1051 -107 ct +1048 -98 1047 -88 1047 -77 ct 1047 0 l p ef +1207 -18 m 1198 -10 1189 -5 1181 -2 ct 1173 0 1164 2 1155 2 ct 1139 2 1127 -2 1119 -10 ct +1111 -17 1107 -27 1107 -39 ct 1107 -46 1108 -52 1111 -58 ct 1115 -64 1119 -69 1124 -72 ct +1129 -76 1135 -78 1141 -80 ct 1146 -81 1153 -83 1162 -84 ct 1181 -86 1195 -89 1205 -92 ct +1205 -95 1205 -97 1205 -98 ct 1205 -107 1202 -114 1198 -118 ct 1192 -123 1183 -125 1172 -125 ct +1161 -125 1153 -123 1148 -120 ct 1142 -116 1139 -109 1136 -100 ct 1111 -104 l +1113 -114 1116 -123 1121 -129 ct 1126 -135 1134 -140 1143 -144 ct 1153 -147 1164 -149 1176 -149 ct +1188 -149 1198 -147 1206 -144 ct 1214 -141 1220 -138 1223 -133 ct 1227 -128 1229 -123 1231 -116 ct +1232 -111 1232 -104 1232 -94 ct 1232 -63 l 1232 -42 1233 -28 1234 -21 ct 1235 -13 1237 -7 1240 0 ct +1214 0 l 1210 -5 1208 -11 1207 -18 ct p +1205 -61 m 1205 -69 l 1196 -66 1183 -63 1166 -61 ct 1156 -60 1149 -58 1145 -57 ct +1141 -55 1138 -53 1136 -50 ct 1133 -47 1132 -44 1132 -41 ct 1132 -35 1135 -31 1139 -27 ct +1144 -23 1151 -22 1161 -22 ct 1170 -22 1178 -23 1185 -27 ct 1192 -31 1197 -36 1201 -42 ct +1203 -46 1205 -53 1205 -61 ct p ef +1307 -22 m 1311 0 l 1304 1 1298 2 1293 2 ct 1284 2 1277 1 1272 -2 ct 1267 -5 1264 -9 1262 -13 ct +1260 -18 1259 -27 1259 -42 ct 1259 -123 l 1241 -123 l 1241 -147 l 1259 -147 l +1259 -183 l 1284 -198 l 1284 -147 l 1307 -147 l 1307 -123 l 1284 -123 l +1284 -41 l 1284 -34 1284 -30 1285 -28 ct 1286 -26 1287 -24 1289 -23 ct 1291 -22 1294 -22 1297 -22 ct +1300 -22 1303 -22 1307 -22 ct p ef +1447 -47 m 1472 -43 l 1468 -29 1461 -18 1450 -10 ct 1439 -2 1425 2 1408 2 ct +1386 2 1369 -5 1357 -18 ct 1344 -31 1338 -49 1338 -72 ct 1338 -96 1344 -115 1357 -129 ct +1370 -142 1386 -149 1406 -149 ct 1426 -149 1442 -142 1454 -129 ct 1467 -116 1473 -97 1473 -73 ct +1473 -72 1473 -70 1473 -67 ct 1363 -67 l 1364 -52 1369 -41 1377 -33 ct 1385 -25 1396 -22 1408 -22 ct +1417 -22 1425 -24 1432 -28 ct 1438 -32 1443 -38 1447 -47 ct p +1363 -90 m 1447 -90 l 1446 -100 1443 -108 1438 -113 ct 1430 -121 1419 -125 1406 -125 ct +1394 -125 1385 -122 1377 -116 ct 1369 -109 1364 -101 1363 -90 ct p ef +1655 -33 m 1632 -33 l 1632 -88 l 1577 -88 l 1577 -112 l 1632 -112 l +1632 -166 l 1655 -166 l 1655 -112 l 1710 -112 l 1710 -88 l 1655 -88 l +1655 -33 l p ef +1747 0 m 1725 0 l 1784 -202 l 1806 -202 l 1747 0 l p ef +1880 -61 m 1804 -61 l 1804 -84 l 1880 -84 l 1880 -61 l p ef +1975 -49 m 2000 -51 l 2002 -40 2006 -32 2011 -27 ct 2016 -22 2023 -20 2031 -20 ct +2038 -20 2044 -21 2050 -25 ct 2056 -28 2060 -32 2063 -38 ct 2066 -43 2069 -51 2071 -60 ct +2073 -70 2075 -80 2075 -90 ct 2075 -91 2075 -93 2075 -95 ct 2070 -87 2063 -81 2055 -76 ct +2047 -71 2038 -69 2028 -69 ct 2012 -69 1999 -75 1987 -87 ct 1976 -99 1971 -115 1971 -135 ct +1971 -156 1977 -172 1988 -185 ct 2000 -197 2015 -204 2033 -204 ct 2045 -204 2057 -200 2068 -193 ct +2078 -186 2086 -176 2092 -163 ct 2097 -149 2100 -130 2100 -105 ct 2100 -79 2097 -59 2092 -43 ct +2086 -28 2078 -16 2068 -8 ct 2057 0 2044 4 2030 4 ct 2014 4 2002 -1 1992 -10 ct +1982 -19 1977 -32 1975 -49 ct p +2075 -136 m 2075 -149 2071 -160 2064 -168 ct 2057 -176 2048 -180 2036 -180 ct +2025 -180 2015 -176 2008 -167 ct 2000 -159 1996 -147 1996 -134 ct 1996 -121 2000 -111 2007 -104 ct +2014 -96 2024 -92 2036 -92 ct 2047 -92 2056 -96 2064 -104 ct 2071 -111 2075 -122 2075 -136 ct +p ef +2135 -53 m 2160 -55 l 2162 -43 2166 -34 2173 -28 ct 2179 -23 2187 -20 2197 -20 ct +2210 -20 2220 -24 2227 -33 ct 2235 -41 2239 -53 2239 -67 ct 2239 -81 2235 -92 2228 -100 ct +2221 -108 2211 -112 2198 -112 ct 2190 -112 2183 -110 2178 -106 ct 2172 -103 2168 -98 2164 -92 ct +2139 -96 l 2160 -200 l 2254 -200 l 2254 -174 l 2181 -174 l 2170 -122 l +2182 -131 2193 -135 2206 -135 ct 2222 -135 2236 -129 2247 -117 ct 2258 -104 2264 -88 2264 -69 ct +2264 -50 2259 -34 2249 -21 ct 2236 -4 2219 4 2197 4 ct 2180 4 2165 -1 2154 -12 ct +2143 -22 2136 -36 2135 -53 ct p ef +2300 -152 m 2300 -167 2303 -180 2310 -190 ct 2317 -200 2328 -206 2341 -206 ct +2353 -206 2364 -201 2372 -192 ct 2380 -182 2384 -169 2384 -151 ct 2384 -133 2380 -120 2372 -110 ct +2363 -101 2353 -96 2341 -96 ct 2329 -96 2319 -101 2312 -110 ct 2304 -119 2300 -133 2300 -152 ct +p +2342 -188 m 2335 -188 2330 -185 2326 -180 ct 2321 -174 2319 -164 2319 -150 ct +2319 -136 2321 -127 2326 -122 ct 2330 -116 2335 -114 2342 -114 ct 2348 -114 2354 -116 2358 -122 ct +2362 -127 2364 -137 2364 -152 ct 2364 -165 2362 -174 2358 -180 ct 2354 -185 2348 -188 2342 -188 ct +p +2364 8 m 2342 8 l 2454 -206 l 2476 -206 l 2364 8 l p +2433 -48 m 2433 -63 2436 -76 2443 -86 ct 2450 -97 2461 -102 2474 -102 ct 2487 -102 2497 -97 2505 -88 ct +2513 -79 2517 -65 2517 -47 ct 2517 -29 2513 -16 2505 -6 ct 2497 3 2486 8 2474 8 ct +2463 8 2453 3 2445 -6 ct 2437 -16 2433 -30 2433 -48 ct p +2475 -84 m 2468 -84 2463 -81 2459 -76 ct 2455 -71 2452 -61 2452 -46 ct 2452 -33 2455 -23 2459 -18 ct +2463 -13 2468 -10 2475 -10 ct 2481 -10 2487 -13 2491 -18 ct 2495 -23 2497 -33 2497 -48 ct +2497 -61 2495 -71 2491 -76 ct 2487 -82 2481 -84 2475 -84 ct p ef +2724 -55 m 2749 -51 l 2746 -34 2740 -21 2729 -12 ct 2718 -3 2704 2 2688 2 ct +2668 2 2652 -4 2640 -17 ct 2628 -30 2622 -49 2622 -73 ct 2622 -88 2624 -102 2629 -114 ct +2635 -125 2643 -134 2653 -140 ct 2664 -146 2675 -149 2688 -149 ct 2703 -149 2716 -145 2726 -137 ct +2736 -129 2742 -118 2745 -104 ct 2720 -100 l 2717 -108 2714 -115 2708 -119 ct +2702 -123 2696 -125 2688 -125 ct 2676 -125 2666 -121 2658 -113 ct 2651 -105 2647 -91 2647 -74 ct +2647 -55 2651 -42 2658 -34 ct 2666 -26 2675 -22 2687 -22 ct 2697 -22 2705 -24 2711 -30 ct +2718 -35 2722 -44 2724 -55 ct p ef +2762 -73 m 2762 -100 2769 -120 2784 -133 ct 2796 -143 2811 -149 2828 -149 ct +2848 -149 2864 -142 2876 -129 ct 2889 -116 2895 -98 2895 -75 ct 2895 -57 2892 -42 2887 -32 ct +2881 -21 2873 -13 2863 -7 ct 2852 -1 2841 2 2828 2 ct 2809 2 2792 -5 2780 -17 ct +2768 -30 2762 -49 2762 -73 ct p +2787 -73 m 2787 -56 2791 -43 2799 -35 ct 2807 -26 2817 -22 2828 -22 ct 2840 -22 2850 -26 2858 -35 ct +2866 -43 2869 -56 2869 -74 ct 2869 -91 2866 -104 2858 -112 ct 2850 -121 2840 -125 2828 -125 ct +2817 -125 2807 -121 2799 -112 ct 2791 -104 2787 -91 2787 -73 ct p ef +2935 0 m 2910 0 l 2910 -147 l 2935 -147 l 2935 -126 l 2945 -141 2960 -149 2979 -149 ct +2988 -149 2996 -147 3003 -144 ct 3010 -141 3015 -137 3018 -132 ct 3022 -127 3024 -120 3026 -113 ct +3027 -109 3027 -101 3027 -90 ct 3027 0 l 3002 0 l 3002 -87 l 3002 -97 3001 -104 2999 -109 ct +2997 -114 2994 -118 2989 -121 ct 2984 -124 2979 -125 2972 -125 ct 2962 -125 2953 -122 2946 -115 ct +2939 -109 2935 -96 2935 -78 ct 2935 0 l p ef +3103 0 m 3078 0 l 3078 -123 l 3056 -123 l 3056 -147 l 3078 -147 l +3078 -162 l 3078 -172 3078 -179 3080 -184 ct 3083 -191 3087 -196 3093 -200 ct +3099 -204 3108 -206 3119 -206 ct 3126 -206 3133 -205 3142 -203 ct 3138 -181 l +3133 -182 3128 -182 3124 -182 ct 3116 -182 3111 -181 3108 -177 ct 3105 -174 3103 -169 3103 -160 ct +3103 -147 l 3130 -147 l 3130 -123 l 3103 -123 l 3103 0 l p ef +3168 -176 m 3143 -176 l 3143 -202 l 3168 -202 l 3168 -176 l p +3168 0 m 3143 0 l 3143 -147 l 3168 -147 l 3168 0 l p ef +3329 0 m 3304 0 l 3304 -23 l 3295 -6 3281 2 3264 2 ct 3252 2 3242 -1 3232 -8 ct +3222 -14 3215 -23 3210 -34 ct 3204 -45 3202 -59 3202 -73 ct 3202 -88 3204 -101 3209 -112 ct +3214 -124 3221 -133 3231 -139 ct 3241 -146 3251 -149 3263 -149 ct 3272 -149 3280 -147 3287 -142 ct +3294 -138 3299 -133 3304 -126 ct 3304 -202 l 3329 -202 l 3329 0 l p +3227 -73 m 3227 -56 3231 -43 3239 -34 ct 3246 -26 3255 -22 3266 -22 ct 3276 -22 3285 -26 3293 -34 ct +3300 -42 3304 -55 3304 -71 ct 3304 -90 3300 -104 3292 -112 ct 3285 -121 3276 -125 3265 -125 ct +3254 -125 3245 -121 3238 -113 ct 3231 -104 3227 -91 3227 -73 ct p ef +3475 -47 m 3500 -43 l 3496 -29 3489 -18 3478 -10 ct 3467 -2 3453 2 3436 2 ct +3414 2 3397 -5 3385 -18 ct 3372 -31 3366 -49 3366 -72 ct 3366 -96 3372 -115 3385 -129 ct +3398 -142 3414 -149 3434 -149 ct 3454 -149 3470 -142 3482 -129 ct 3495 -116 3501 -97 3501 -73 ct +3501 -72 3501 -70 3501 -67 ct 3391 -67 l 3392 -52 3397 -41 3405 -33 ct 3413 -25 3424 -22 3436 -22 ct +3445 -22 3453 -24 3460 -28 ct 3466 -32 3471 -38 3475 -47 ct p +3391 -90 m 3475 -90 l 3474 -100 3471 -108 3466 -113 ct 3458 -121 3447 -125 3434 -125 ct +3422 -125 3413 -122 3405 -116 ct 3397 -109 3392 -101 3391 -90 ct p ef +3540 0 m 3515 0 l 3515 -147 l 3540 -147 l 3540 -126 l 3550 -141 3565 -149 3584 -149 ct +3593 -149 3601 -147 3608 -144 ct 3615 -141 3620 -137 3623 -132 ct 3627 -127 3629 -120 3631 -113 ct +3632 -109 3632 -101 3632 -90 ct 3632 0 l 3607 0 l 3607 -87 l 3607 -97 3606 -104 3604 -109 ct +3602 -114 3599 -118 3594 -121 ct 3589 -124 3584 -125 3577 -125 ct 3567 -125 3558 -122 3551 -115 ct +3544 -109 3540 -96 3540 -78 ct 3540 0 l p ef +3773 -55 m 3798 -51 l 3795 -34 3789 -21 3778 -12 ct 3767 -3 3753 2 3737 2 ct +3717 2 3701 -4 3689 -17 ct 3677 -30 3671 -49 3671 -73 ct 3671 -88 3673 -102 3678 -114 ct +3684 -125 3692 -134 3702 -140 ct 3713 -146 3724 -149 3737 -149 ct 3752 -149 3765 -145 3775 -137 ct +3785 -129 3791 -118 3794 -104 ct 3769 -100 l 3766 -108 3763 -115 3757 -119 ct +3751 -123 3745 -125 3737 -125 ct 3725 -125 3715 -121 3707 -113 ct 3700 -105 3696 -91 3696 -74 ct +3696 -55 3700 -42 3707 -34 ct 3715 -26 3724 -22 3736 -22 ct 3746 -22 3754 -24 3760 -30 ct +3767 -35 3771 -44 3773 -55 ct p ef +3918 -47 m 3943 -43 l 3939 -29 3932 -18 3921 -10 ct 3910 -2 3896 2 3879 2 ct +3857 2 3840 -5 3828 -18 ct 3815 -31 3809 -49 3809 -72 ct 3809 -96 3815 -115 3828 -129 ct +3841 -142 3857 -149 3877 -149 ct 3897 -149 3913 -142 3925 -129 ct 3938 -116 3944 -97 3944 -73 ct +3944 -72 3944 -70 3944 -67 ct 3834 -67 l 3835 -52 3840 -41 3848 -33 ct 3856 -25 3867 -22 3879 -22 ct +3888 -22 3896 -24 3903 -28 ct 3909 -32 3914 -38 3918 -47 ct p +3834 -90 m 3918 -90 l 3917 -100 3914 -108 3909 -113 ct 3901 -121 3890 -125 3877 -125 ct +3865 -125 3856 -122 3848 -116 ct 3840 -109 3835 -101 3834 -90 ct p ef +pom +gr +gr +gr +gs +0 0 m 7153 0 l 7153 6497 l 0 6497 l 0 0 l eoclip newpath +gr +gr +gr +gr +gr +gr +gs +0 0 m 19589 0 l 19589 25939 l 0 25939 l 0 0 l eoclip newpath +gr +gr +0 25940 t +pom +count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore +%%PageTrailer +%%Trailer +%%EOF
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/ift6266_ml.bib Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,25838 @@ +%%WARNING: READ THE README FILE BEFORE ANY MODIFICATION!!! + + +%%submitted papers +%%% + +@Article{Bergstra+Bengio+Louradoj-2008sub, + author = "J. Bergstra and Y. Bengio and J. Louradour", + title = "Suitability of Complex Cell Models for Object Categorization", + journal = "Computational Neuroscience", + year = "2008", + note = "Rejected." +} +@Article{Bergstra+Bengio+Louradoj-2009sub, + author = "J. Bergstra and Y. Bengio and J. Louradour", + title = "Suitability of Complex Cell Models for Object Categorization", + journal = "Neural Computation", + year = "2009", + note = "Submitted." +} +@Article{Chapados+Bengio-2008sub, + author = "N. Chapados and Y. Bengio", + title = "Forecasting and Trading Commodity Contract Spreads with {G}aussian Processes", + journal = "International Journal of Forecasting", + year = "2008", + note = "Submitted.", +} +@Article{Chapados+Bengio-2008sub2, + author = "N. Chapados and Y. Bengio", + title = "Training Graphs of Learning Modules for Sequential Data", + journal = "ACM Transactions on Knowledge Discovery from Data", + year = "2008", + note = "Submitted.", +} + +%%% +%%accepted or published papers +%%% + +@Article{Grother, + author = "Grother Patrick J.", + title = "NIST special database. Handprinted forms and characters database", + publisher = "National institute of standards and technology", + year = "1995" +} + +@InCollection{Trentin+al-2002, + author = "E. Trentin and F. Brugnara and Y. Bengio and C. Furlanello and R. De Mori", + editor = "R. Daniloff", + booktitle = "Connectionist Approaches to Clinical Problems in Speech +and Language", + title = "Statistical and Neural Network Models for Speech Recognition", + publisher = "Lawrence Erlbaum", + pages = "213--264", + year = "2002", +} + +@InCollection{Bengio+grandvalet-2004, + author = "Y. Bengio and Y. Grandvalet", + editor = "P. Duchesne and B. Remillard", + booktitle = "Statistical Modeling and Analysis for Complex Data Problem", + title = "Bias in Estimating the Variance of K-Fold Cross-Validation", + publisher = "Lawrence Erlbaum", + address = "Kluwer", + pages = "75--95", + year = "2004", +} + +@InCollection{Dugas+al-2004, + author = "C. Dugas and Y. Bengio and N. Chapados and P. Vincent and G. Denoncourt and C. Fournier", + editor = "L. Jain and A.F. Shapiro", + booktitle = "Intelligent and Other Computational Techniques in Insurance: Theory and +Applications", + title = "Statistical Learning Algorithms Applied to Automobile Insurance Ratemaking", + publisher = "World Scientific Publishing Company", + year = "2004", +} + +@InCollection{Dugas+al-2004-short, + author = "C. Dugas and Y. Bengio and N. Chapados and P. Vincent and G. Denoncourt and C. Fournier", + booktitle = "Intelligent and Other Computational Techniques in Insurance: Theory and +Applications", + title = "Statistical Learning Algorithms Applied to Automobile Insurance Ratemaking", + publisher = "World Scientific Publishing Company", + year = "2004", +} + +@inproceedings{Collobert+Bengio+Bengio-2002b, + author = "R. Collobert and Y. Bengio and S. Bengio", + title = {Scaling Large Learning Problems with Hard Parallel Mixtures}, + editor = "S.W. Lee and A. Verri", + year = 2002, + booktitle = SVM02, + volume = "2388 of Lecture Notes in Computer Science", + publisher = "Springer-Verlag", + pages = "8--23", +} + +@Article{Collobert+Bengio+Bengio-2003, + author = "R. Collobert and Y. Bengio and S. Bengio.", + title = "Scaling Large Learning Problems with Hard Parallel Mixtures", + journal = ijprai, + volume = "17", + number = "3", + pages = "349--365", + year = "2003", +} + +@Article{Collobert+Bengio+Bengio-2003-small, + author = "R. Collobert and Y. Bengio and S. Bengio.", + title = "Scaling Large Learning Problems with Hard Parallel Mixtures", + journal = "Int. J. Pattern Recognition and Artificial Intelligence", + volume = "17(3)", + pages = "349--365", + year = "2003", +} + +@InProceedings{Bengio+Chapados-2002, + author = "Y. Bengio and N. Chapados", + title = "Metric-based Model Selection for Time-Series Forecasting", + publisher = "IEEE Press", + editor = NIPS12ed, + booktitle = NIPS12, + year = "2002", + pages = "13--24", +} + +@InProceedings{Bengio+Takeuchi+Kanamori-2002, + author = "Y. Bengio and I. Takeuchi and K. Kanamori", + title = "The Challenge of Non-Linear Regression on Large Datasets with Asymmetric Heavy Tails", + publisher = "American Statistical Association publ.", + booktitle = JSM02, + year = "2002", + pages = "193-205" +} + +@InProceedings{Bengio+Takeuchi+Kanamori-2002-short, + author = "Y. Bengio and I. Takeuchi and K. Kanamori", + title = "The Challenge of Non-Linear Regression on Large Datasets with Asymmetric Heavy Tails", + booktitle = JSM02, + year = "2002", +} + +@InProceedings{Collobert+Bengio+Bengio-2002, + author = "R. Collobert ans S. Bengio and Y. Bengio", + title = "A Parallel Mixture of {SVM}s for Very Large Scale Problems", + booktitle = NIPS14, + editor = NIPS14ed, + pages = "633--640", + year = "2002", +} + +@InProceedings{Bhattacharya+Getoor+Bengio-2004, + author = "I. Bhattacharya and L. Getoor and Y. Bengio", + booktitle = "Conference of the Association for Computational Linguistics (ACL'04)", + title = "Unsupervised Sense Disambiguation Using Bilingual Probabilistic Models", + year = "2004", +} +@InProceedings{Boufaden+Bengio+Lapalme-2008, + author = "N. Boufaden and Y. Bengio and G. Lapalme", + booktitle = "{\em TALN'2004}, Traitement Automatique du Langage Naturel.", + title = "Approche statistique pour le repérage de mots informatifs dans les textes oraux", + year = "2004", +} +@InProceedings{Chapados+Bengio-2006, + author = "N. Chapados and Y. Bengio", + booktitle = AI06, + title = "The K Best-Paths Approach to Approximate Dynamic Programming with Application to Portfolio Optimization", + pages = "491-502", + year = "2006", +} +@InProceedings{Rivest+Bengio+Kalaska-2005, + author = "F. Rivest and Y. Bengio and J. Kalaska", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Brain Inspired Reinforcement Learning", + publisher = "MIT Press, Cambridge", + address = "Cambridge, MA", + pages = "1129-1136", + year = "2005", +} + +@InProceedings{Bengio+Grandvalet-NIPS-2004, + author = "Y. Bengio Y. and Y. Grandvalet", + editor = NIPS16ed, + booktitle = NIPS16, + title = "No Unbiased Estimator of the Variance of K-Fold Cross-Validation", + publisher = "MIT Press, Cambridge", + address = "Cambridge, MA", + year = "2004", +} + +@InProceedings{Bengio+Grandvalet-NIPS-2004-short, + author = "Y. Bengio Y. and Y. Grandvalet", + booktitle = NIPS16, + title = "No Unbiased Estimator of the Variance of K-Fold Cross-Validation", + publisher = "MIT Press, Cambridge", + year = "2004", +} + +@article{Zaccaro-et-al-2005, + author = {Maria Clara Zaccaro and Hong Boon Lee and Mookda Pattarawarapan and + Zebin Xia and Antoine Caron and Pierre-Jean L'Heureux and Yoshua Bengio + and Kevin Burgess and H. Uri Saragovi}, + title = {Selective Small Molecule Peptidomimetic Ligands of {TrkC} and {TrkA} Receptors Afford Discrete or Complete Neurotrophic Activities}, + journal = {Chemistry \& Biology}, + volume = 12, + number = 9, + pages = {1015--1028}, + year = 2005, +} + +@Article{63a:man, + author = "B. Mandelbrot", + title = "The variation of certain speculative prices", + journal = "Journal of Business", + volume = "36", + pages = "394--419", + year = "1963", + annote = "Référence pour les distributions stables en finance", +} + +@Article{65a:fam, + author = "E. F. Fama", + title = "The behavior of stock market prices", + journal = "Journal of Business", + volume = "38", + pages = "34--105", + year = "1965", + annote = "Autre référence pour les distributions stables en + finance", +} + +@Article{96a:cor:gon:har, + author = "R. M. Corless and G. H. Gonnet and D. E. G. Hare and + D. J. Jeffrey and D. E. Knuth", + title = "On the {Lambert} {W} Function", + journal = "Advances in Computational Mathematics", + volume = "5", + pages = "329--359", + year = "1996", + annote = "Sert à résoudre les équations où une variable et son + logarithme (ou exponentielle) apparaissent + simultanément", +} + +@Book{97b:emb:klu:mik, + author = "P. Embrechts and C. Kluppelberg and T. Mikosch", + title = "Modelling Extremal Events", + publisher = "Springer", + year = "1997", + series = "Applications of Mathematics, Stochastic Modelling and + Applied Probability", + annote = "book on evt: theory, statistical methods for gev", +} + +@Article{99a:kan:ser, + author = "S. Kang and R. F. Serfozo", + title = "Extreme values of phase-type and mixed random + variables with parallel-processing examples", + journal = "Journal of Applied Probability", + volume = "36", + pages = "194--210", + year = "1999", + annote = "limiting distribution of the maximum of r.v. i.i.d + from a mixture is determined by the component of the + mixture that has a dominant tail", +} + +@TechReport{Abdallah+Plumbley-06, + author = "Samer Abdallah and Mark Plumbley", + title = "Geometry Dependency Analysis", + number = "C4DM-TR06-05", + institution = "Center for Digital Music, Queen Mary, University of + London", + year = "2006", +} + +@Article{Abe+Warmuth92, + author = "N. Abe and M. K. Warmuth", + title = "On the Computational Complexity of Approximating + Distributions by Probabilistic Automata", + journal = "Machine Learning", + volume = "9", + month = jul, + year = "1992", +} + +@Article{Abu-Mostafa-hints, + author = "Y. S. Abu-Mostafa", + title = "Learning from Hints in Neural Networks", + journal = jcomp, + volume = "6", + pages = "192--198", + year = "1990", +} + +@Article{Abu-Mostafa87, + author = "Y. S. Abu-Mostafa and D. Psaltis", + title = "Optical Neural Computers", + journal = sciam, + volume = "256", + pages = "88--95", + month = mar, + year = "1987", +} + +@Article{Abu-Mostafa89, + author = "Y. S. Abu-Mostafa", + title = "The {Vapnik}-{Chervonenkis} Dimension: Information + versus Complexity in Learning", + journal = nc, + volume = "1", + pages = "312--317", + year = "1989", +} + +@Article{abumostafa95, + author = "Yaser S. Abu-Mostafa", + title = "Hints", + journal = "Neural Computation", + volume = "7", + number = "4", + pages = "639--671", + month = jul, + year = "1995", +} + +@misc{Ackerman+BenDavid-2008, + author = "Margareta Ackerman and Shai Ben-David", + title = "Clustering Quality Measures", + year = 2008, + note = "{\em Snowbird Learning Workshop}", +} + +@Article{Ackley85, + author = "D. H. Ackley and G. E. Hinton and T. J. Sejnowski", + title = "A Learning Algorithm for {Boltzmann} Machines", + journal = cogsci, + volume = "9", + pages = "147--169", + year = "1985", +} + +@InProceedings{Ackley90, + author = "D. H. Ackley and M. S. Littman", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Generalization and Scaling in Reinforcement Learning", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "550--557", + year = "1990", +} + +@Article{ACM:Rohwer94, + author = "R. Rohwer", + title = "The time dimension of neural network models", + journal = "ACM Sigart Bulleting", + volume = "5", + number = "3", + pages = "36--44", + month = jul, + year = "1994", +} + +@article{AdelsonBergen1985, + author={E. H. Adelson and J. R. Bergen}, + title={Spatiotemporal Energy Models for the Perception of Motion}, + journal={Journal of the Optical Society of America}, + volume=2, + number=2, + year=1985, + pages={284-99}, +} + +@Article{Agrawala70, + author = {Ashok Kumar Agrawala}, + title = {Learning with a Probabilistic Teacher}, + journal = {IEEE Transactions on Information Theory}, + year = 1970, + volume = 16, + pages = {373-379} +} + +@Article{Ahalt90, + author = "S. C. Ahalt and A. K. Krishnamurthy and P. Chen and D. + E. Melton", + title = "Competitive Learning Algorithms for Vector + Quantization", + journal = nn, + volume = "3", + pages = "277--290", + year = "1990", +} + +@InProceedings{Ahmad93, + author = "S. Ahmad and V. Tresp", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Some Solutions to the Missing Feature Problem in + Vision", + publisher = "Morgan Kaufman Publishers", + address = "San Mateo, CA", + year = "1993", +} + +@inproceedings{Ahmed2008, + author = {Amr Ahmed and Kai Yu and Wei Xu and Yihong Gong and Eric P. Xing}, + booktitle = {Proceedings of the 10th European Conference on Computer Vision (ECCV'08)}, + title = {Training Hierarchical Feed-forward Visual Recognition Models Using Transfer Learning from Pseudo Tasks}, + year = 2008, + pages = "69--82", +} + +@article{AitchisonJ1976, + author = {John Aitchison and Colin Aitken}, + journal = {Biometrika}, + number = {3}, + pages = {413--420}, + title = {Multivariate binary discrimination by the kernel method}, + volume = {63}, + year = {1976} +} + +@Article{Aizerman64, + author = "Mark A. Aizerman and Emmanuel M. Braverman and Lev I. + Rozonoer", + title = "Theoretical Foundations of the Potential Function + Method in Pattern Recognition Learning", + journal = "Automation and Remote Control", + volume = "25", + pages = "821--837", + year = "1964", +} + +@Article{Ajtai83, + author = "Miklos Ajtai", + title = "$\sum_1^1$-formulae on finite structures", + journal = "Annals of Pure and Applied Logic", + volume = "24", + number = "1", + pages = "1--48", + year = "1983", +} + +@Article{Akaike74, + author = "H. Akaike", + title = "A New Look at the Statistical Model Identification", + journal = ieeeac, + volume = "AC-19", + number = "6", + pages = "716--728", + year = "1974", +} + +@Article{Al-Mashouq-hints, + author = "K. A. Al-Mashouq and I. S. Reed", + title = "Including Hints in Training Neural Nets", + journal = nc, + volume = "3", + number = "4", + pages = "418--430", + year = "1991", +} + +@Book{Aleksander:90, + author = "I. Aleksander and H. Morton", + title = "An Introduction to Neural Computing", + publisher = "Chapman and Hall", + address = "London", + year = "1990", + keywords = "", +} + +@InProceedings{Aleksander:93, + author = "I. Aleksander and H. Morton", + editor = "J. Mira and J. Cabestany and A. Prieto", + booktitle = "New Trends in Neural Computation: Proc. of the + International Workshop on Artificial Neural Networks + IWANN'93", + title = "A Neural State Machine for Iconic Language + Representation", + publisher = "Springer", + address = "Berlin, Heidelberg", + pages = "84--89", + year = "1993", + keywords = "", +} + +@InProceedings{Allender96, + author = "Eric Allender", + booktitle = "16th Annual Conference on Foundations of Software + Technology and Theoretical Computer Science", + title = "Circuit Complexity Before the Dawn of the New + Millennium", + publisher = "Lecture Notes in Computer Science 1180, Springer + Verlag", + pages = "1--18", + year = "1996", +} + +@InProceedings{Alleva93, + author = "F. Alleva and X. Huang and M. Y. Hwang", + booktitle = icassp, + title = "An improved search algorithm using incremental + knowledge for continuous speech recognition", + address = "Minneapolis, Minnesota", + pages = "307--310", + year = "1993", +} + +@Book{Allgower80, + author = "E. L. Allgower and K. Georg", + title = "Numerical Continuation Methods. {A}n Introduction", + number = "13", + publisher = "Springer-Verlag", + year = "1980", + series = "Springer Series in Computational Mathematics", +} + +@Book{Allgower80-short, + author = "E. L. Allgower and K. Georg", + title = "Numerical Continuation Methods. {A}n Introduction", + publisher = "Springer-Verlag", + year = "1980", +} + +@InProceedings{Almeida87, + author = "L. B. Almeida", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "A Learning Rule for Asynchronous Perceptrons with + Feedback in a Combinatorial Environment", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "609--618", + year = "1987", +} + +@InProceedings{Almeida88, + author = "L. B. Almeida", + editor = "R. Eckmiller and Ch. von der Malsburg", + booktitle = "Neural Computers", + title = "Backpropagation in Perceptrons with Feedback", + publisher = "Springer-Verlag, Berlin", + address = "Neuss 1987", + pages = "199--208", + year = "1988", +} + +@inproceedings{Almuallim+Dietterich-1991, + address = {Anaheim, California}, + author = {Almuallim, H. and Dietterich, T. G.}, + booktitle = {Proceedings of the Ninth National Conference on Artificial Intelligence}, + pages = {547--552}, + publisher = {AAAI Press}, + title = {Learning with many irrelevant features}, + url = "http://citeseer.ist.psu.edu/almuallim91learning.html", + volume = {2}, + year = {1991} +} + +@article{Almuallim+Dietterich-1994, + author = "Hussein Almuallim and Thomas G. Dietterich", + title = "Learning Boolean Concepts in the Presence of Many Irrelevant Features", + journal = "Artificial Intelligence", + volume = "69", + number = "1-2", + pages = "279-305", + year = "1994", + url = "citeseer.ist.psu.edu/almuallim94learning.html" +} + + +@InProceedings{Alspector87, + author = "J. Alspector and R. B. Allen", + editor = "P. Losleben", + booktitle = "Advanced Research in VLSI: Proceedings of the 1987 + Stanford Conference", + title = "A Neuromorphic {VLSI} Learning System", + publisher = "MIT Press, Cambridge", + pages = "313--349", + year = "1987", +} + +@InProceedings{Alspector88, + author = "J. Alspector and R. B. Allen and V. Hu and S. + Satyanarayana", + editor = nips87ed, + booktitle = nips87, + title = "Stochastic Learning Networks and Their Electronic + Implementation", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "9--21", + year = "1988", +} + +@Article{Amari+Wu-99, + author = "S. Amari and S. Wu", + title = "Improving {Support} {Vector} {Machine} classifiers by + modifying kernel functions", + journal = "Neural Networks", + volume = "12", + pages = "783--789", + year = "1999", +} + +@Article{amari00adaptive, + author = "{Shun-ichi} Amari and Hyeyoung Park and Kenji Fukumizu", + title = "Adaptive Method of Realizing Natural Gradient Learning + for Multilayer Perceptrons", + journal = "Neural Computation", + volume = "12", + number = "6", + pages = "1399--1409", + year = "2000", + URL = "citeseer.ist.psu.edu/amari98adaptive.html", +} + +@Article{Amari77, + author = "S. A. Amari", + title = "Dynamics of Pattern Formation in Lateral-Inhibition + Type Neural Fields", + journal = biocyb, + volume = "27", + pages = "77--87", + year = "1977", +} + +@Article{Amari80, + author = "S. A. Amari", + title = "Topographic Organization of Nerve Fields", + journal = bmbiol, + volume = "42", + pages = "339--364", + year = "1980", +} + +@Article{amari98natural, + author = "{Shun-ichi} Amari", + title = "Natural Gradient Works Efficiently in Learning", + journal = "Neural Computation", + volume = "10", + number = "2", + pages = "251--276", + year = "1998", + URL = "citeseer.ist.psu.edu/article/amari98natural.html", +} + +@Article{Amari99, + author = "S. Amari and S. Wu", + title = "Improving Support Vector Machine Classifiers by + Modifying Kernel Functions", + journal = "Neural Networks", + volume = "12", + number = "6", + pages = "783--789", + year = "1999", +} + +@article{AmariS1997, + author = {{Shun-ichi} Amari and Noboru Murata and Klaus-Robert M{\"u}ller and Michael Finke and Howard Hua Yang }, + journal = {IEEE Transactions on Neural Networks}, + keywords = {regularization}, + number = {5}, + pages = {985--996}, + title = {Asymptotic statistical theory of overtraining and cross-validation}, + volume = {8}, + year = {1997} +} + +@InProceedings{amaya01improvement, + author = "Fredy A. Amaya and Jose-Miguel Bened\`{i}", + booktitle = "Meeting of the Association for Computational + Linguistics", + title = "Improvement of a Whole Sentence Maximum Entropy + Language Model Using Grammatical Features", + pages = "10--17", + year = "2001", + URL = "citeseer.nj.nec.com/505752.html", +} + +@InProceedings{BoufadenLapalmeBengio2001, + author = "N. Boufaden and Lapalme G. and Bengio Y.", + booktitle = "Proceedings of the Natural Language Pacific Rim Symposium, NLPRS-01", + title = "Topic segmentation: First Stage of Dialogue-Based Information extraction Process", + year = "2001", +} + +@Article{Amit85a, + author = "D. Amit and H. Gutfreund and H. Sompolinsky", + title = "Spin-Glass Models of Neural Networks", + journal = prA, + volume = "32", + pages = "1007--1018", + year = "1985", +} + +@Article{Amit85b, + author = "D. Amit and H. Gutfreund and H. Sompolinsky", + title = "Storing Infinite Numbers of Patterns in a Spin-Glass + Model of Neural Networks", + journal = prl, + volume = "55", + pages = "1530--1533", + year = "1985", +} + +@Article{Amit87a, + author = "D. Amit and H. Gutfreund and H. Sompolinsky", + title = "Statistical Mechanics of Neural Networks Near + Saturation", + journal = annphys, + volume = "173", + pages = "30--67", + year = "1987", +} + +@Article{Amit87b, + author = "D. Amit and H. Gutfreund and H. Sompolinsky", + title = "Information Storage in Neural Networks with Low Levels + of Activity", + journal = prA, + volume = "35", + pages = "2293--2303", + year = "1987", +} + +@Article{Amit88, + author = "D. Amit", + title = "Neural Networks for Counting Chimes", + journal = PNAS, + volume = "85", + pages = "2141--2145", + year = "1988", +} + +@Book{Amit89, + author = "D. Amit", + title = "Modelling Brain Function", + publisher = "Cambridge University Press", + address = "Cambridge", + year = "1989", +} + +@Article{Ammar+Miao-2000, + author = "Hany H. Ammar and Zhouhui Miao", + title = "Parallel Algorithms for the Training Process of a + Neural Network-Based System", + journal = "International Journal of High Performance Computing + Applications", + volume = "14", + number = "1", + pages = "3--25", + year = "2000", + URL = "http://hpc.sagepub.com/cgi/content/abstract/14/1/3", + doi = "10.1177/109434200001400101", + eprint = "http://hpc.sagepub.com/cgi/reprint/14/1/3.pdf", +} + +@Book{Anderson, + author = "T. Anderson", + title = "An Introduction to Multivariate Statistical + Analysis.", + publisher = "John Wiley and Sons", + address = "New York", + year = "1984", +} + +@Article{Anderson68, + author = "J. A. Anderson", + title = "A Memory Model Using Spatial Correlation Functions", + journal = kyb, + volume = "5", + pages = "113--119", + year = "1968", +} + +@Article{Anderson70, + author = "J. A. Anderson", + title = "Two Models for Memory Organization", + journal = mbio, + volume = "8", + pages = "137--160", + year = "1970", +} + +@book{Hinton+Anderson-81, + author = {G.E. Hinton and J.A. Anderson}, + title = {Parallel models of associative memory}, + publisher = {Lawrence Erlbaum Assoc.}, + address = {Hillsdale, NJ}, + year = 1981, +} + +@InCollection{Anderson81, + author = "J. A. Anderson and M. C. Mozer", + editor = "G. E. Hinton and J. A. Anderson", + booktitle = "Parallel Models of Associative Memory", + title = "Categorization and Selective Neurons", + publisher = "Lawrence Erlbaum", + address = "Hillsdale", + pages = "213--236", + year = "1981", +} + +@Article{Anderson86, + author = "D. Z. Anderson", + title = "Coherent Optical Eigenstate Memory", + journal = optlett, + volume = "11", + pages = "56--58", + year = "1986", +} + +@Article{Anderson87, + author = "C. H. Anderson and D. C. Van Essen", + title = "Shifter Circuits: {A} Computational Strategy for + Dynamic Aspects of Visual Processing", + journal = PNAS, + volume = "84", + pages = "6297--6301", + year = "1987", +} + +@Book{Anderson88, + editor = "J. A. Anderson and E. Rosenfeld", + title = "Neurocomputing: Foundations of Research", + publisher = "MIT Press", + address = "Cambridge", + year = "1988", +} + +@InProceedings{Anderson89, + author = "S. Anderson and J. W. L. Merrill and R. Port", + editor = "D. Touretzky and G. Hinton and T. Sejnowski", + booktitle = cmss88, + title = "Dynamic Speech Categorization with Recurrent + Networks", + publisher = "Morgan Kaufmann, San Mateo", + address = "Pittsburg 1988", + pages = "398--406", + year = "1989", +} + +@Article{Ando+Zhange-JMLR-2005, + author = "Rie Kubota Ando and Tong Zhang", + title = "A Framework for Learning Predictive Structures from + Multiple Tasks and Unlabeled Data", + journal = jmlr, + volume = "6", + pages = "1817--1853", + year = "2005", +} + +@Article{Andrieu03, + author = "Christophe Andrieu and Nando de Freitas and Arnaud + Doucet and Michael I. Jordan", + title = "An Introduction to {MCMC} for Machine Learning", + journal = "Machine Learning", + volume = "50", + number = "1-2", + pages = "5--43", + year = "2003", +} + +@Article{Andrieu2003, + author = "C. Andrieu and N. de Freitas and A. Doucet and M. + Jordan", + title = "An introduction to {MCMC} for machine learning", + journal = "Machine Learning", + volume = "50", + pages = "5--43", + year = "2003", +} + +@Article{Angeniol88, + author = "B. Ang\'eniol and G. de La Croix Vaubois and J.-Y. Le + Texier", + title = "Self-Organizing Feature Maps and the Travelling + Salesman Problem", + journal = nn, + volume = "1", + pages = "289--293", + year = "1988", +} + +@Article{Angluin83, + author = "D. Angluin and C. Smith", + title = "Inductive Inference: Theory and Methods", + journal = "Computing Surveys", + volume = "15", + number = "3", + pages = "237--269", + year = "1983", +} + +@Book{Arbib87, + author = "M. A. Arbib", + title = "Brains, Machines, and Mathematics", + publisher = "Springer-Verlag", + address = "Berlin", + year = "1987", +} + +@Book{ARP94, + author = "{Advanced Research Projects Agency}", + title = "Proceedings of the 1994 {ARPA} Human Language + Technology Workshop (Princeton, New Jersey, March + 1994)", + publisher = "Morgan Kaufmann", + year = "1994", +} + +@Misc{Asuncion+Newman:2007, + author = "A. Asuncion and D. J. Newman", + title = "{UCI} Machine Learning Repository", + institution = "University of California, Irvine, School of + Information and Computer Sciences", + year = "2007", + URL = "http://www.ics.uci.edu/$\sim$mlearn/MLRepository.html", +} + +@article{ashetal04, +author = "Ash, J. and Berg, M. and Coiera, E.", +title = "Some unintended consequences of +information technology in health care: the nature of patient care +information system-related errors", +journal = "J Am Med Inform Assoc", +volume = "11", +number = 2, +pages = "104-112", +year = 2004, +} + +@article{ashetal07, +author = "Ash, J. and Sittig, D. and Dykstra, R. and Guappone, K. and +Carpenter, J. and Seshadri, V.", +title = "Categorizing the unintended sociotechnical consequences of +computerized provider order entry", +journal = "Int J Med Inform", +volume = 76, +number = "Suppl1", +pages = "21-27", +year = 2007, +} + +@InProceedings{Atal83, + author = "B. S. Atal", + booktitle = icassp, + title = "Efficient coding of {LPC} parameters by temporal + decomposition", + address = "Boston, MA", + pages = "81--84", + year = "1983", +} + +@PhdThesis{Athaide95, + author = "C. R. Athaide", + title = "Likelihood estimation and state estimation for + nonlinear state space models", + school = "Graduate Group in Managerial Science and Applied + Economics, University of Pennsylvania", + address = "Philadelphia, PA", + year = "1995", +} + +@Book{Atherton-75, + author = "D. P. Atherton", + title = "Nonlinear Control Engineering", + publisher = "Van Nostrand Reinhold", + address = "Wokingam (England)", + year = "1975", +} + +@Article{atkeson96locally, + author = "C. G. Atkeson and A. W. Moore and S. Schaal", + title = "Locally Weighted Learning for Control", + journal = "Artificial Intelligence Review", + volume = "11", + pages = "75--113", + year = "1997", +} + +@InProceedings{Aubert94, + author = "X. Aubert and C. Dugast and H. Ney and V. Steinbiss", + booktitle = icassp, + title = "Large vocabulary continuous speech recognition of + {Wall} {Street} journal data", + address = "Adelaide, Australia", + pages = "129--132", + year = "1994", +} + +@InProceedings{Auer-96, + author = "Peter Auer and Mark Herbster and Manfred K. Warmuth", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Exponentially Many Local Minima for Single Neurons", + publisher = "MIT Press, Cambridge, MA", + pages = "315--322", + year = "1996", +} + +@InProceedings{auer97, + author = "Peter Auer", + booktitle = "Proc. 14th International Conference on Machine + Learning", + title = "On learning from multi-instance examples: Empirical + evaluation of a theoretical approach", + publisher = "Morgan Kaufmann", + pages = "21--29", + year = "1997", +} + +@InProceedings{b-cdmvqfa-97, + author = "Jonathan Baxter", + booktitle = "Proc. 14th International Conference on Machine + Learning", + title = "The canonical distortion measure for vector + quantization and function approximation", + publisher = "Morgan Kaufmann", + pages = "39--47", + year = "1997", +} + +@InCollection{Bach-2007, + author = "Francis Bach", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Active learning for misspecified generalized linear + models", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "", + year = "2007", +} + +@Article{Bachmann87, + author = "C. M. Bachmann and L. N. Cooper and A. Dembo and O. + Zeitouni", + title = "A Relaxation Model for Memory with High Storage + Density", + journal = PNAS, + volume = "84", + pages = "7529--7531", + year = "1987", +} + +@MastersThesis{Bachrach88, + author = "J. Bachrach", + title = "Learning to Represent State", + school = "University of Massachusetts", + address = "Amherst", + year = "1988", +} + +@Article{Back-nc91, + author = "A. D. Back and A. C. Tsoi", + title = "{FIR} and {IIR} Synapses: {A} New Neural Network + Architecture for Time Series Modeling", + journal = nc, + volume = "3", + number = "3", + pages = "375--385", + year = "1991", +} + +@InCollection{Bahadur61, + author = "R. R. Bahadur", + editor = "H. Solomon", + booktitle = "Studies in Item Analysis and Predictdion", + title = "A representation of the joint distribution of + responses to n dichotomous items", + publisher = "Stanford University Press, California", + pages = "158--168", + year = "1961", +} + +@InProceedings{bahl77, + author = "L. R. Bahl and J. K. Baker and R. L. Mercer", + booktitle = "94th Meeting of the Acoustical Society of America", + title = "Perplexity: a measure of difficulty of speech + recognition tasks", + address = "Miami", + month = dec, + year = "1977", +} + +@Article{Bahl83, + author = "L. R. Bahl and F. Jelinek and R. L. Mercer", + title = "A Maximum Likelihood Approach to Continuous Speech + Recognition", + journal = ieeetpami, + volume = "5", + number = "2", + pages = "179--190", + month = mar, + year = "1983", +} + +@InProceedings{Bahl86, + author = "Lalit Bahl and Peter Brown and Peter {deSouza} and Robert Mercer", + booktitle = icassp, + title = "Maximum mutual information estimation of hidden Markov + parameters for speech recognition", + address = "Tokyo, Japan", + pages = "49--52", + year = "1986", +} + +@Article{Bahl87, + author = "L. R. Bahl and P. Brown and P. V. {de Souza} and R. L. + Mercer", + title = "Speech recognition with continuous-parameter hidden + {Markov} models", + journal = "Computer, Speech and Language", + volume = "2", + pages = "219--234", + year = "1987", +} + +@InProceedings{Bahl88, + author = "L. R. Bahl and P. Brown and P. V. de Souza and R. L. + Mercer", + booktitle = icassp, + title = "Speech recognition with continuous-parameter hidden + {Markov} models", + address = "New York, NY", + pages = "40--43", + year = "1988", +} + +@Article{Bailey-Simon-60, + author = "Robert A. Bailey and Leroy Simon", + title = "Two Studies in Automobile Insurance Ratemaking", + journal = "ASTIN Bulletin", + volume = "1", + number = "4", + pages = "192--217", + year = "1960", +} + +@InCollection{Baker75, + author = "J. K. Baker", + editor = "D. R. Reddy", + booktitle = "Speech Recognition", + title = "Stochastic modeling for automatic speech + understanding", + publisher = "Academic Press", + address = "New York", + pages = "521--542", + year = "1975", +} + +@Book{Baker77, + author = "C. T. H. Baker", + title = "The numerical treatment of integral equations", + publisher = "Clarendon Press", + address = "Oxford", + year = "1977", +} + +@InProceedings{Baker98, + author = "D. Baker and A. {McCallum}", + booktitle = "SIGIR'98", + title = "Distributional Clustering of Words for Text + Classification", + year = "1998", +} + +@InProceedings{baker98berkeley, + author = "Collin F. Baker and Charles J. Fillmore and John B. + Lowe", + editor = "Christian Boitet and Pete Whitelock", + booktitle = "Proceedings of the Thirty-Sixth Annual Meeting of the + {Association} for {Computational} {Linguistics} and + Seventeenth International Conference on Computational + Linguistics", + title = "The {Berkeley} {FrameNet} Project", + publisher = "Morgan Kaufmann Publishers", + address = "San Francisco, California", + pages = "86--90", + year = "1998", +} + +@InProceedings{Bakis76, + author = "R. Bakis", + booktitle = "19st Meeting of the Acoustic Society of America", + title = "Continuous Speech Recognition via Centisecond Acoustic + States", + month = apr, + year = "1976", +} + +@Article{bakker03, + author = "Bart Bakker and Tom Heskes", + title = "Task clustering and gating for {B}ayesian multitask + learning", + journal = jmlr, + volume = "4", + publisher = "MIT Press", + address = "Cambridge, MA, USA", + pages = "83--99", + year = "2003", + ISSN = "1533-7928", +} + +@Book{Baldi-Brunak-98, + author = "Pierre Baldi and Soren Brunak", + title = "Bioinformatics, the Machine Learning Approach", + publisher = "MIT Press", + year = "1998", +} + +@Article{Baldi89, + author = "Pierre Baldi and Kurt Hornik", + title = "Neural Networks and Principal Component Analysis: + Learning from Examples Without Local Minima", + journal = nn, + volume = "2", + pages = "53--58", + year = "1989", +} + +@Article{Baldi94, + author = "P. Baldi and Y. Chauvin and T. Hunkapiller and M. + {McClure}", + title = "Hidden Markov models of biological primary sequence + information", + journal = "Proc. Nat. Acad. Sci. (USA)", + volume = "91", + number = "3", + pages = "1059--1063", + year = "1995", +} + +@Article{Ballard81, + author = "D. H. Ballard", + title = "Generalizing the Hough Transform to Detect Arbitrary + Shapes", + journal = "Pattern Recognition", + volume = "13", + number = "2", + pages = "111--122", + year = "1981", +} + +@InProceedings{Baluja97, + author = "S. Baluja", + editor = NIPS9ed, + booktitle = NIPS9, + title = "Genetic Algorithms and Explicit Search Statistics", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "", + year = "1997", +} + +@Article{Bar-Shalom78, + author = "Y. Bar-Shalom", + title = "Tracking methods in a multi-target environment", + journal = "IEEE Trans. on Aut. Control", + volume = "23", + pages = "618--626", + year = "1978", +} + +@Book{Bar-Shalom93, + author = "Y. Bar-Shalom and {X.-R.} Li", + title = "Estimation and Tracking", + publisher = "Artech House", + address = "Boston, MA", + year = "1993", +} + +@InProceedings{Barber+Williams-nips9, + author = "D. Barber and C. K. I. Williams", + editor = NIPS9ed, + booktitle = NIPS9, + title = "Gaussian Processes for {Bayesian} Classification via + Hybrid Monte Carlo", + publisher = "MIT Press, Cambridge, MA", + pages = "340--346", + year = "1997", +} + +@InProceedings{Bareiss87, + author = "E. R. Bareiss and B. Porter", + booktitle = "Proceedings of the 4th International Workshop on + Machine Learning", + title = "Protos: An Exemplar-Based Learning Apprentice", + publisher = "Morgan Kaufmann", + address = "Irvine, CA", + pages = "12--23", + year = "1987", +} + +@Article{Barhen89, + author = "J. Barhen and S. Gulati and M. Zak", + title = "Neural Learning of Constrained Nonlinear + Transformations", + journal = computer, + pages = "67--76", + month = jun, + year = "1989", +} + +@article{Nykamp+Ringach-2002, + author = {D.Q. Nykamp and D.L. Ringach}, + title = {Full identification of a linear-nonlinear system via cross-correlation analysis}, + journal = {Journal of Vision}, + volume = 2, + number = 1, + pages = {1--11}, + year = 2002, +} + +@article{Wilson+Cowan-72, + author = {Hugh R. Wilson and Jack D. Cowan}, + title = {Excitatory and inhibitory interactions in localized populations of model neurons}, + journal = {Biophysiology Journal}, + volume = 12, + pages = {1--24}, + year = 1972, +} + +@Article{Barlow89, + author = "H. B. Barlow", + title = "Unsupervised Learning", + journal = nc, + volume = "1", + pages = "295--311", + year = "1989", +} + +@article{Barlow-2001, + address = {Cambridge, UK.}, + author = {H. Barlow}, + issn = {0954-898X}, + journal = {Network: Computation in Neural Systems}, + month = {August}, + number = {3}, + pages = {241--253}, + title = {Redundancy reduction revisited}, + url = {http://view.ncbi.nlm.nih.gov/pubmed/11563528}, + volume = {12}, + year = {2001}, +} + +@InProceedings{Barron+Barron88, + author = "A. R. Barron and R. L. Barron", + editor = "E. Wegman", + booktitle = "Computing Science and Statistics, Proc. 20th Symp. + Interface", + title = "Statistical learning networks: {A} unifying view", + publisher = "Amer. Statist. Assoc.", + address = "Washington, DC", + pages = "192--203", + year = "1988", +} + +@InProceedings{Barron89, + author = "A. R. Barron", + booktitle = "Proc. of the 28th conf. on Decision and Control", + title = "Statistical properties of artificial neural networks", + address = "Tampa, Florida", + pages = "280--285", + year = "1989", +} + +@incollection{Barron91, + author = "Andrew E.~Barron", + title = "Complexity Regularization with Application to Artificial Neural Networks", + booktitle = "Nonparametric Functional Estimation and Related Topics", + pages = "561--576", + editor = "G.~Roussas", + year = "1991", + publisher = "Kluwer Academic Publishers" +} + + +@Article{Bartal95, + author = "Jie Lin and Yair Bartal and Robert E. Uhrig", + title = "Nuclear Power Plant Transient Diagnostics Using + Artificial Neural Networks that Allow {"}don't know{"} + Classifications", + journal = "Nuclear Technology", + volume = "110", + pages = "436--449", + month = jun, + year = "1995", +} + +@Article{Bartlett+Uhrig92, + author = "E. B. Bartlett and R. E. Uhrig", + title = "Nuclear Power Plant Status Diagnostics Using an + Artificial Neural Network", + journal = "Nuclear Technology", + volume = "97", + month = mar, + year = "1992", +} + +@Article{Bartlett46, + author = "M. S. Bartlett", + title = "On the theoritical specification of sampling + properties of autocorrelated time series", + journal = "J. Royal Stat. Soc. B", + volume = "8", + pages = "27--41", + year = "1946", +} + +@Article{Bartlett92, + author = "P. L. Bartlett and T. Downs", + title = "Using Random Weights to train Multilayer Networks of + Hard-Limiting Units", + journal = ieeetrnn, + volume = "3", + number = "2", + pages = "202--210", + year = "1992", +} + +@TechReport{Barto-tr91, + author = "A. G. Barto and S. Bradtke and S. P. Singh", + title = "Real-Time Learning and {Control} Using Asynchronous + Dynamic Programming", + number = "91-57", + institution = "Univ. of Massachusetts (Computer Science)", + address = "Amherst MA", + year = "1991", +} + +@Article{Barto81, + author = "A. G. Barto and R. S. Sutton and P. S. Brouwer", + title = "Associative Search Network: Reinforcement Learning + Associative Memory", + journal = "Biological Cybernetics", + volume = "40", + year = "1981", +} + +@Article{Barto83, + author = "A. G. Barto and R. S. Sutton and C. W. Anderson", + title = "Neuronlike Adaptive Elements That Can Solve Difficult + Learning Control Problems", + journal = ieeesmc, + volume = "13", + year = "1983", +} + +@Article{Barto85, + author = "A. G. Barto and P. Anandan", + title = "Pattern Recognizing Stochastic Learning Automata", + journal = ieeesmc, + volume = "15", + pages = "360--375", + year = "1985", +} + +@InProceedings{Barto87, + author = "A. G. Barto and M. I. Jordan", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Gradient Following Without Back-Propagation in Layered + Networks", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "629--636", + year = "1987", +} + +@InCollection{Barto91, + author = "A. G. Barto and R. S. Sutton and C. J. C. H. Watkins", + editor = "M. Gabriel and J. W. Moore", + booktitle = "Learning and Computational Neuroscience", + title = "Learning and Sequential Decision Making", + publisher = "MIT Press", + address = "Cambridge", + year = "1991", +} + +@InCollection{Barto92, + author = "A. G. Barto", + editor = "W. T Miller and R. S. Sutton and P. J. Werbos", + booktitle = "Neural Networks for Control", + title = "Connectionist learning for control: an overview", + publisher = "MIT Press", + year = "1992", +} + +@TechReport{Barto_tr91, + author = "A. G. Barto and S. Bradtke and S. P. Singh", + title = "Real-Time Learning and {CO}ntrol Using Asynchronous + Dynamic Programming", + number = "91-57", + institution = "Univ. of Massachusetts (Computer Science)", + address = "Amherst MA", + year = "1991", +} + +@Article{bassiouni95, + author = "M. A. Bassiouni and A. Mukherjee", + title = "Efficient Decoding of Compressed Data", + journal = "Journal of the American Society for Information + Science", + volume = "46", + number = "1", + pages = "1--8", + year = "1995", +} + +@Article{Basu94, + author = "A. Basu and E. B. Bartlett", + title = "Detecting Faults in a Nuclear Power Plant by Using + Dynamic Node Architecture Artificial Neural Networks", + journal = "Nuclear Science and Engineering", + volume = "116", + month = apr, + year = "1994", +} + +@Article{battiti-89, + author = "R. Battiti", + title = "Accelerated Backpropagation Learning: Two Optimization + Methods", + journal = "Complex Systems", + volume = "3", + pages = "331--342", + year = "1989", +} + +@InProceedings{battiti-masulli-90, + author = "E. Battiti and F. Masulli", + booktitle = "Proceedings of Internationla Neural Network Conference + (INNC 90, Paris)", + title = "{BFGS} optimization for faster and automated + supervised learning", + pages = "757--760", + year = "1990", +} + +@Article{Battiti92, + author = "T. Battiti", + title = "First- and Second-Order Methods for Learning: Between + Steepest Descent and {Newton}'s Method", + journal = "Neural Computation", + volume = "4", + type = "Review", + number = "2", + pages = "141--166", + year = "1992", +} + +@Article{battiti:1994:ieeetnn, + author = "R. Battiti", + title = "Using Mutual Information for Selecting Features in + Supervised Neural Net Learning", + journal = "{IEEE} Transaction on Neural Networks", + volume = "5", + number = "4", + pages = "537--550", + year = "1994", +} + +@article{Baudat+Anouar-2000, + author = {G. Baudat and F. Anouar}, + title = {Generalized Discriminant Analysis Using a Kernel Approach}, + journal = {Neural Computation}, + volume = {12}, + number = {10}, + year = {2000}, + issn = {0899-7667}, + pages = {2385--2404}, + doi = {http://dx.doi.org/10.1162/089976600300014980}, + publisher = {MIT Press}, + address = {Cambridge, MA, USA}, +} + +@Article{Baum66, + author = "L. E. Baum and T. Petrie", + title = "Statistical Inference for Probabilistic Functions of + Finite State {Markov} Chains", + journal = "Ann. Math. Stat.", + volume = "37", + pages = "1559--1563", + year = "1966", +} + +@Article{Baum67, + author = "L. E. Baum and J. Eagon", + title = "An inequality with applications to statistical + prediction for functions of {Markov} processes and to a + model of ecology", + journal = "Bull. Amer. Math. Soc.", + volume = "73", + pages = "360--363", + year = "1967", +} + +@Article{Baum70, + author = "L. E. Baum and T. Petrie and G. Soules and N. Weiss", + title = "A maximization technique occuring in the statistical + analysis of probabilistic functions of {Markov} + chains", + journal = "Ann. Math. Statistic.", + volume = "41", + pages = "164--171", + year = "1970", +} + +@Article{Baum72, + author = "L. E. Baum", + title = "An inequality and associated maximization technique in + statistical estimation for probabilistic functions of a + {Markov} process", + journal = "Inequalities", + volume = "3", + pages = "1--8", + year = "1972", +} + +@InProceedings{Baum86, + author = "E. B. Baum", + editor = "J. S. Denker", + booktitle = snowbird, + title = "Towards Practical ``Neural'' Computation for + Combinatorial Optimization Problems", + publisher = "American Institute of Physics, New York", + address = "Snowbird 1986", + pages = "53--58", + year = "1986", +} + +@InProceedings{Baum88, + author = "E. B. Baum and F. Wilczek", + editor = nips87ed, + booktitle = nips87, + title = "Supervised Learning of Probability Distributions by + Neural Networks", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "52--61", + year = "1988", +} + +@Article{Baum89, + author = "E. B. Baum and D. Haussler", + title = "What Size Net Gives Valid Generalization?", + journal = nc, + volume = "1", + pages = "151--160", + year = "1989", +} + +@Article{BaumNote, + author = "E. B. Baum", + title = "Review of {J}. {S}. {Judd}'s book {\em {Neural} + {Network} {Design} and the {Complexity} of + {Learning}}", + journal = ieeetrnn, + volume = "2", + number = "1", + pages = "181--182", + year = "1991", +} + +@Article{baxter00, + author = "Jonathan Baxter", + title = "A Model of Inductive Bias Learning.", + journal = "J. Artif. Intell. Res. (JAIR)", + volume = "12", + pages = "149--198", + year = "2000", +} + +@InProceedings{baxter95a, + author = "Jonathan Baxter", + booktitle = colt95, + title = "Learning Internal Representations", + publisher = "ACM Press", + address = "Santa Cruz, California", + pages = "311--320", + year = "1995", + url = "http://citeseer.ist.psu.edu/baxter95learning.html", +} + +@Unpublished{baxter95b, + author = "Jonathan Baxter", + title = "The Canonical Metric for Vector Quantization", + year = "1995", + note = "submitted to Information and Computation", +} + +@InProceedings{baxter96, + author = "Jonathan Baxter", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Learning Model Bias", + volume = "8", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "169--175", + year = "1996", +} + +@Article{baxter97, + author = "Jonathan Baxter", + title = "A {Bayesian}/information theoretic model of learning via + multiple task sampling", + journal = "Machine Learning", + volume = "28", + pages = "7--40", + year = "1997", +} + +@Article{baxter97a, + author = "Jonathan Baxter", + title = "A {Bayesian}/Information theoretic model of learning to + learn via multiple task sampling", + journal = "Machine Learning", + volume = "28", + pages = "7--40", + year = "1997", +} + +@InProceedings{Becker89, + author = "S. Becker and Y. {LeCun}", + editor = "D. Touretzky and G. Hinton and T. Sejnowski", + booktitle = cmss88, + title = "Improving the Convergence of Back-Propagation Learning + with Second Order Methods", + publisher = "Morgan Kaufmann, San Mateo", + address = "Pittsburg 1988", + pages = "29--37", + year = "1989", +} + +@InProceedings{Belkin+al-2004, + author = "Mikhail Belkin and Irina Matveeva and Partha Niyogi", + editor = "John Shawe-Taylor and Yoram Singer", + booktitle = colt04, + title = "Regularization and Semi-supervised Learning on Large + Graphs", + publisher = "Springer", + pages = "624-638", + year = "2004", +} + +@InProceedings{Belkin+Niyogi-2002, + author = "Mikhail Belkin and Partha Niyogi", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Laplacian Eigenmaps and Spectral Techniques for + Embedding and Clustering", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2002", + original = "orig/AA42.ps", +} + +@TechReport{Belkin+Niyogi-2002-01, + author = "Mikhail Belkin and Partha Niyogi", + title = "Laplacian Eigenmaps for Dimensionality Reduction and + Data Representation", + number = "TR-2002-01", + institution = "University of Chicago, Computer Science", + year = "2002", +} + +@TechReport{Belkin+Niyogi-2002-ss, + author = "Mkhail Belkin and Partha Niyogi", + title = "Semi-supervised learning on manifolds", + number = "TR-2002-12", + institution = "University of Chicago, Computer Science", + year = "2002", +} + +@Article{Belkin+Niyogi-2003, + author = "Mikhail Belkin and Partha Niyogi", + title = "Laplacian Eigenmaps for Dimensionality Reduction and + Data Representation", + journal = "Neural Computation", + volume = "15", + number = "6", + pages = "1373--1396", + year = "2003", +} + +@InProceedings{Belkin+Niyogi-nips2003, + author = "Mikhail Belkin and Partha Niyogi", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Using Manifold Structure for Partially Labeled + Classification", + publisher = "{MIT} Press", + address = "Cambridge, MA", + year = "2003", +} + +@article{BelkinM2006, + address = {Cambridge, MA, USA}, + author = {Belkin, Mikhail and Niyogi, Partha and Sindhwani, Vikas }, + issn = {1533-7928}, + journal = jmlr, + pages = {2399--2434}, + publisher = {MIT Press}, + title = {Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples}, + volume = {7}, + year = {2006} +} + +@Article{Bell-Sejnowski95, + author = "Anthony J. Bell and Terrence J. Sejnowski", + title = "An information maximisation approach to blind + separation and blind deconvolution", + journal = "Neural Computation", + volume = "7", + number = "6", + pages = "1129--1159", + year = "1995", +} + +@InProceedings{Bellagarda+Nahamoo89, + author = "J. R. Bellegarda and D. Nahamoo", + booktitle = icassp, + title = "Tied Mixture Continuous Parameter Models for Large + Vocabulary Isolated Speech Recognition", + address = "Glasgow, Scotland", + pages = "13--16", + year = "1989", +} + +@InProceedings{Bellegarda97, + author = "J. R. Bellegarda", + booktitle = "Proceedings of Eurospeech 97", + title = "A latent semantic analysis framework for large--span + language modeling", + address = "Rhodes, Greece", + pages = "1451--1454", + year = "1997", +} + +@Book{Bellman57, + author = "R. E. Bellman", + title = "Dynamic Programming", + publisher = "Princeton University Press", + address = "NJ", + year = "1957", +} + +@Book{Bellman61, + author = "R. Bellman", + title = "Adaptive Control Processes: {A} Guided Tour", + publisher = "Princeton University Press", + address = "New Jersey", + year = "1961", +} + +@Book{Bellman74, + author = "R. Bellman", + title = "Introduction to Matrix Analysis", + publisher = "McGraw-Hill", + address = "New York, NY", + edition = "2nd", + year = "1974", +} + +@InProceedings{ben-david03, + author = "Shai Ben-David and Reba Schuller", + booktitle = colt03, + title = "Exploiting Task Relatedness for Mulitple Task + Learning.", + crossref = "colt03", + pages = "567--580", + year = "2003", +} + +@InProceedings{BenDucVin01, + author = "Yoshua Bengio and R\'ejean Ducharme and Pascal + Vincent", + editor = NIPS13ed, + booktitle = NIPS13, + title = "A Neural Probabilistic Language Model", + publisher = "MIT Press", + pages = "932--938", + year = "2001", +} + +@InProceedings{BenDucVin01-small, + author = "Yoshua Bengio and R\'ejean Ducharme and Pascal + Vincent", + editor = "Todd K. Leen and Thomas G. Dietterich and Volker + Tresp", + booktitle = "Advances in NIPS 13", + title = "A Neural Probabilistic Language Model", + publisher = "MIT Press", + pages = "932--938", + year = "2001", +} + +@InProceedings{BenDucVin01-short, + author = "Y. Bengio and R. Ducharme and P. Vincent", + booktitle = "Adv. Neural Inf. Proc. Sys. 13", + title = "A Neural Probabilistic Language Model", + pages = "932--938", + year = "2001", +} + +@TechReport{Bengio+al-2004, + author = "Yoshua Bengio and Olivier Delalleau and Nicolas {Le Roux}", + title = "Efficient Non-Parametric Function Induction in + Semi-Supervised Learning", + number = "1247", + institution = "D\'epartement d'informatique et recherche + op\'erationnelle, Universit\'e de Montr\'eal", + year = "2004", +} + +@InCollection{Bengio+al-2005, + author = "Yoshua Bengio and Nicolas {Le Roux} and Pascal Vincent and + Olivier Delalleau and Patrice Marcotte", + editor = NIPS18ed, + booktitle = NIPS18, + title = "Convex Neural Networks", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "123--130", + year = "2006", +} + +@InCollection{Bengio+al-2005-small, + author = "Yoshua Bengio and Nicolas {Le Roux} and Pascal Vincent + and Olivier Delalleau and Patrice Marcotte", + booktitle = "NIPS 18", + title = "Convex Neural Networks", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "123--130", + year = "2006", +} + +@InCollection{Bengio+al-spectral-2006-short, + author = "Yoshua Bengio and Olivier Delalleau and Nicolas {Le + Roux} and Jean-Francois Paiement and Pascal Vincent + and Marie Ouimet", + editor = "Isabelle Guyon and Steve Gunn and Masoud Nikravesh and + Lofti Zadeh", + booktitle = "Feature Extraction, Foundations and Applications", + title = "Spectral Dimensionality Reduction", + publisher = "Springer", + year = "2006", +} + +@InProceedings{Bengio+Bengio-NIPS99, + author = "Yoshua Bengio and Samy Bengio", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Modeling High-Dimensional Discrete Data with + Multi-Layer Neural Networks", + publisher = "MIT Press", + pages = "400--406", + year = "2000", +} + +@Article{Bengio+Bengio-trnn2000, + author = "S. Bengio and Y. Bengio", + title = "Taking on the Curse of Dimensionality in Joint + Distributions Using Neural Networks", + journal = "IEEE Transactions on Neural Networks, special issue on + Data Mining and Knowledge Discovery", + volume = "11", + number = "3", + pages = "550--557", + year = "2000", + url = "http://www.iro.umontreal.ca/~lisa/pointeurs/jdm.pdf", +} + +@Article{Bengio+Bengio-trnn2000-small, + author = "S. Bengio and Y. Bengio", + title = "Taking on the Curse of Dimensionality in Joint + Distributions Using Neural Networks", + journal = "IEEE Trans. Neural Networks", + volume = "11", + number = "3", + pages = "550--557", + year = "2000", + url = "http://www.iro.umontreal.ca/~lisa/pointeurs/jdm.pdf", +} + +@Article{Bengio+Chapados2003, + author = "Yoshua Bengio and Nicolas Chapados", + title = "Extensions to Metric-Based Model Selection", + journal = jmlr, + volume = "3", + pages = "1209--1227", + month = mar, + year = "2003", + note = "Special Issue on Feature Selection", +} + +@TechReport{Bergstra-TR2008, + author = "James Bergstra and Yoshua Bengio and Jerome Louradour", + title = "Image Classification with Biologically Motivated Neuron Models", + number = "---", + institution = "Dept. IRO, Universit\'e de Montr\'eal", + year = "2008", +} + +@article{Bergstra-2009, + author = "James Bergstra and Yoshua Bengio and Jerome Louradour", + title = "Suitability of Complex Cell Models for Object Categorization", + journal = {Computational Neuroscience}, + publisher = "submitted", + year = 2008, +} + +@TechReport{Bengio+Frasconi94a, + author = "Y. Bengio and P. Frasconi", + title = "An {EM} Approach to Learning Sequential Behavior", + number = "Tech. Report. DSI 11/94", + institution = "Universit\`a di Firenze", + year = "1994", +} + +@article{Bengio-nc-2004, + author = {Yoshua Bengio and Olivier Delalleau and Nicolas Le Roux and Jean-François Paiement and Pascal Vincent and Marie Ouimet}, + title = {Learning eigenfunctions links spectral embedding and kernel {PCA}}, + journal = {Neural Computation}, + volume = 16, + number = 10, + year = 2004, + pages = {2197--2219}, +} + +@article{Bengio-nc-2004-small, + author = {Yoshua Bengio and Olivier Delalleau and Nicolas Le Roux and Jean-François Paiement and Pascal Vincent and Marie Ouimet}, + title = {{\small{Learning eigenfunctions links spectral embedding and kernel {PCA}}}}, + journal = {Neural Comp.}, + volume = {16(10)}, + year = 2004, + pages = {2197--2219}, +} + +@Article{Bengio+Grandvalet-JMLR-2004, + author = "Yoshua Bengio and Yves Grandvalet", + title = "No Unbiased Estimator of the Variance of {K}-Fold + Cross-Validation", + journal = jmlr, + volume = "5", + pages = "1089--1105", + year = "2004", +} + +@TechReport{Bengio+Grandvalet-TR-2003, + author = "Yoshua Bengio and Yves Grandvalet", + title = "No Unbiased Estimator of the Variance of {K}-Fold + Cross-Validation", + number = "TR-2003-1234", + institution = "Universite de Montreal, dept. IRO", + year = "2003", +} + +@InCollection{Bengio+Lecun-chapter2007, + author = "Yoshua Bengio and Yann {LeCun}", + editor = "L. Bottou and O. Chapelle and D. DeCoste and J. + Weston", + booktitle = "Large Scale Kernel Machines", + title = "Scaling Learning Algorithms towards {AI}", + publisher = "MIT Press", + year = "2007", +} + +@InCollection{Bengio+Lecun-chapter2007-small, + author = "Y. Bengio and Y. {LeCun}", + booktitle = "Large Scale Kernel Machines", + title = "Scaling Learning Algorithms towards {AI}", + year = "2007", +} + +@InProceedings{Bengio+LeCun94b, + author = "Yoshua Bengio and Yann {LeCun}", + booktitle = ICPR94, + title = "Word Normalization For On-Line Handwritten Word + Recognition", + pages = "409--413", + year = "1994", +} + +@Article{Bengio+Monperrus+Larochelle-2006, + author = "Yoshua Bengio and Martin Monperrus and Hugo + Larochelle", + title = "Nonlocal Estimation of Manifold Structure", + journal = "Neural Computation", + volume = "18", + number = "10", + pages = "2509--2528", + year = "2006", +} + +@InProceedings{Bengio+Monperrus-2005, + author = "Yoshua Bengio and Martin Monperrus", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Non-Local Manifold Tangent Learning", + publisher = "{MIT} Press", + year = "2005", + pages = "129--136", + url = "http://www.iro.umontreal.ca/~lisa/pointeurs/tangent\_learner\_nips2004.pdf", +} + +@InProceedings{Bengio+Senecal-2003-small, + author = "Yoshua Bengio and Jean-S\'ebastien Sen\'ecal", + booktitle = "Proceedings of AISTATS 2003", + title = "Quick Training of Probabilistic Neural Nets by + Importance Sampling", + year = "2003", +} + +@TechReport{Bengio+Vincent+Paiement-TR2003, + author = "Yoshua Bengio and Pascal Vincent and Jean-Fran{\cc}ois + Paiement", + title = "Learning Eigenfunctions of Similarity: Linking + Spectral Clustering and Kernel {PCA}", + number = "1232", + institution = "D\'epartement d'informatique et recherche + op\'erationnelle, Universit\'e de Montr\'eal", + year = "2003", + URL = "www.iro.umontreal.ca/~lisa/pointeurs/TR1232.pdf", +} + +@TechReport{Bengio-decision-trees-TR-2007, + author = "Yoshua Bengio and Olivier Delalleau and Clarence + Simard", + title = "Trees do not Generalize to New Variations", + number = "", + institution = "D\'epartement d'informatique et recherche + op\'erationnelle, Universit\'e de Montr\'eal", + year = "2007", +} + +@TechReport{Bengio-decision-trees07, + author = "Yoshua Bengio and Olivier Delalleau and Clarence + Simard", + title = "Decision Trees do not Generalize to New Variations", + number = "1304", + institution = "Universite de Montreal, Dept. IRO", + year = "2007", + url = "http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+al-tr1304.pdf", +} + +%I deprecate the following one as this is a duplicate of the preceding tech report! +%Their was only one .tex file that was using it. I modified it. +@TechReport{Bengio-Trees-TR2007, + author = "Yoshua Bengio and Olivier Delalleau and Clarence + Simard", + title = "Decision Trees do not Generalize to New Variations", + number = "1304", + institution = "Dept. IRO, Universit\'e de Montr\'eal", + year = "2007", + url = "http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+al-tr1304.pdf", +} + +@Article{Bengio-hmms99, + author = "Yoshua Bengio", + title = "Markovian Models for Sequential Data", + journal = "Neural Computing Surveys", + volume = "2", + pages = "129--162", + year = "1999", +} + +@Article{bengio-hyper-NC00, + author = "Yoshua Bengio", + title = "Gradient-Based Optimization of Hyperparameters", + journal = "Neural Computation", + volume = "12", + number = "8", + pages = "1889--1900", + year = "2000", +} + +@TechReport{bengio-hyper-TR98, + author = "Yoshua Bengio", + title = "Continuous Optimization of Hyper-Parameters for + Non-{IID} Data", + institution = "D\'epartement d'informatique et recherche + op\'erationnelle, Universit\'e de Montr\'eal", + year = "1998", + note = "unpublished manuscript", +} + +@Article{Bengio-Hyper-Weight-Decay-nips, + author = "Simon Latendresse and Yoshua Bengio", + title = "Linear Regression and the Optimization of + Hyper-Parameters", + journal = "submitted to NIPS'99", + year = "1999", +} + +@TechReport{Bengio-Hyper-Weight-Decay-TR, + author = "Yoshua Bengio and Simon Latendresse", + title = "Soft Variable Selection with Numerical Optimization of + Weight Decays", + institution = "D\'epartement d'informatique et recherche + op\'erationnelle, Universit\'e de Montr\'eal", + year = "1999", + note = "in preparation", +} + +@Article{Bengio-ijns97, + author = "Yoshua Bengio", + title = "Using a Financial Training Criterion Rather than a + Prediction Criterion", + journal = "International Journal of Neural Systems", + year = "1997", + volume = {8}, + number = {4}, + note = "Special issue on noisy time-series", + pages = {433--443}, + URL = "www.iro.umontreal.ca/~lisa/pointeurs/profitcost.ps", +} + +@Article{Bengio-IEEETRNN-2001, + author = "Yoshua Bengio and Vincent-Philippe Lauzon and R\'ejean + Ducharme", + title = "Experiments on the Application of {IOHMM}s to Model + Financial Returns Series", + journal = ieeetrnn, + volume = 12, + number = 1, + pages = {113--123}, + year = "2001", +} + +@InProceedings{Bengio-Larochelle-NLMP-NIPS-2006, + author = "Yoshua Bengio and Hugo Larochelle and Pascal Vincent", + editor = NIPS18ed, + booktitle = NIPS18, + title = "Non-Local Manifold Parzen Windows", + publisher = "MIT Press", + pages = "115--122", + year = "2006", +} + +@TechReport{Bengio-Larochelle-NLMP-TR-2005, + author = "Yoshua Bengio and Hugo Larochelle", + title = "Non-Local Manifold Parzen Windows", + number = "1264", + institution = "D\'epartement d'informatique et recherche + op\'erationnelle, Universit\'e de Montr\'eal", + year = "2005", +} + +%have been rejected and later accepted to NIPS in Bengio-localfailure-NIPS-2006 +@InProceedings{Bengio-localfailure-icml-2005, + author = "Yoshua Bengio and Olivier Delalleau and Nicolas {Le + Roux}", + booktitle = "submitted to ICML 2005", + title = "The Curse of Dimensionality for Local Kernel + Machines", + year = "2005", +} + +@InCollection{Bengio-localfailure-NIPS-2006, + author = "Yoshua Bengio and Olivier Delalleau and Nicolas {Le Roux}", + editor = NIPS18ed, + booktitle = NIPS18, + title = "The Curse of Highly Variable Functions for Local + Kernel Machines", + publisher = "{MIT} Press", + address = "Cambridge, MA", + pages = "107--114", + year = "2006", +} + +@InCollection{Bengio-localfailure-NIPS-2006-small, + author = "Yoshua Bengio and Olivier Delalleau and Nicolas {Le Roux}", + booktitle = "NIPS 18", + title = "The Curse of Highly Variable Functions for Local + Kernel Machines", + publisher = "{MIT} Press", + address = "Cambridge, MA", + pages = "107--114", + year = "2006", +} + +@InProceedings{Bengio-localfailure-snowbird-2005, + author = "Yoshua Bengio and Olivier Delalleau and Nicolas {Le + Roux}", + booktitle = "The Learning Workshop", + title = "The Curse of Dimensionality for Local Kernel + Machines", + address = "Snowbird, Utah", + year = "2005", +} + +@InProceedings{HonglakLee-2007, + author = "Honglak Lee and Alexis Battle and Rajat Raina and Andrew Ng", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Efficient sparse coding algorithms", + publisher = "MIT Press", + pages = "801--808", + year = "2007", +} + +@InProceedings{Bengio-nips-2006-small, + author = "Y. Bengio and P. Lamblin and D. Popovici and + H. Larochelle", + booktitle = "Advances in NIPS 19", + title = "Greedy Layer-Wise Training of Deep Networks", + year = "2007", +} + +@InProceedings{Bengio-nips-2006-short, + author = "Y. Bengio and P. Lamblin and D. Popovici and + H. Larochelle", + booktitle = "Adv. Neural Inf. Proc. Sys. 19", + title = "Greedy Layer-Wise Training of Deep Networks", + pages = "153--160", + year = "2007", +} + +@InProceedings{Bengio-nips2004, + author = "Yoshua Bengio and Jean-Fran\c{cois} Paiement and Pascal + Vincent and Olivier Delalleau and Nicolas {Le Roux} and + Marie Ouimet", + editor = NIPS16ed, + booktitle = NIPS16, + title = "Out-of-Sample Extensions for {LLE}, {Isomap}, {MDS}, + {Eigenmaps}, and {Spectral} {Clustering}", + publisher = "MIT Press", + year = "2004", +} + +@InProceedings{Bengio-nips2003, + author = "Yoshua Bengio and Jean-Fran\c{cois} Paiement and Pascal + Vincent and Olivier Delalleau and Nicolas {Le Roux} and + Marie Ouimet", + editor = NIPS16ed, + booktitle = NIPS16, + title = "Out-of-Sample Extensions for {LLE}, {Isomap}, {MDS}, + {Eigenmaps}, and {Spectral} {Clustering}", + publisher = "MIT Press", + year = "2004", +} + +@InCollection{Bengio-NIPS2007, + author = "Yoshua Bengio and Pascal Lamblin and Dan Popovici and + Hugo Larochelle", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Greedy Layer-Wise Training of Deep Networks", + publisher = "MIT Press", + pages = "153--160", + year = "2007", +} + +@InProceedings{Bengio-nnlm2001, + author = "Yoshua Bengio and R{\'e}jean Ducharme and Pascal Vincent", + editor = NIPS13ed, + booktitle = NIPS13, + title = "A Neural Probabilistic Language Model", + publisher = "{MIT} Press", + pages = "933--938", + year = "2001", + url = "http://www.iro.umontreal.ca/~lisa/pointeurs/nips00-lm.ps", +} + +@Article{Bengio-nnlm2003, + author = "Yoshua Bengio and R{\'e}jean Ducharme and Pascal Vincent + and Christian Jauvin", + title = "A Neural Probabilistic Language Model", + journal = jmlr, + volume = "3", + pages = "1137--1155", + year = "2003", +} + +@Article{Bengio-nnlm2003-small, + author = "Y. Bengio and R. Ducharme and P. Vincent + and C. Jauvin", + title = "A Neural Probabilistic Language Model", + journal = "JMLR", + volume = "3", + pages = "1137--1155", + year = "2003", +} + +@Article{Bengio-NonStat-Hyper-ML, + author = "Yoshua Bengio and Charles Dugas", + title = "Learning Simple Non-Stationarities with + Hyper-Parameters", + journal = "submitted to Machine Learning", + year = "1999", +} + +@Article{Bengio-prel92, + author = "Y. Bengio and M. Gori and R. \mbox{De Mori}", + title = "Learning the Dynamic Nature of Speech with + Back-propagation for Sequences", + journal = prel, + volume = "13", + number = "5", + pages = "375--385", + year = "1992", + note = "(Special issue on Artificial Neural Networks)", +} + +@Article{Bengio-2008, + author = "Yoshua Bengio", + title = "Learning Deep Architectures for {AI}", + journal = {Foundations and Trends in Machine Learning}, + year = "2009", + volume = {to appear}, +} + +@Article{Bengio-2009-short, + author = "Y. Bengio", + title = "Learning Deep Architectures for {AI}", + journal = {Foundations \& Trends in Mach. Learn.}, + year = "2009", + volume = 2, + number = 1, + pages = {1--127}, +} + +@TechReport{Bengio-TR1312-small, + author = "Yoshua Bengio", + title = "Learning Deep Architectures for {AI}", + number = "1312", + institution = "U. Montr\'eal, dept. IRO", + year = "2007", +} + +@InProceedings{Bengio-transducers-98, + author = "Y. Bengio and S. Bengio and J. F. Isabelle and Y. + Singer", + editor = NIPS10ed, + booktitle = NIPS10, + title = "Shared Context Probabilistic Transducers", + publisher = "MIT Press", + pages = "409--415", + year = "1998", +} + +@Article{Bengio-trnn92, + author = "Y. Bengio and R. \mbox{De Mori} and G. Flammia and R. + Kompe", + title = "Global Optimization of a Neural Network-Hidden + {Markov} Model Hybrid", + journal = ieeetrnn, + volume = "3", + number = "2", + pages = "252--259", + year = "1992", +} + +@Article{Bengio-trnn93, + author = "Y. Bengio and P. Simard and P. Frasconi", + title = "Learning Long-Term Dependencies with Gradient Descent + is Difficult", + journal = ieeetrnn, + volume = "5", + number = "2", + pages = "157--166", + year = "1994", + OPTnote = "(Special Issue on Recurrent Neural Networks)", + url = "http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf", +} + +@Article{Bengio-trnn96, + author = "Y. Bengio and P. Frasconi", + title = "Input/{Output} {HMM}s for Sequence Processing", + journal = "IEEE Transactions on Neural Networks", + volume = "7", + number = "5", + pages = "1231--1249", + year = "1996", +} + +@TechReport{Bengio2003, + author = "Christopher Kermorvant and Yoshua Bengio", + title = "Extracting Hidden Sense Probabilities from Bitexts", + number = "1231", + institution = "Université de Montréal", + year = "2003", +} + +@InProceedings{Bengio89b, + author = "Y. Bengio and P. Cosi and R. Cardin and R. De Mori", + editor = NIPS1ed, + booktitle = NIPS1, + title = "Use of multi-layered networks for coding speech with + phonetic features", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "224--231", + year = "1989", +} + +@PhdThesis{Bengio91, + author = "Yoshua Bengio", + title = "Artificial Neural Networks and their Application to + Sequence Recognition", + school = "McGill University, (Computer Science)", + address = "Montreal, Qc., Canada", + year = "1991", +} + +@InProceedings{bengio91x, + author = "Y. Bengio and R. {De Mori} and G. Flammia and R. + Kompe", + booktitle = ijcnn, + title = "Global Optimization of a Neural Network - Hidden + Markov Model Hybrid", + volume = "2", + pages = "789--794", + year = "1991", + OPTaddress = "Seattle WA", +} + +@article{Becker92, + author = {Sue Becker and Geoffrey Hinton}, + title = {A self-organizing neural network that discovers surfaces in random-dot stereograms}, + journal = {Nature}, + volume = 355, + pages = {161--163}, + year = 1992, +} + +@Article{Bengio93, + author = "Yoshua Bengio", + title = "A Connectionist Approach to Speech Recognition", + journal = "International Journal on Pattern Recognition and + Artificial Intelligence", + volume = "7", + number = "4", + pages = "647--668", + note = "special issue entitled Advances in Pattern Recognition Systems using Neural Networks", + year = "1993", +} + +@InProceedings{Bengio93e, + author = "S. Bengio and Y. Bengio and J. Cloutier and J. + Gecsei", + editor = "S. Gielen and B. Kappen", + booktitle = "Proceedings of the International Conference on + Artificial Neural Networks 1993", + title = "Generalization of a Parametric Learning Rule", + publisher = "Springer-Verlag", + address = "Amsterdam, The Netherlands", + pages = "502--502", + year = "1993", +} + +@Article{bengio:1999:nc, + author = "S. Bengio and Y. Bengio and J. Robert and G. + B\'elanger", + title = "Stochastic Learning of Strategic Equilibria for + Auctions", + journal = "Neural Computation", + volume = "11", + number = "5", + pages = "1199--1209", + year = "1999", +} + +@Article{bottou+al:1999, + author = "L. Bottou and P. Haffner and P.G. Howard and P. Simard and Y. Bengio", + title = "High quality document image compression with {DjVu}", + journal = "Journal of Electronic Imaging", + volume = "7", + number = "3", + pages = "410--425", + year = "1998", +} + +@Article{bengio+al:1998, + author = "Y. Bengio and F. Gingras and B. Goulard and J.-M. Lina", + title = "Gaussian Mixture Densities for Classification of Nuclear Power Plant Data", + journal = "Computers and Artificial Intelligence, special issue on Intelligent Technologies for Electric and Nuclear Power Plants", + volume = "17", + number = "2--3", + pages = "189--209", + year = "1998", +} + +@Article{GingrasBengio:1998, + author = "F. Gingras and Y. Bengio", + title = "Handling Asynchronous or Missing Financial Data with Recurrent Networks", + journal = "International Journal of Computational Intelligence and Organizations", + volume = "1", + number = "3", + pages = "154--163", + year = "1998", +} + +@Article{BengioS95, + author = "S. Bengio and Y. Bengio and J. Cloutier", + title = "On the search for new learning rules for {ANN}s", + journal = "Neural Processing Letters", + volume = "2", + number = "4", + pages = "26--30", + year = "1995", +} + +@Article{BengioMori89, + author = "Y. Bengio and R. De Mori", + title = "Use of multilayer networks for the recognition of phonetic features and phonemes", + journal = "Computational Intelligence", + volume = "5", + pages = "134--141", + year = "1989", +} + +@TechReport{BengioTR1178, + author = "Yoshua Bengio and R\'ejean Ducharme and Pascal + Vincent", + title = "A Neural Probabilistic Language Model", + number = "1178", + institution = "Dept. IRO, Universit\'e de Montr\'eal", + year = "2002", +} + +@TechReport{BengioTR1215, + author = "Yoshua Bengio", + title = "New Distributed Probabilistic Language Models", + number = "1215", + institution = "Dept. IRO, Universit\'e de Montr\'eal", + year = "2002", +} + +@Book{Bengio_book96, + author = "Yoshua Bengio", + title = "Neural Networks for Speech and Sequence Processing", + publisher = "International Thomson Computer Press", + year = "1996", +} + +@InProceedings{Bengio_icnn93, + author = "Y. Bengio and P. Frasconi and P. Simard", + booktitle = icnn, + title = "The problem of learning long-term dependencies in + recurrent networks", + publisher = "IEEE Press", + address = "San Francisco", + pages = "1183--1195", + year = "1993", + note = "(invited paper)", +} + +@Article{Bengio_trnn94, + author = "Y. Bengio and P. Simard and P. Frasconi", + title = "Learning Long-Term Dependencies with Gradient Descent + is Difficult", + journal = ieeetrnn, + volume = "5", + number = "2", + pages = "157--166", + year = "1994", + note = "Special Issue on Recurrent Neural Networks, March 94", +} + +@Book{Benveniste90, + author = "A. Benveniste and M. Metivier and P. Priouret", + title = "Adaptive Algorithms and Stochastic Approximations", + publisher = "Springer-Verlag", + address = "Berlin, New York", + year = "1990", +} + +@Book{Berger85, + author = "J. Berger", + title = "Statistical Decision Theory and {Bayesian} Analysis", + publisher = "Springer", + year = "1985", +} + +@Misc{berger97improved, + author = "A. Berger", + title = "The improved iterative scaling algorithm: {A} gentle + introduction", + year = "1997", + URL = "citeseer.ist.psu.edu/berger97improved.html", + text = "Berger, A. (1997). The improved iterative scaling + algorithm: A gentle introduction. + http://www.cs.cmu.edu/afs/cs/user/aberger/www/ps/scaling.ps.", +} + +@article{Berkes-Wiskott-2005, + author = {Berkes, Pietro and Wiskott, Laurenz}, + title = {Slow Feature Analysis Yields a Rich Repertoire of Complex Cell Properties}, + journal = {Journal of Vision}, + ISSN = {1534-7362}, + volume = {5}, + number = {6}, + pages = {579-602}, + year = {2005}, + month = {7} +} + +@Article{Beurle56, + author = "R. L. Beurle", + title = "Properties of a Mass of Cells Capable of Regenerating + Pulses", + journal = PTRSL, + volume = "240", + pages = "55--94", + year = "1956", +} + +@InProceedings{Beyer+al-1999, + author = "Kevin S. Beyer and Jonathan Goldstein and Raghu Ramakrishnan + and Uri Shaft", + booktitle = "Proceeding of the 7th International Conference on + Database Theory", + title = "When Is ``Nearest Neighbor'' Meaningful?", + publisher = "Springer-Verlag", + pages = "217--235", + year = "1999", + ISBN = "3-540-65452-6", +} + +@TechReport{Bianchini-rbf, + author = "M. Bianchini and P. Frasconi and M. Gori", + title = "Learning without Local Minima in Radial Basis Function + Networks", + institution = "Universit\`a di Firenze", + year = "1992", + OPTannote = "", +} + +@Article{Bianchini-trnn94, + author = "M. Bianchini and M. Gori and M. Maggini", + title = "On the Problem of Local Minima in Recurrent Neural + Networks", + journal = ieeetrnn, + volume = "5", + number = "2", + pages = "167--177", + year = "1994", + OPTnote = "(Special Issue on Recurrent Neural Networks)", +} + +@TechReport{bickel+ritov95, + author = "P. J. Bickel and Y. Ritov", + title = "Inference in hidden {Markov} models {I}: local + asymptotic normality in the stationary case", + number = "Technical Report 383", + institution = "Statistics Department, University of California, + Berkeley", + year = "February 1994, revised April 1995", +} + +@Article{Bienenstock82, + author = "E. L. Bienenstock and L. N. Cooper and P. W. Munro", + title = "Theory for the Development of Neuron Selectivity: + Orientation Specificity and Binocular Interaction in + Visual Cortex", + journal = jneuro, + volume = "2", + year = "1982", +} + +@Article{BierdermanI1987, + author = "Irving Bierderman", + title = "Recognition-by-Components: {A} Theory of Human Image + Understanding", + journal = "Psychological Review", + volume = "94", + number = "2", + publisher = "American Psychological Association, Inc.", + pages = "115--147", + year = "1987", + added-by = "Daniel Acevedo", + date-added = "Thu Oct 24 12:45:17 2002", + project = "genetic", + theme = "perception and vr and tech and natural and medicine + and art", +} + +@InProceedings{Bilbro89a, + author = "G. Bilbro and R. Mann and T. K. Miller and W. E. + Snyder and D. E. Van den Bout and M. White", + editor = NIPS1ed, + booktitle = NIPS1, + title = "Optimization by Mean Field Annealing", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "91--98", + year = "1989", +} + +@InProceedings{Bilbro89b, + author = "G. L. Bilbro and W. Snyder", + editor = NIPS1ed, + booktitle = NIPS1, + title = "Range Image Restoration Using Mean Field Annealing", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "594--601", + year = "1989", +} + +@Article{Binder86, + author = "K. Binder and A. P. Young", + title = "Spin Glasses: Experimental Facts, Theoretical + Concepts, and Open Questions", + journal = rmp, + volume = "58", + pages = "801--976", + year = "1986", +} + +@Book{Binder88, + author = "K. Binder and D. W. Heerman", + title = "Monte Carlo Simulation in Statistical Mechanics", + publisher = "Springer-Verlag", + address = "Berlin", + year = "1988", +} + +@Book{bishop-book2006, + author = "Christopher M. Bishop", + title = "Pattern Recognition and Machine Learning", + publisher = "Springer", + year = "2006", +} + +@Book{bishop-book95, + author = "Christopher Bishop", + title = "Neural Networks for Pattern Recognition", + publisher = "Oxford University Press", + address = "London, UK", + year = "1995", +} + +@Article{bishop92, + author = "Christopher Bishop", + title = "Exact calculation of the {Hessian} matrix for the + multi-layer perceptron", + journal = "Neural Computation", + volume = "4", + number = "4", + pages = "494--501", + year = "1992", +} + +@Article{bishop95training, + author = "Christopher M. Bishop", + title = "Training with Noise is Equivalent to {Tikhonov} + Regularization", + journal = "Neural Computation", + volume = "7", + number = "1", + pages = "108--116", + year = "1995", +} + +@Article{Blackscholes73, + author = "F. Black and M. Scholes", + title = "The Pricing of Options and Corporate Liabilities", + journal = "Journal of Political Economy", + number = "81", + pages = "637--654", + year = "1973", +} + +@Article{Blakemore70, + author = "C. Blakemore and G. F. Cooper", + title = "Development of the Brain Depends on the Visual + Environment", + journal = nature, + volume = "228", + pages = "477--478", + year = "1970", +} + +@InCollection{Blitzer-nips17, + author = "John Blitzer and Kilian Weinberger and Lawrence Saul + and Fernando Pereira", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Hierarchical Distributed Representations for + Statistical Language Modeling", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2005", +} + +@InProceedings{Blitzer05, + author = "John Blitzer and Kilian Weinberger and Lawrence Saul + and Fernando Pereira", + editor = NIPS18ed, + booktitle = NIPS18, + title = "Hierarchical Distributed Representations for + Statistical Language Modeling", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2005", +} + +@InProceedings{Blitzer2005, + author = "J. Blitzer and K. Q. Weinberger and L. K. Saul and F. + C. N. Pereira", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Hierarchical distributed representations for + statistical language models", + publisher = "{MIT} Press", + year = "2005", +} + +@Article{Block62, + author = "H. D. Block", + title = "The Perceptron: {A} Model for Brain Functioning", + journal = rmp, + volume = "34", + year = "1962", +} + +@InProceedings{Blum+Rivest, + author = "A. Blum and R. L. Rivest", + editor = NIPS1ed, + booktitle = NIPS1, + title = "Training a 3-node Neural Net is {NP}-Complete", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "494--501", + year = "1989", +} + +@InProceedings{blum01learning, + author = "Avrim Blum and Shuchi Chawla", + booktitle = "Proc. 18th International Conf. on Machine Learning", + title = "Learning from Labeled and Unlabeled Data Using Graph + Mincuts", + publisher = "Morgan Kaufmann, San Francisco, CA", + pages = "19--26", + year = "2001", +} + %URL = "citeseer.ist.psu.edu/blum01learning.html", + +@InProceedings{blum98combining, + author = "Avrim Blum and Tom Mitchell", + booktitle = colt98, + publisher = "Morgan Kaufmann Publishers", + title = "Combining Labeled and Unlabeled Data with + Co-training", + pages = "92--100", + year = "1998", +} + %URL = "citeseer.ist.psu.edu/blum98combining.html", + +@InProceedings{blum98combining-small, + author = "Avrim Blum and Tom Mitchell", + booktitle = "COLT'98", + title = "Combining Labeled and Unlabeled Data with + Co-training", + pages = "92--100", + year = "1998", +} + %URL = "citeseer.ist.psu.edu/blum98combining.html", + +@InProceedings{blum99, + author = "A. Blum and A. Kalai and J. Langford", + booktitle = colt99, + title = "Beating the hold-out: Bounds for k-fold and + progressive cross-validation", + pages = "", + year = "1999", +} + +@InProceedings{Blumer86, + author = "A. Blumer and A. Ehrenfeucht and D. Haussler and M. + Warmuth", + booktitle = "Proceedings of the Eighteenth Annual ACM Symposium on + Theory of Computing", + title = "Classifying Learnable Geometric Concepts with the + Vapnik-Chervonenkis Dimension", + publisher = "ACM, Salem", + address = "Berkeley 1986", + pages = "273--282", + year = "1986", +} + +@Article{Blumer87, + author = "A. Blumer and A. Ehrenfeucht and D. Haussler and M. + Warmuth", + title = "Occam's razor", + journal = "Inf. Proc. Let.", + volume = "24", + pages = "377--380", + year = "1987", +} + +@Article{Blumstein79, + author = "S. E. Blumstein and K. N. Stevens", + title = "Acoustic invariance in speech production: Evidence + from measurements of the spectral characteristics of + stop consonants", + journal = "Journal of the Acoustical Society of America", + volume = "66", + number = "4", + pages = "1001--1018", + year = "1979", +} + +@Article{Bohm96, + author = "G. Bohm", + title = "New approaches in molecular structure prediction", + journal = "Biophys. Chem.", + volume = "59", + pages = "1--32", + year = "1996", +} + +@Article{Bohr88, + author = "H. Bohr and J. Bohr and S. Brunak and R. M. J. + Cotterill and B. Lautrup and L. Norskov and O. H. + Olsen and S. B. Petersen", + title = "Protein Secondary Structure and Homology by Neural + Networks: The $\alpha$-Helices in Rhodopsin", + journal = febsl, + volume = "241", + pages = "223--228", + year = "1988", +} + +@InProceedings{bollacker98, + author = "Kurt D. Bollacker and Joydeep Ghosh", + booktitle = ICML98, + editor = ICML98ed, + publisher = ICML98publ, + title = "A Supra-Classifier Architecture for Scalable Knowledge + Reuse", + address = "San Francisco, CA, USA", + pages = "64--72", + year = "1998", +} + +@InProceedings{BonillaE2007, + author = "Edwin V. Bonilla and Felix V. Agakov and Christopher + K. I. Williams", + booktitle = "Proceedings of AISTATS 2007", + title = "Kernel Multi-task Learning using Task-specific + Features", + year = "2007", +} + +@Article{Bonomo94, + author = "M. Bonomo and R. Garcia", + title = "Can a well-fitted equilibrium asset-pricing model + produce mean reversion?", + journal = "Journal of Applied Econometrics", + volume = "9", + pages = "19--29", + year = "1994", +} + +@Article{bordes-09, + author = {Bordes, Antoine and Bottou, L\'eon and Gallinari, Patrick}, + title = {SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent}, + journal = {Journal of Machine Learning Research}, + year = {2009}, + volume = {10}, + pages = {1737-1754}, + month = {July}, +} + +@Book{Bornstein-critical-87, + author = { Bornstein, Marc H. }, + title = { Sensitive periods in development : interdisciplinary + perspectives / edited by Marc H. Bornstein }, + publisher = { Lawrence Erlbaum Associates, Hillsdale, N.J. : }, + year = { 1987 }, + type = { Book }, +} + + +@Article{boser-92, + author = "B. Boser and E. Sackinger and J. Bromley and Y. {LeCun} + and L. Jackel", + title = "An analog neural network processor with programmable + topology", + journal = "IEEE Journal of Solid-State Circuits", + volume = "26", + number = "12", + pages = "2017--2025", + month = dec, + year = "1991", +} + +@InProceedings{Boser92, + author = "Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik", + booktitle = "Fifth Annual Workshop on Computational Learning + Theory", + title = "A training algorithm for optimal margin classifiers", + publisher = "ACM", + address = "Pittsburgh", + pages = "144--152", + year = "1992", + doi = {http://doi.acm.org/10.1145/130385.130401}, + isbn = {0-89791-497-X}, +} + +@incollection{bottou-bousquet-2008, + author = {Bottou, L\'{e}on and Bousquet, Olivier}, + title = {The Tradeoffs of Large Scale Learning}, + editor = NIPS20ed, + booktitle = NIPS20, + publisher = {MIT Press}, + year = {2008}, + volume = {20}, + address = {Cambridge, MA}, + url = "http://leon.bottou.org/papers/bottou-bousquet-2008", +} + +@TechReport{Bottou+96, + author = "L{\'e}on Bottou and Yoshua Bengio and Yann A. {Le Cun}", + title = "Document Analysis with Generalized Transduction", + number = "HA6156000-960701-01TM", + institution = "AT\&T Laboratories", + address = "Holmdel, New-Jersey", + month = jul, + year = "1996", +} + +@Article{Bottou+LeCun05, + author = "L{\'e}on Bottou and Yann {LeCun}", + title = "Graph Transformer Networks for Image Recognition", + journal = "Bulletin of the International Statistical Institute", + year = "2005", +} + +@TechReport{bottou-1996a, + author = "L{\'{e}}on Bottou and Yoshua Bengio and Yann {Le Cun}", + title = "Document Analysis with Transducers", + number = "{960701}-{01}-{TM}", + institution = "AT\&T Labs Technical Memorandum", + month = jun, + year = "1996", +} + +@InProceedings{bottou-lecun-04b, + author = "Leon Bottou and Yann {LeCun}", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Large-Scale On-Line Learning", + publisher = "MIT Press", + year = "2004", + original = "orig/bottou-lecun-04b.ps.gz", +} + +@InCollection{bottou-mlss-2004, + author = "L\'{e}on Bottou", + editor = "Olivier Bousquet and Ulrike von Luxburg", + booktitle = "Advanced Lectures on Machine Learning", + title = "Stochastic Learning", + number = "LNAI 3176", + publisher = "Springer Verlag", + address = "Berlin", + pages = "146--168", + year = "2004", + series = "Lecture Notes in Artificial Intelligence", + URL = "http://leon.bottou.org/papers/bottou-mlss-2004", +} + +@Article{Bottou90, + author = "L. Bottou and F. Fogelman-Souli\'e and P. Blanchet and + J. S. Lienard", + key = "bottou", + title = "Speaker independent isolated digit recognition: + multilayer perceptrons vs dynamic time warping", + journal = "Neural Networks", + volume = "3", + pages = "453--465", + year = "1990", +} + +@InProceedings{Bottou91, + author = "L. Bottou and P. Gallinari", + editor = NIPS3ed, + booktitle = NIPS3, + title = "A Framework for the Cooperation of Learning + Algorithms", + address = "Denver, CO", + pages = "781--788", + year = "1991", +} + +@Article{Bottou92, + author = "L. Bottou and V. Vapnik", + key = "Bottou92", + title = "Local Learning Algorithms", + journal = nc, + volume = "4", + number = "6", + pages = "888--900", + year = "1992", +} + +@InProceedings{Bottou94, + author = "L. Bottou and C. Cortes and J. S. Denker and H. + Drucker and I. Guyon and L. D. Jackel and Y. {LeCun} and + U. A. Muller and E. Sackinger and P. Simard and V. + Vapnik", + booktitle = "International Conference on Pattern Recognition", + title = "Comparison of classifier methods: a case study in + handwritten digit recognition", + address = "Jerusalem, Israel", + year = "1994", +} + +@InProceedings{Bottou97, + author = "L{\'e}on Bottou and Yoshua Bengio and Yann {LeCun}", + booktitle = cvpr97, + title = "Global Training of Document Processing Systems using + Graph Transformer Networks", + publisher = "IEEE", + address = "Puerto Rico", + pages = "490--494", + year = "1997", +} + +@InCollection{Bottou98, + author = "L{\'e}on Bottou", + editor = "David Saad", + booktitle = "Online Learning in Neural Networks", + title = "Online Algorithms and Stochastic Approximations", + publisher = "Cambridge University Press", + address = "Cambridge, UK", + pages = "", + year = "1998", +} + +@PhdThesis{Bottou_these91, + author = "L\'eon Bottou", + title = "Une approche th\'eorique de l'apprentissage + connexioniste; applications \`a la reconnaissance de la + parole", + school = "Universit\'e de Paris XI", + year = "1991", +} + +@InProceedings{BouchardG2004, + author = "Guillaume Bouchard and Bill Triggs", + booktitle = "IASC International Symposium on Computational + Statistics (COMPSTAT)", + title = "The Tradeoff Between Generative and Discriminative + Classifiers", + address = "Prague", + pages = "721--728", + month = aug, + year = "2004", + keywords = "LEAR, LAVA", +} + %URL = "http://lear.inrialpes.fr/pubs/2004/BT04", + +@inproceedings{BouchardG2007, + author = {Guillaume Bouchard}, + title = {Bias-Variance Tradeoff in Hybrid Generative-Discriminative Models}, + booktitle = ICML07, + editor = ICML07ed, + publisher = ICML07publ, + year = {2007}, + isbn = {0-7695-3069-9}, + pages = {124--129}, + address = {Washington, DC, USA}, + } + %doi = {http://dx.doi.org/10.1109/ICMLA.2007.23}, + +@Article{Bourlard-cspla89, + author = "H. Bourlard and C. Wellekens", + title = "Speech Pattern Discrimination and Multi-Layered + Perceptrons", + journal = cspla, + volume = "3", + pages = "1--19", + year = "1989", +} + +@Article{Bourlard-pami90, + author = "H. Bourlard and C. Wellekens", + title = "Links between Hidden {Markov} Models and Multilayer + Perceptrons", + journal = ieeetpami, + volume = "12", + pages = "1167--1178", + year = "1990", +} + +@Article{Bourlard88, + author = "H. Bourlard and Y. Kamp", + title = "Auto-Association by Multilayer Perceptrons and + Singular Value Decomposition", + journal = biocyb, + volume = "59", + pages = "291--294", + year = "1988", +} + +@Book{Bourlard93, + author = "H. Bourlard and N. Morgan", + title = "Connectionist Speech Recognition. {A} Hybrid + Approach", + volume = "247", + publisher = "Kluwer Academic Publishers", + address = "Boston", + year = "1993", + series = "The Kluwer international series in engineering and + computer science", +} + +@Article{Bourlard_cspla89, + author = "H Bourlard and C. Wellekens", + title = "Speech Pattern Discrimination and Multi-Layered + Perceptrons", + journal = cspla, + volume = "3", + pages = "1--19", + year = "1989", + OPTnote = "", +} + +@InCollection{Bourrely89, + author = "J. Bourrely", + booktitle = "Hypercube and distributed computers", + title = "Parallelization of a Neural Learning Algorithm on a + Hypercube", + publisher = "Elsiever Science Publishing, North Holland", + pages = "219--229", + year = "1989", +} + +@inproceedings{Bouveyron-Chipman-2007, + author = {C. Bouveyron and H. Chipman}, + title = {Visualization and classification of graph-structured data: the case of the {E}nron dataset}, + booktitle = ijcnn, + pages = {1506--1511}, + year = 2007, +} + +@Book{Box73, + author = "G. E. P. Box and G. C. Tiao", + title = "Bayesian inference in statistical analysis", + publisher = "Addison-Wesley", + year = "1973", +} + +@Book{BoxJenkins, + author = "G. E. P. Box and G. M. Jenkins", + title = "Time Series Analysis: Forecasting and Control.", + publisher = "Holden-Day", + address = "San Francisco", + year = "1970", +} + +@Book{Boyd04, + author = "Stephen Boyd and Lieven Vandenberghe", + title = "Convex Optimization", + publisher = "Cambridge University Press", + address = "New York, NY, USA", + year = "2004", + ISBN = "0-521-83378-7", +} + +@incollection{Bradley+Bagnell-2009, + title = {Differentiable Sparse Coding}, + author = {J. Andrew Bagnell and David M. Bradley}, + editor = NIPS21ed, + booktitle = NIPS21, + pages = {}, + publisher = {NIPS Foundation}, + year = {2009} +} + +@PhdThesis{Bradley-thesis, + author = "David Bradley", + title = "Learning in Modular Systems", + school = "The Robotics Institute, Carnegie Mellon University", + year = "2009", +} + +@Article{Brady-ieeecas89, + author = "M. L. Brady and R. Raghavan and J. Slawny", + title = "Back-Propagation Fails to Separate Where Perceptrons + Succeed", + journal = ieeetcas, + volume = "36", + pages = "665--674", + year = "1989", +} + +@Article{Brady89, + author = "M. L. Brady and R. Raghavan and J. Slawny", + title = "Back-Propagation fails to Separate Where Perceptrons + Succeed", + journal = "IEEE Transactions on Circuits and Systems", + volume = "36", + number = "5", + pages = "665--674", + year = "1989", +} + +@InProceedings{Bramson90, + author = "M. J. Bramson and R. G. Hoptroff", + booktitle = "Workshop on Neural Networks for Statistical and + Economic Data", + title = "Forecasting the Economic Cycle: a Neural Network + Approach", + address = "Dublin", + year = "1990", +} + +@InProceedings{Brand2003, + author = "M. Brand", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Charting a manifold", + publisher = "{MIT} Press", + pages = "961--968", + year = "2003", +} + +@Article{Brand99, + author = "Matthew Brand", + title = "Structure Learning in Conditional Probability Models + via an Entropic Prior and Parameter Extinction", + journal = "Neural Computation", + volume = "11", + number = "5", + pages = "1155--1182", + year = "1999", +} + +@InProceedings{Brandt88, + author = "R. D. Brandt and Y. Wang and A. J. Laub and S. K. + Mitra", + booktitle = icnn, + title = "Alternative Networks for Solving the Travelling + Salesman Problem and the List-Matching Problem", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "333--340", + year = "1988", +} + +@inproceedings{BreglerC1994, + author = "Christoph Bregler and Stephen M. Omohundro", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Surface Learning with Applications to Lipreading", + publisher = "Morgan Kaufmann Publishers, Inc.", + pages = "43--50", + year = "1994", +} + + +@Article{Breiman-96, + author = "L. Breiman", + title = "Heuristics of instability and stabilization in model + selection", + journal = "The Annals of Statistics", + volume = "24", + number = "6", + pages = "2350--2383", + year = "1996", +} + +@Article{breiman-stability-96, + author = "L. Breiman", + title = "Heuristics of Instability and Stabilization in Model + Selection", + journal = "Annals of Statistics", + volume = "24", + number = "6", + pages = "2350--2383", + year = "1996", +} + +@Article{Breiman01, + author = "Leo Breiman", + title = "Random Forests", + journal = "Machine Learning", + volume = "45", + number = "1", + pages = "5--32", + year = "2001", +} + +@Book{Breiman84, + author = "L. Breiman and J. H. Friedman and R. A. Olshen and C. + J. Stone", + title = "Classification and Regression Trees", + publisher = "Wadsworth International Group", + address = "Belmont, CA", + year = "1984", +} + +@TechReport{Breiman96, + author = "L. Breiman", + title = "Bias, Variance, and Arcing Classifiers", + number = "Technical Report 460", + institution = "Statistics Department, University of California", + address = "Berkeley, CA 94720", + month = apr, + year = "1996", +} + +@InCollection{Bridle+Cox91, + author = "J. S. Bridle and S. J. Cox", + editor = NIPS3ed, + booktitle = NIPS3, + title = "{RECNORM}: simultaneous normalisation and + classification applied to speech recognition", + publisher = "Morgan Kaufmann", + pages = "234--240", + year = "1991", +} + +@InCollection{Bridle89, + author = "J. Bridle", + editor = "F. Fogelman-Souli\'e and J. {H\'{e}rault}", + booktitle = "Neuro-computing: Algorithms, Architectures, and + Applications", + title = "Probabilistic interpretation of feedforward + classification network outputs, with relationships to + statistical pattern recognition", + publisher = "Springer-Verlag", + address = "New York", + year = "1989", +} + +@InCollection{Bridle89-nips, + author = "J. S. Bridle", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Training Stochastic Model Recognition Algorithms as + Networks can lead to Maximum Mutual Information + Estimation of Parameters", + publisher = "Morgan Kaufmann", + pages = "211--217", + year = "1990", +} + +@Article{Bridle90, + author = "J. S. Bridle", + title = "Alphanets: a Recurrent `Neural' Network Architecture + with a Hidden {Markov} Model Interpretation", + journal = spcomm, + volume = "9", + number = "1", + pages = "83--92", + year = "1990", +} + +@InCollection{Bridle90b, + author = "J. S. Bridle", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Training Stochastic Model Recognition Algorithms as + Networks can lead to Maximum Mutual Information + Estimation of Parameters", + publisher = "Morgan Kaufmann", + pages = "211--217", + year = "1990", +} + +@InCollection{Bromley-siamese93, + author = "J. Bromley and J. Benz and L. Bottou and I. Guyon and + L. Jackel and Y. {LeCun} and C. Moore and E. Sackinger + and R. Shah", + booktitle = "Advances in Pattern Recognition Systems using Neural + Network Technologies", + title = "Signature verification using a siamese time delay + neural network", + publisher = "World Scientific, Singapore", + pages = "669--687", + year = "1993", +} + +@InCollection{Bromley93, + author = "J. Bromley and J. Benz and L. Bottou and I. Guyon and + L. Jackel and Y. {LeCun} and C. Moore and E. Sackinger + and R. Shah", + booktitle = "Advances in Pattern Recognition Systems using Neural + Network Technologies", + title = "Signature verification using a siamese time delay + neural network", + publisher = "Series in Machine Perception and Artificial + Intelligence, World Scientific, Singapore", + pages = "669--687", + year = "1993", +} + +@Article{broomhead-lowe-88, + author = "D. Broomhead and D. Lowe", + key = "Broomhead", + title = "Multivariable functional interpolation and adaptive + networks", + journal = "Complex Systems", + volume = "2", + pages = "321--355", + year = "1988", +} + +@TechReport{Brown-Hinton-PoHMM-2000, + author = "Andrew Brown and Geoffrey Hinton", + title = "Products of Hidden Markov Models", + number = "GCNU TR 2000-004", + institution = "Gatsby Unit, University College London", + year = "2000", +} + +@Book{Brown86, + author = "Lawrence D. Brown", + title = "Fundamentals of Statistical Exponential Families", + volume = "9", + publisher = "Inst. of Math. Statist. Lecture Notes Monograph + Series", + year = "1986", +} + +@Article{Brown92, + author = "P. F. Brown and V. J. Della Pietra and P. V. DeSouza + and J. C. Lai and R. L. Mercer", + title = "Class-based {\it n}-gram models of natural language", + journal = "Computational Linguistics", + volume = "18", + pages = "467--479", + year = "1992", +} + +@PhdThesis{BrownPhD, + author = "P. Brown", + title = "The Acoustic-Modeling problem in Automatic Speech + Recognition", + school = "Dept. of Computer Science, Carnegie-Mellon + University", + year = "1987", +} + +@InProceedings{Bruce-94, + author = "Rebecca Bruce and Janyce Wiebe", + booktitle = "{ARPA} Workshop on Human Language Technology", + title = "A new approach to sense identification", + address = "Plainsboro, {NJ}", + year = "1994", +} + +@InProceedings{Brugnara92, + author = "F. Brugnara and R. DeMori and D. Giuliani and M. + Omologo", + booktitle = icassp, + title = "A family of parallel hidden Markov models", + publisher = "IEEE", + address = "New York, NY, USA", + pages = "377--370", + year = "1992", +} + +@Article{Brunak89, + author = "S. Brunak and B. Lautrup", + title = "Liniedeling med et Neuralt Nev{\ae}rk", + journal = SAML, + volume = "14", + pages = "55--74", + year = "1989", +} + +@Book{Brunak90, + author = "S. Brunak and B. Lautrup", + title = "Neural Networks: Computers with Intuition", + publisher = "World Scientific", + address = "Singapore", + year = "1990", +} + +@Article{Brunak91, + author = "S. Brunak and J. Engelbrecht and S. Knudsen", + title = "Prediction of human {mRNA} donor and acceptor sites + from the {DNA} sequence", + journal = "J. Molec. Biol.", + volume = "220", + pages = "49--65", + year = "1991", +} + +@Book{Bryson69, + author = "A. E. Bryson and Y.-C. Ho", + title = "Applied Optimal Control", + publisher = "Blaisdell", + address = "New York", + year = "1969", +} + +@Article{BT-the-fitting-1974, + author = "A. E. Beaton and J. W. Tukey", + title = "The fitting of power series, meaning polynomials, + illustrted on band-spectroscopic data", + journal = "Technometrics", + volume = "16", + pages = "147--185", + year = "1974", +} + +@article{Buia-Tiesinga-2006, + author = {Calin Buia and Paul Tiesinga}, + title = {Attentional modulation of firing rate and synchrony in a model cortical network}, + journal = {J. Computational Neuroscience}, + volume = 20, + pages = {247--264}, + year = 2006, +} + +@TechReport{buhlmann97, + author = "P. Buhlmann and A. J. Wyner", + title = "Variable Length Markov Chains", + number = "technical report 479", + institution = "Statistics Department, University of California, + Berkeley", + month = jan, + year = "1997", +} + +@Article{Buhmann87, + author = "J. Buhmann and K. Schulten", + title = "Noise-Driven Temporal Association in Neural Networks", + journal = eul, + volume = "4", + pages = "1205--1209", + year = "1987", +} + +@InProceedings{Buhmann88, + author = "J. Buhmann and K. Schulten", + editor = "R. Eckmiller and Ch. von der Malsburg", + booktitle = "Neural Computers", + title = "Storing Sequences of Biased Patterns in Neural + Networks with Stochastic Dynamics", + publisher = "Springer-Verlag, Berlin", + address = "Neuss 1987", + pages = "231--242", + year = "1988", +} + +@Article{Buntine94, + author = "W. Buntine", + title = "Operations for Learning with Graphical Models", + journal = "Journal of Artificial Intelligence Research", + volume = "2", + pages = "159--225", + year = "1994", +} + +@InProceedings{Burges92, + author = "C. Burges and O. Matan and Y. {LeCun} and J. Denker and + L. Jackel and C. Stenard and C. Nohl and J. Ben", + booktitle = ijcnn, + title = "Shortest Path Segmentation: {A} Method for Training a + Neural Network to Recognize character Strings", + volume = "3", + address = "Baltimore", + pages = "165--172", + year = "1992", +} + +@Article{Burges93, + author = "C. J. C. Burges and J. I. Ben and J. S. Denker and Y. + {LeCun} and C. R. Nohl", + title = "Off Line Recognition of Handwritten Postal Words Using + Neural Networks", + journal = "International Journal of Pattern Recognition and + Artificial Intelligence", + volume = "7", + number = "4", + pages = "689", + year = "1994", +} + +@Article{burges98, + author = "C. J. C. Burges", + title = "A Tutorial on {Support} {Vector} {Machines} for + Pattern Recognition", + journal = "Data Mining and Knowledge Discovery", + volume = "2", + number = "2", + pages = "1--47", + year = "1998", +} + +@InCollection{Burges99Geometry, + author = "C. J. C. Burges", + editor = "B. {Sch\"olkopf} and C. J. C. Burges and A. J. Smola", + booktitle = "Advances in Kernel Methods --- Support Vector + Learning", + title = "Geometry and invariance in kernel based methods", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "89--116", + year = "1999", +} + +@Article{Burr83, + author = "D. J. Burr", + title = "Designing a handwriting reader", + journal = ieeetpami, + volume = "5", + number = "5", + pages = "554--559", + month = sep, + year = "1983", +} + +@InProceedings{Burr88, + author = "D. J. Burr", + booktitle = icnn, + title = "An Improved Elastic Net Method for the Travelling + Salesman Problem", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "69--76", + year = "1988", +} + +@Article{Burrows94, + author = "J. H. Burrows and J. Peck", + title = "On-Line Condition Monitoring of Rotating Equipment + Using Neural Networks", + journal = "ISA Transactions", + volume = "33", + pages = "159--164", + year = "1994", +} + +@InProceedings{Burrows95, + author = "J. H. Burrows and R. Doucet", + booktitle = "Proceedings of COMADEM'95", + title = "Machine Condition Monitoring Using Artificial Neural + Networks to Process Vibration Data Obtained from + Maintenance Monitoring Equipment", + address = "Kingston, Ontario, Canada", + year = "1995", +} + +@Article{Byrne87, + author = "J. H. Byrne", + title = "Cellular analysis of associative learning", + journal = "Physiological Review", + volume = "67", + pages = "329--439", + year = "1987", +} + +@InCollection{Byrne89, + author = "J. H. Byrne and K. J. Gingrich and D. A. Baxter", + editor = "Hawkins R. D. and Bower G. H.", + booktitle = "Computational Models of Learning in Simple Neural + Systems", + title = "Computational capabilities of single neurons: + relationship to simple forms of associative and + nonassociative learning in {\it Aplysia}", + publisher = "Academic Press", + pages = "31--63", + year = "1989", +} + +@InProceedings{Cacciatore-nips94, + author = "T. W. Cacciatore and Steven J. Nowlan", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Mixtures of Controllers for Jump Linear and Non-linear + Plants", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + year = "1994", +} + +@Article{Cai94, + author = "J. Cai", + title = "A Markov model of unconditional variance in {ARCH}", + journal = "Journal of Business and Economic Statistics", + year = "1994", +} + +@inproceedings{Cai+al-2007, + author = {Cai, Deng and He, Xiaofei and Han, Jiawei }, + booktitle = ICCV07, + pages = {1--7}, + title = {Semi-supervised Discriminant Analysis}, + year = {2007} +} + +@Article{Caianiello61, + author = "E. R. Caianiello", + title = "Outline of a Theory of Thought and Thinking Machines", + journal = jtb, + volume = "1", + pages = "204--235", + year = "1961", +} + +@article{Campbell+Kulikowski-1966, + author = {F. W. Campbell and J. J. Kulikowski}, + title = {Orientational selectivity of the human visual system}, + journal = {Journal of Physiology}, + year = 1966, + pages = "437--445", + address = "London" +} + +@article{Campbell+al-1969, + title = {The Spatial Selectivity of the Visual Cells of the Cat}, + author = {F. W. Campbell and G. F. Cooper and Enroth C. Cugell}, + journal = {Journal of Physiology}, + address = "London", + pages = {223--235}, + volume = {203}, + year = {1969}, + biburl = {http://www.bibsonomy.org/bibtex/2cfcc4bc8437b72761251fb2b9e7eb106/schaul}, + description = {idsia}, +} + +@InBook{CandelaJ2006, + author = "J. Quiñonero Candela and C. E. Rasmussen and F. Sinz + and O. Bousquet and B. Schölkopf", + booktitle = "Machine learning challenges: Evaluating predictive + uncertainty, visual object classification, and + recognising textual entailment", + title = "Evaluating Predictive Uncertainty Challenge", + publisher = "Springer", + address = "Heidelberg, Germany", + pages = "1--27", + month = apr, + year = "2006", + series = "Lecture Notes in Computer Science: 3944", + URL = "http://www.springerlink.com/(yxluatzjo3gnpl45323wjs45)/app/home/contribution.asp?referrer=parent&amp;amp;amp;amp;amp;amp;backto=issue,1,25;journal,2,3638;linkingpublicationresults,1:105633,1", + abstract = "This Chapter presents the PASCAL1 Evaluating + Predictive Uncertainty Challenge, introduces the + contributed Chapters by the participants who obtained + outstanding results, and provides a discussion with + some lessons to be learnt. The Challenge was set up to + evaluate the ability of Machine Learning algorithms to + provide good Ãprobabilistic predictionsÃ, rather than + just the usual Ãpoint predictionsà with no measure of + uncertainty, in regression and classification problems. + Parti-cipants had to compete on a number of regression + and classification tasks, and were evaluated by both + traditional losses that only take into account point + predictions and losses we proposed that evaluate the + quality of the probabilistic predictions.", + OPTeditor = "Quiñonero Candela, J., I. Dagan, B. Magnini, F. DAlché + Buc", +} + +@article{candeswakin08, +author = "Candes, E. and Wakin, M.", +title = "An introduction to compressive sampling", +journal = "IEEE Signal Processing Magazine", +volume = 21, +year = 2008, +} + +@article{Candes+Tao-2005, + author = {E.J. Candes and T. Tao}, + title = {Decoding by linear programming}, + journal = {{IEEE} Transactions on Information Theory}, + volume = 51, + number = 12, + pages = {4203--4215}, + year = 2005, +} + +@Article{Canning88, + author = "A. Canning and E. Gardner", + title = "Partially Connected Models of Neural Networks", + journal = jpa, + volume = "21", + pages = "3275--3284", + year = "1988", +} + +@article{carandini:1994, + author = {Matteo Carandini and David J. Heeger}, + title = {Summation and Division by Neurons in Primate Visual Cortex}, + journal = {Science}, + volume={264}, + number={5163}, + month = {May}, + year = {1994}, + pages = {1333-1336}, +} + +@inproceedings{Cardie-1993, + author = "Claire Cardie", + title = "Using Decision Trees to Improve Case--Based Learning", + booktitle = "Proceedings of the Tenth International Conference on Machine Learning", + publisher = "Morgan Kaufmann", + pages = "25--32", + year = "1993", + url = "citeseer.ist.psu.edu/cardie93using.html" +} + +@Article{Carpenter87a, + author = "G. A. Carpenter and S. Grossberg", + title = "A Massively Parallel Architecture for a + Self-Organizing Neural Pattern Recognition Machine", + journal = cvgip, + volume = "37", + pages = "54--115", + year = "1987", +} + +@Article{Carpenter87b, + author = "G. A. Carpenter and S. Grossberg", + title = "{ART2}: Self-Organization of Stable Category + Recognition Codes for Analog Input Patterns", + journal = applopt, + volume = "26", + pages = "4919--4930", + year = "1987", +} + +@Article{Carpenter88, + author = "G. A. Carpenter and S. Grossberg", + title = "The {ART} of Adaptive Pattern Recognition by a + Self-Organizing Neural Network", + journal = computer, + pages = "77--88", + month = mar, + year = "1988", +} + +@InProceedings{Carrasco94, + author = "R. C. Carrasco and J. Oncina", + booktitle = "Grammatical Inference and Applications Proc. of the + 2nd International Colloquium on Grammatical Inference + ICGI94", + title = "Learning regular grammars by means of a state merging + method", + publisher = "Lecture Notes in Artificial Intelligence 862", + address = "Alicante (Spain)", + month = sep, + year = "1994", +} + +@Article{Carter94, + author = "C. K. Carter and R. Kohn", + title = "On Gibbs sampling for state space models", + journal = "Biometrika", + volume = "81", + pages = "541--553", + year = "1994", +} + +@InProceedings{Caruana-2001, + author = "Rich Caruana", + booktitle = aistats01, + title = "A Non-Parametric {EM}-Style Algorithm for Imputing + Missing Values", + publisher = "Society for Artificial Intelligence and Statistics", + year = "2001", +} + +@InProceedings{caruana06:empirical, + author = "R. Caruana and A. Niculescu-Mizil", + booktitle = ICML06, + editor = ICML06ed, + publisher = ICML06publ, + title = "An Empirical Comparison of Supervised Learning + Algorithms", + year = "2006", +} + +@InProceedings{caruana93a, + author = "Rich Caruana", + booktitle = "Proceedings of the 1993 Connectionist Models Summer + School", + title = "Multitask Connectionist Learning", + pages = "372--379", + year = "1993", +} + +@InProceedings{caruana93a-small, + author = "Rich Caruana", + booktitle = "Proceedings of the 1993 Connectionist Models Summer + School", + title = "Multitask Connectionist Learning", + pages = "372--379", + year = "1993", +} + %url = "http://citeseer.ist.psu.edu/32984.html", + +@InProceedings{caruana95, + author = "Rich Caruana", + editor = NIPS7ed, + booktitle = NIPS7, + title = "Learning Many Related Tasks at the Same Time With + Backpropagation", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "657--664", + year = "1995", +} + +@InProceedings{caruana96, + author = "Rich Caruana and Shumeet Baluja and Tom Mitchell", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Using the Future to ``Sort Out'' the Present: Rankprop + and Multitask Learning for Medical Risk Evaluation", + publisher = "", + address = "", + pages = "", + year = "1996", +} + +@InProceedings{caruana96c, + author = "Rich Caruana", + booktitle = "International Conference on Machine Learning", + title = "Algorithms and Applications for Multitask Learning", + pages = "87--95", + year = "1996", +} + +@Article{caruana97a, + author = "Rich Caruana", + title = "Multitask Learning", + journal = "Machine Learning", + volume = "28", + number = "1", + publisher = "Kluwer Academic Publishers", + address = "Hingham, MA, USA", + pages = "41--75", + year = "1997", +} + +@Article{Casdagli89, + author = "M. Casdagli", + title = "Nonlinear Prediction of Chaotic Time Series", + journal = physicaD, + volume = "35", + pages = "335--356", + year = "1989", +} + +@book{Casella+Berger-2001, + author = {George Casella and Roger Berger}, + title = {Statistical Inference}, + publisher = {Duxbury Press}, + year = 2001, +} + + +@Article{Cashman+Pouliot90, + author = "N. R. Cashman and Y. Pouliot", + title = "{EBV} {Ig}-like domains", + journal = "Nature", + volume = "343", + pages = "319", + year = "1990", +} + +@ARTICLE{CataltepeZ1999, + author = {Zehra Cataltepe and Yaser S. Abu-mostafa and Malik Magdon-ismail}, + title = {No free lunch for early stopping}, + journal = {Neural Computation}, + year = {1999}, + volume = {11}, + pages = {995--1009} +} + +@InProceedings{Cater87, + author = "J. P. Cater", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Successfully Using Peak Learning Rates of 10 (and + Greater) in Back-Propagation Networks with the + Heuristic Learning Algorithm", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "645--651", + year = "1987", +} + +@Book{Caudill89, + author = "M. Caudill", + title = "Neural Networks Primer", + publisher = "Miller Freeman", + address = "San Francisco", + year = "1989", +} + +@Manual{CC01a, + author = "Chih-Chung Chang and Chih-Jen Lin", + title = "{LIBSVM}: a library for support vector machines", + year = "2001", + note = "Software available at + \verb+http://www.csie.ntu.edu.tw/~cjlin/libsvm+", +} + +@Article{cemgil+kappen+barber-2006, + author = "A. T. Cemgil and H. J. Kappen and D. Barber", + title = "A Generative Model for Music Transcription", + journal = "IEEE Transactions on Audio, Speech and Language + Processing", + volume = "14", + number = "2", + pages = "679--694", + year = "2006", +} + +@inproceedings{Cevikalp+al-2008, + title = {Semi-Supervised Dimensionality Reduction Using Pairwise Equivalence Constraints}, + author = {Hakan Cevikalp and Jakob J. Verbeek and Frédéric Jurie and Alexander Kläser}, + booktitle = {VISAPP}, + editor = {Alpesh Ranchordas and Helder Araújo}, + pages = {489-496}, + publisher = {INSTICC - Institute for Systems and Technologies of Information, Control and Communication}, + url = {http://dblp.uni-trier.de/db/conf/visapp/visapp2008-1.html#CevikalpVJK08}, + year = {2008}, + biburl = {http://www.bibsonomy.org/bibtex/21afc498c02543e97ff5bd4f6b107e16e/dblp}, + description = {dblp}, + isbn = {978-989-8111-21-0}, + date = {2008-04-07}, + keywords = {dblp } +} + +@InProceedings{CGY96, + author = "Ingemar J. Cox and Joumana Ghosn and Peter N. + Yianilos", + booktitle = cvpr96, + title = "Feature-Based Face Recognition Using + Mixture-Distance", + pages = "209--216", + year = "1996", +} + +@Article{CHAID-BVS-91, + author = "D. Biggs and B. Ville and E. Suen", + title = "A method of choosing multiway partitions for + classification and decision trees", + journal = "Journal of Applied Statistics", + volume = "18", + number = "1", + pages = "49--62", + year = "1991", +} + +@InBook{CHAID-HK-82, + author = "D. M. Hawkins and G. V. Kass", + booktitle = "Topics in Applied Multivariate Analysis", + title = "Automatic Interaction Detection", + publisher = "Cambridge, Cambridge University Press", + pages = "269--302", + year = "1982", +} + +@Article{CHAID-original-80, + author = "G. V. Kass", + title = "An Exploratory Technique for Investigating Large + Quantities of Categorical Data", + journal = "Applied Statistics", + volume = "29", + number = "2", + pages = "119--127", + year = "1980", +} + +@InProceedings{Chapados2002, + author = "N. Chapados and Y. Bengio and P. Vincent and J. Ghosn + and C. Dugas and I. Takeuchi and L. Meng", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Estimating Car Insurance Premia: a Case Study in + High-Dimensional Data Inference", + publisher = "{MIT} Press", + address = "Cambridge, MA", + pages = "1369--1376", + year = "2002", +} + +@InProceedings{Chapados2002-short, + author = "N. Chapados and Y. Bengio and P. Vincent and J. Ghosn + and C. Dugas and I. Takeuchi and L. Meng", + booktitle = NIPS14, + title = "Estimating Car Insurance Premia: a Case Study in + High-Dimensional Data Inference", + publisher = "{MIT} Press", + year = "2002", +} + +@InProceedings{Chapelle+al-2003, + author = "O. Chapelle and J. Weston and B. Sch{\"o}lkopf", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Cluster kernels for semi-supervised learning", + publisher = "{MIT} Press", + address = "Cambridge, MA", + pages = {585--592}, + year = "2003", +} + +@InProceedings{Chapelle-nips2003, + author = "O. Chapelle and B. Sch{\"o}lkopf and J. Weston", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Semi-supervised learning through principal directions + estimation", + publisher = "{MIT} Press", + year = "2003", +} + +@InProceedings{Chapelle2001, + author = "Olivier Chapelle and Jason Weston and L\'eon Bottou + and Vladimir Vapnik", + editor = NIPS13ed, + booktitle = NIPS13, + title = "Vicinal Risk Minimization", + pages = "416--422", + year = "2001", +} + +@InProceedings{chapelle2001iin, + author = "O. Chapelle and B. Scholkopf", + title = "{Incorporating invariances in nonlinear support vector + machines}", + editor = NIPS14ed, + booktitle = NIPS14, + volume = "14", + year = "2001", +} + +@Article{Chapelle99, + author = "O. Chapelle and P. Haffner and V. Vapnik", + title = "{SVM}s for Histogram-Based Image Classification", + journal = "IEEE Transactions on Neural Networks", + year = "1999", + note = "accepted, special issue on Support Vectors", +} + +@Article{ChapelleVapnikBengio2001, + author = "O. Chapelle and V. Vapnik and Y. Bengio", + title = "Model Selection for Small-Sample Regression", + journal = "Machine Learning Journal", + volume = "48", + number = "1", + pages = "9--23", + year = "2002", +} + +@inproceedings{Willski-2002, + author = "A.S. Willsky", + title = "Multiresolution {Markov} models for signal and image processing", + booktitle = "Proceedings of the IEEE", + volume = "90", + number = "8", + pages = "1396--1458", + year = "2002", +} + +@Article{Felzenszwalb+Huttenlocher-2004, + author = "Pedro F. Felzenszwalb and Daniel P. Huttenlocher", + title = "Efficient Graph-Based Image Segmentation", + journal = "Intl. Journal of Computer Vision", + volume = "59", + number = "2", + pages = "167-181", + year = "2004", +} + +@inproceedings{Lombaert-2005, + author = "Herve Lombaert and Yiyong Sun and Leo Grady and Chenyang Xu", + title = "A Multilevel Banded Graph Cuts Method for Fast Image Segmentation", + booktitle = ICCV05, + volume = "1", + pages = "259-265", + year = "2005", +} + +@Article{Boykov+Kolmogorov-2004, + author = "Y. Boykov and V. Kolmogorov", + title = "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision", + journal = ieeetpami, + volume = "26", + number = "9", + pages = "1124-1137", + year = "2004", +} + +@inproceedings{chapelleetal06, +author = "Chapelle, O. and Chi, M. and Zien, A.", +title = "A continuation method for semi-supervised {SVMs}", +booktitle = ICML06, +editor = ICML06ed, +publisher = ICML06publ, +year = 2006, +} + +@inproceedings{ChapelleO2005, + author = {Olivier Chapelle and Alexander Zien}, + title = {Semi-Supervised Classification by Low Density Separation}, + year = {2005}, + pages = {57-64}, + month = {01}, + journal = {Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005)}, + editor = {Cowell, R. , Z. Ghahramani}, + booktitle = {Tenth International Workshop on Artificial Intelligence and Statistics}, + location = {Barbados}, +} + %URL = {http://www.gatsby.ucl.ac.uk/aistats/aistats2005_eproc.pdf} + +@book{Chapelle-2006, + author = {Olivier Chapelle and Bernhard Sch{\"o}lkopf and Alexander Zien}, + title = "Semi-Supervised Learning", + publisher = "{MIT} Press", + year = "2006", +} + +@TechReport{Charniak99, + author = "Eugene Charniak", + title = "A Maximum-Entropy-Inspired Parser", + number = "CS-99-12", + institution = "Brown University", + year = "1999", + URL = "citeseer.nj.nec.com/charniak99maximumentropyinspired.html", +} + +@misc{Chatpatanasiri-2008, + author = {Ratthachat Chatpatanasiri}, + title = {Spectral Methods for Linear and Non-Linear Semi-Supervised Dimensionality Reduction}, + url = {http://www.citebase.org/abstract?id=oai:arXiv.org:0804.0924}, + year = {2008}, + note = {Submitted for publication}, +} + +@InProceedings{Chauvin89, + author = "Y. Chauvin", + editor = NIPS1ed, + booktitle = NIPS1, + title = "A Back-Propagation Algorithm with Optimal Use of + Hidden Units", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "519--526", + year = "1989", +} + +@InProceedings{Chauvin90, + author = "Y. Chauvin", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Dynamic behavior of constrained back-propagation + networks", + publisher = "Morgan Kaufmann", + address = "Denver, CO", + pages = "642--649", + year = "1990", +} + +@InProceedings{Cheeseman88, + author = "P. Cheeseman and J. Kelly and M. Self and J. Stutz and + W. Taylor and D. Freeman", + booktitle = "Proceedings of the Fifth International Conference on + Machine Learning", + title = "{AutoClass}: {A} {Bayesian} Classification System", + address = "The University of Michigan, Ann Arbor", + month = jun, + year = "1988", +} + +@Article{Chelba-Jelinek-2000, + author = "Ciprian Chelba and Frederick Jelinek", + title = "Structured Language Modeling", + journal = "Computer, Speech and Language", + volume = "14", + number = "4", + pages = "282--332", + year = "2000", +} + +@Article{Chen+Goodman99, + author = "Stanley F. Chen and Joshua T. Goodman.", + title = "An Empirical Study of Smoothing Techniques for + Language Modeling", + journal = "Computer, Speech and Language", + volume = "13", + number = "4", + pages = "359--393", + year = "1999", +} + +@Article{Chen+Murray2003, + author = "Hsin Chen and Alan F. Murray", + title = "A Continuous Restricted {Boltzmann} Machine with an + Implementable Training Algorithm", + journal = "IEE Proceedings of Vision, Image and Signal + Processing", + volume = "150", + number = "3", + pages = "153--158", + year = "2003", +} + +@PhdThesis{chen95basispursuit, + author = "S. Chen", + title = "Basis Pursuit", + school = "Department of Statistics, Stanford University", + year = "1995", +} + +@TechReport{Chen98, + author = "Stanley F. Chen and Joshua T. Goodman.", + title = "An Empirical Study of Smoothing Techniques for + Language Modeling", + number = "TR-10-98", + institution = "Computer Science Group, Harvard University", + year = "1998", +} + +@Article{ChenS2000, + author = "Stanley F. Chen and Ronald Rosenfeld", + title = "A Survey of Smoothing Techniques fo {ME} Models", + journal = "IEEE Transactions on Speech and Audio Processing", + volume = "8", + number = "1", + month = jan, + year = "2000", +} + +@techreport{Chen+Kotani-2005, + author = "Chen, Fan and Kotani, Kazunori", + title = "Facial Expression Recognition by Supervised {ICA} with Selective Prior", + ISSN = "09135685", + institution = "The Institute of Electronics, Information and Communication Engineers", + year = "2005", + number = "462", + pages = "27-32", + URL = "http://ci.nii.ac.jp/naid/110004064718/en/", +} + +@Article{ChenX1989, + author={Chen, X. R. and Krishnaiah, P. R. and Liang, W. W.}, + title={Estimation of multivariate binary density using orthogonal functions}, + journal={Journal of Multivariate Analysis}, + year=1989, + volume={31}, + number={2}, + pages={178-186}, + month={November}, +} + +@InProceedings{Chigier88, + author = "B. Chigier and R. A. Brennan", + booktitle = icassp, + title = "Broad Class Network Generation Using a Combination of + Rules and Statistics for Speaker Independent Continuous + Speech", + address = "New York, NY", + pages = "449--452", + year = "1988", +} + +@InCollection{Chipman-NIPS2006, + author = "H. A. Chipman and E. I. George and R. E. McCulloch", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Bayesian Ensemble Learning", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2007", +} + +@article{Chipman-2008, + author = "H. A. Chipman and E. I. George and R. E. McCulloch", + title = "Bayesian Ensemble Learning", + journal = "Annals of Applied Statistics", + year = "2008", + editors = "under revision", +} + +@InProceedings{ChopraS2005, + author = "Sumit Chopra and Raia Hadsell and Yann {LeCun}", + booktitle = cvpr05, + title = "Learning a Similarity Metric Discriminatively, with + Application to Face Verification", + publisher = "IEEE Press", + year = "2005", + original = "orig/chopra-05.ps.gz", +} + +@InProceedings{Choueka-1998, + author = "Y. Choueka", + booktitle = "RIAO 88, User-oriented Content-based Text and Image + Handling", + title = "Looking for needles in a haystack", + volume = "1", + pages = "609--623", + year = "1988", +} + +@Article{Chow62, + author = "C. K. Chow", + title = "A recognition method using neighbor dependence", + journal = "IRE Trans. Elec. Comp.", + volume = "EC-11", + pages = "683--690", + month = oct, + year = "1962", +} + +@InProceedings{Chrisman92AAAI, + author = "Lonnie Chrisman", + booktitle = AAAI-92, + title = "Reinforcement Learning with Perceptual Aliasing: The + Perceptual Distinctions Approach", + pages = "183--188", + year = "1992", +} + +@InProceedings{Chung+al-1998, + author = "Yi-Ming Chung and William M. Pottenger and Bruce R. + Schatz", + booktitle = "DL '98: Proceedings of the third ACM conference on + Digital libraries", + title = "Automatic subject indexing using an associative neural + network", + publisher = "ACM Press", + address = "New York, NY, USA", + pages = "59--68", + year = "1998", + ISBN = "0-89791-965-3", + location = "Pittsburgh, Pennsylvania, United States", +} + +@InProceedings{Chung-97, + author = "F. Chung", + booktitle = "{CBMS} Regional Conference Series", + title = "Spectral graph theory", + volume = "92", + publisher = "American Mathematical Society", + year = "1997", +} + +@Article{Churchill89, + author = "G. A. Churchill", + title = "A stochastic model for heterogeneous {DNA} sequences", + journal = "Bull. Mathematical Biology", + volume = "51", + pages = "79--94", + year = "1989", +} + +@Book{Chvatal83, + author = "V. Chv\'atal", + title = "Linear Programming", + publisher = "W. H. Freeman", + address = "", + year = "1983", +} + +@Article{Cleeremans89, + author = "A. Cleeremans and D. Servan-Schreiber and J. L. + McClelland", + title = "Finite State Automata and Simple Recurrent Networks", + journal = nc, + volume = "1", + pages = "372--381", + year = "1989", +} + +@InCollection{Clifford-1990, + author = {Peter Clifford}, + title = {Markov random Fields in statistics}, + editor = {Geoffrey Grimmett and Dominic Welsh}, + booktitle = {Disorder in Physical Systems: A Volume in Honour +of John M. Hammersley}, + pages = {19--32}, + publisher = {Oxford University Press}, + year = 1990, +} + +@Book{CLM, + author = "J. Y. Campbell and A. W. Lo and A. C. MacKinlay", + title = "The Econometrics of Financial Markets", + publisher = "Princeton University Press", + address = "Princeton", + year = "1997", +} + +@Book{CND04, + author = "{Congr\'egation de Notre-Dame}", + title = "La cuisine raisonnée", + publisher = "Fides", + year = "2004", + ISBN = "2-7621-2083-7", +} + +@InProceedings{Cloutier96, + author = "J. Cloutier and E. Cosatto and S. Pigeon and F. R. + Boyer and P. Y. Simard", + booktitle = "Fifth International Conference on Microelectronics for + Neural Networks and Fuzzy Systems", + title = "{VIP}: and {FPGA}-based processor for image processing + and neural networks", + year = "1996", + note = "submitted", +} + +@Manual{CMFortran, + author = "", + key = "TMC", + title = "{CM} Fortran. Programming Guide", + organization = "Thinking Machine Corporation", + address = "Cambridge, MA", + edition = "1.1", + month = jan, + year = "1991", +} + +@Article{Cohen83, + author = "M. A. Cohen and S. Grossberg", + title = "Absolute Stability of Global Pattern Formation and + Parallel Memory Storage by Competitive Neural + Networks", + journal = ieeesmc, + volume = "13", + pages = "815--826", + year = "1983", +} + +@Article{Cohen86, + author = "M. S. Cohen", + title = "Design of a New Medium for Volume Holographic + Information Processing", + journal = applopt, + volume = "25", + pages = "2228--2294", + year = "1986", +} + +@Article{Cohen89, + author = "J. R. Cohen", + title = "Application of an auditory model to speech + recognition", + journal = "Journal of the Acoustical Society of America", + volume = "85", + number = "6", + pages = "2623--2629", + year = "1989", +} + +@PhdThesis{Cohn-PhD, + author = "D. Cohn", + title = "Separating Formal Bounds from Practical Performance in + Learning Systems", + school = "University of Washington", + year = "1992", +} + +@InProceedings{Cohn95, + author = "David Cohn and Zoubin Ghahramani and Michael I. + Jordan", + editor = NIPS7ed, + booktitle = NIPS7, + title = "Active learning with statistical models", + publisher = "Cambridge MA: MIT Press", + year = "1995", + pages = {705--712} +} + +@InProceedings{Cohn95-small, + author = "David Cohn and Zoubin Ghahramani and Michael I. + Jordan", + editor = NIPS7ed, + booktitle = "Advances in NIPS 7", + title = "Active learning with statistical models", + publisher = "Cambridge MA: MIT Press", + year = "1995", +} + +@InProceedings{Cohn95-short, + author = "D. Cohn and Z. Ghahramani and M.I. + Jordan", + booktitle = "Adv. Neural Inf. Proc. Sys. 7", + title = "Active learning with statistical models", + year = "1995", + pages = {705--712} +} + +@InProceedings{Cole+Hou88, + author = "R. A. Cole and L. Hou", + booktitle = icassp, + title = "Segmentation and Broad Classification of Continuous + Speech", + address = "New York, NY", + pages = "453--452", + year = "1988", +} + +@Book{Cole96, + author = "R. A. Cole and J. Mariani and H. Uszkoriet and A. + Zaenen and V. Zue", + title = "Survey of the State of the Art in Human Language + Technology", + publisher = "Cambridge University Press", + address = "http://www.cse.ogi.edu/CSLU/HLTsurvey/HLTsurvey.html", + year = "1996", +} + +@TechReport{Coleman+Wu-1994, + author = "Thomas F. Coleman and Zhijun Wu", + title = "Parallel continuation-based global optimization for + molecular conformation and protein folding", + institution = "Cornell University, Dept. of Computer Science", + year = "1994", +} + +@TechReport{Coleman+Wu-1994-short, + author = "T.F. Coleman and Z. Wu", + title = "Parallel continuation-based global optimization for + molecular conformation and protein folding", + institution = "Cornell University, Dept. of Computer Science", + year = "1994", +} + +@TechReport{Collins89, + author = "S. {Collins, E. Ghosh} and C. Scofield", + title = "An application of a multiple neural network learning + system to emulation of mortgage underwriting + judgements", + institution = "Nestor Inc.", + address = "Providence, RI", + year = "1989", +} + +@InProceedings{Collins96, + author = "M. Collins", + booktitle = "34th Annual Meeting of the {ACL}", + title = "A new statistical parser based on bigram lexical + dependencies", + pages = "184--191", + year = "1996", +} + +@InProceedings{Collins97, + author = "M. Collins", + booktitle = "35th Annual Meeting of the {ACL}", + title = "Three generative, lexicalized models for statistical + parsing", + address = "Madrid, Spain", + pages = "16--23", + year = "1997", +} + +@PhdThesis{Collins99, + author = "M. Collins", + title = "Head-driven statistical models for natural language + parsing", + school = "University of Pennsylvania", + year = "1999", +} + +@InProceedings{Collobert-2006, + author = "R. Collobert and F. Sinz and J. Weston and L. Bottou", + booktitle = "Proceedings of the 23rd International Conference on + Machine Learning", + title = "Trading Convexity for Scalability", + pages = "", + year = "2006", +} + +@PhdThesis{Collobert04, + author = "R. Collobert", + title = "Large Scale Machine Learning", + school = "Universit\'e de Paris VI, LIP6", + year = "2004", +} + +@Article{Collobert2002, + author = "R. Collobert and S. Bengio and Y. Bengio", + title = "Parallel Mixture of {SVM}s for Very Large Scale + Problems", + journal = "Neural Computation", + volume = "14", + number = "5", + pages = "1105--1114", + year = "2002", +} + +@InProceedings{Collobert2004, + author = "Ronan Collobert and Samy Bengio", + booktitle = ICML04, + editor = ICML04ed, + publisher = ICML04publ, + title = "Links between perceptrons, {MLP}s and {SVM}s", + address = "New York, NY, USA", + year = "2004", + location = "Banff, Alberta, Canada", + isbn = "1-58113-828-5", + pages = "23", + location = "Banff, Alberta, Canada", + doi = "http://doi.acm.org/10.1145/1015330.1015415", +} + +@InProceedings{CollobertR2008, + author = "Ronan Collobert and Jason Weston", + booktitle = ICML08, + editor = ICML08ed, + publisher = ICML08publ, + title = "A Unified Architecture for Natural Language + Processing: Deep Neural Networks with Multitask + Learning", + year = "2008", + pages = "160-167", +} + %url = "http://www.kyb.tuebingen.mpg.de/bs/people/weston/papers/unified\-nlp.pdf", + +@InProceedings{CollobertR2008-small, + author = "R. Collobert and J. Weston", + booktitle = "ICML 2008", + title = "A Unified Architecture for Natural Language + Processing: Deep Neural Networks with Multitask + Learning", + year = "2008", +} + +@InProceedings{CollobertR2008-short, + author = "R. Collobert and J. Weston", + booktitle = "Int. Conf. Mach. Learn. 2008", + title = "A Unified Architecture for Natural Language + Processing: Deep Neural Networks with Multitask + Learning", + pages = "160-167", + year = "2008", +} + +@Article{Comon94, + author = "Pierre Comon", + title = "Independent component analysis - a new concept?", + journal = "Signal Processing", + volume = "36", + pages = "287--314", + year = "1994", +} + +@InProceedings{ConfAI:Grove:linprog, + author = "Adam J. Grove and Dale Schuurmans", + booktitle = "Proceedings of the Fifteenth National Conference on + Artificial Intelligence", + title = "Boosting in the limit: Maximizing the margin of + learned ensembles", + year = "1998", +} + +@InProceedings{ConfAI:Maclin:adaboost, + author = "Richard Maclin and David Opitz", + booktitle = "Proceedings of the Fourteenth National Conference on + Artificial Intelligenc", + title = "An empirical evaluation of Bagging and Boosting", + pages = "546--551", + year = "1997", +} + +@InProceedings{ConfLT:Freund:gametheorie, + author = "Yoav Freund and Robert E. Schapire", + booktitle = "Proceedings of the Ninth Annual Conference on + Computational Learning Theory", + title = "Game theory, on-line prediction and Boosting", + pages = "325--332", + year = "1996", +} + +@InProceedings{ConfML:Dietterich:adaboost+prun, + author = "D. Margineantu and Thomas G. Dietterich", + booktitle = "Machine Learning: Proceedings of Fourteenth + International Conference", + title = "Pruning Adaptive Boosting", + publisher = "ACM", + pages = "211--218", + year = "1997", +} + +@InProceedings{ConfML:Freund:AdaBoostCompar, + author = "Yoav Freund and Robert E. Schapire", + booktitle = "Machine Learning: Proceedings of Thirteenth + International Conference", + title = "Experiments with a new Boosting algorithm", + publisher = "ACM", + address = "USA", + pages = "148--156", + year = "1996", +} + +@InProceedings{ConfML:Freund:margins, + author = "Robert E. Schapire and Yoav Freund and Peter Bartlett + and Wee Sun Lee", + booktitle = "Machine Learning: Proceedings of Fourteenth + International Conference", + title = "Boosting the margin: {A} new explanation for the + effectiveness of voting methods", + pages = "322--330", + year = "1997", +} + +@InProceedings{ConfML:Quinlan:AdaBoost-C45, + author = "J. Ross Quinlan", + booktitle = "Machine Learning: Proceedings of the fourteenth + International Conference", + title = "Bagging, Boosting and {C4.5}", + pages = "725--730", + year = "1996", +} + +@InProceedings{ConfML:Schapire:outputcodes, + author = "Robert E. Schapire", + booktitle = "Machine Learning: Proceedings of the Fourteenth + International Conference", + title = "Using output codes to boost multiclass learning + problems", + year = "1997", +} + +@Article{Coolen88, + author = "A. C. C. Coolen and C. C. A. M. Gielen", + title = "Delays in Neural Networks", + journal = eul, + volume = "7", + pages = "281--285", + year = "1988", +} + +@Book{cooper+meyer-1960, + author = "Grosvenor Cooper And Leonard B. Meyer", + title = "{The Rhythmic Structure of Music}", + publisher = "The Univ. of Chicago Press", + address = "Chicago", + year = "1960", + keywords = "describe, music", + origin = "Kielian-Gilbert", + own = "IU Library", +} + +@InCollection{Cooper73, + author = "L. N. Cooper", + editor = "B. Lundqvist and S. Lundqvist", + booktitle = "Collective Properties of Physical Systems", + title = "A Possible Organization of Animal Memory and + Learning", + publisher = "Academic Press", + address = "New York", + pages = "252--264", + year = "1973", +} + +@InCollection{Cooper87, + author = "C. L. Scofield and D. L. Reilly and C. Elbaum and L. + N. Cooper", + booktitle = "Conference on Neural Information Processing Systems - + Natural and Synthetic", + title = "Pattern class degeneracy in an unrestricted storage + density memory", + publisher = "IEEE", + year = "1987", +} + +@Article{Corana87, + author = "A. Corana and M. Marchesi and C. Martini and S. + Ridella", + title = "Minimizing Multimodal Functions of Continuous + Variables with the Simulated Annealing Algorithm", + journal = acmtms, + volume = "13", + number = "13", + pages = "262--280", + month = sep, + year = "1987", + OPTnote = "", +} + +@Article{Corana87a, + author = "A. Corana and M. Marchesi and C. Martini and S. + Ridella", + title = "Minimizing Multimodal Functions of Continuous + Variables with the Simulated Annealing Algorithm", + journal = acmtms, + volume = "13", + number = "13", + pages = "262--280", + month = sep, + year = "1987", +} + +@Article{Cortes04, + author = "C. Cortes and P. Haffner and M. Mohri", + title = "Rational Kernels: Theory and Algorithms", + journal = jmlr, + volume = "5", + pages = "1035--1062", + year = "2004", + OPTnumber = "", +} + +@Article{Cortes87, + author = "C. Cortes and A. Krogh and J. A. Hertz", + title = "Hierarchical Associative Networks", + journal = jpa, + volume = "20", + pages = "4449--4455", + year = "1987", +} + +@InProceedings{Cortes89, + author = "C. Cortes and J. A. Hertz", + booktitle = ijcnn, + title = "A Network System for Image Segmentation", + volume = "1", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "121--127", + year = "1989", +} + +@Article{Cortes95, + author = "Corinna Cortes and Vladimir Vapnik", + title = "Support Vector Networks", + journal = "Machine Learning", + volume = "20", + pages = "273--297", + year = "1995", +} + +@InProceedings{Cortesetal95a, + author = "C. Cortes and H. Drucker and D. Hoover and V. Vapnik", + booktitle = "Proc. 1st Intl. Conf. on Knowledge Discovery and Data + Mining", + title = "Capacity and Complexity Control in Predicting the + Spread Between Borrowing and Lending Interest Rates", + address = "Montreal (Canada)", + pages = "51--56", + year = "1995", +} + +@InProceedings{Cortesetal95b, + author = "C. Cortes and L. D. Jackel and W. P. Chiang", + booktitle = "Proc. 1st Intl. Conf. on Knowledge Discovery and Data + Mining", + title = "Limits on Learning Machine Accuracy Imposed by Data + Quality", + address = "Montreal (Canada)", + pages = "57--62", + year = "1995", +} + +@InProceedings{Cosi-92, + author = "P. Cosi and P. Frasconi and M. Gori and N. Griggio", + booktitle = "Proc. of the International Conference on Spoken + Language", + title = "Phonetic Recognition Experiments with Recurrent Neural + Networks", + address = "Banff (Canada)", + pages = "1335--1338", + month = oct, + year = "1992", +} + +@InProceedings{Cosnard+al-1991, + author = "M. Cosnard and J. C. Mignot and H. Paugam-Moisy", + booktitle = "Proceedings of the Second International Specialist + Seminar on the Design and Application of Parallel + Digital Processors, 1991", + title = "Implementations of Multilayer Neural Networks on + Parallel Architectures", + address = "Lisbon", + pages = "43--47", + month = apr, + year = "1991", +} + +@Article{Cosslett85, + author = "S. R. Cosslett and L-F. Lee", + title = "Serial correlation in discrete variable models", + journal = "Journal of Econometrics", + volume = "27", + pages = "79--97", + year = "1985", +} + +@Article{Cottrell86, + author = "M. Cottrell and J. C. Fort", + title = "A Stochastic Model of Retinotopy: {A} Self Organizing + Process", + journal = biocyb, + volume = "53", + pages = "405--411", + year = "1986", +} + +@InProceedings{Cottrell87, + author = "Garrison W. Cottrell and Paul Munro and David Zipser", + booktitle = "Ninth Annual Conference of the Cognitive Science + Society", + title = "Learning Internal Representations from Gray-Scale + Images: An Example of Extensional Programming", + publisher = "Lawrence Erlbaum, Hillsdale", + address = "Seattle 1987", + pages = "462--473", + year = "1987", +} + +@Book{Courant51, + author = "A. Courant and D. Hilbert", + title = "Methods of Mathematical Physics", + publisher = "Wiley Interscience, New York", + year = "1951", +} + +@Article{Cover65, + author = "T. M. Cover", + title = "Geometrical and Statistical Properties of Systems of + Linear Inequalities with Applications in Pattern + Recognition", + journal = ieeetec, + volume = "14", + pages = "326--334", + year = "1965", +} + +@Article{CoverHart67, + author = "T. M. Cover and P. E. Hart", + title = "Nearest Neighbor Pattern Classification", + journal = "IEEE Transactions on Information Theory", + volume = "13", + number = "1", + pages = "21--27", + year = "1967", +} + +@Article{Cowan88a, + author = "J. D. Cowan and D. H. Sharp", + title = "Neural Nets and Artificial Intelligence", + journal = daed, + volume = "117", + pages = "85--121", + year = "1988", +} + +@Article{Cowan88b, + author = "J. D. Cowan and D. H. Sharp", + title = "Neural Nets", + journal = qrb, + volume = "21", + pages = "365--427", + year = "1988", +} + +@InProceedings{Cox+Bridle89, + author = "S. Cox and J. S. Bridle", + booktitle = "Proc. IEEE Conf. on Acoustics, Speech and Signal + Processing", + title = "Unsupervised speaker adaptation by probabilistic + spectrum fitting", + organization = "British Telecom and RSRE", + year = "1989", +} + +@InProceedings{Cox+Bridle90, + author = "S. Cox and J. S. Bridle", + booktitle = "Proc. IEEE Conf. on Acoustics, Speech and Signal + Processing", + title = "Simultaneous Speaker Normalisation and Utterance + labelling Using {Bayesian}/Neural Net Techniques", + organization = "British Telecom and RSRE", + year = "1990", +} + +@Book{CoxCox94, + author = "Trevor F. Cox and Micheal {A. A}. Cox", + title = "Multidimensional Scaling", + publisher = "Chapman \& Hall", + address = "London", + year = "1994", +} + +@Book{Cox+Cox-2000, + author = "T. Cox and M. Cox", + title = "Multidimensional Scaling", + publisher = "Chapman \& Hall", + edition = 2, + address = "London", + year = "2000", +} + +@InProceedings{Cozman2003, + author = "F. Cozman and I. Cohen and M. Cirelo", + booktitle = ICML03, + editor = ICML03ed, + publisher = ICML03publ, + title = "Semi-Supervised Learning of Mixture Models", + year = "2003", +} + +@Article{Cragg54, + author = "B. G. Cragg and H. N. V. Temperley", + title = "The Organization of Neurones: {A} Cooperative + Analogy", + journal = EEGCN, + volume = "6", + pages = "85--92", + year = "1954", +} + +@Article{Cragg55, + author = "B. G. Cragg and H. N. V. Temperley", + title = "Memory: The Analogy with Ferromagnetic Hysteresis", + journal = brain, + volume = "78 II", + pages = "304--316", + year = "1955", +} + +@Article{Craven+Wahba79, + author = "P. Craven and G. Wahba", + title = "Smoothing noisy data with spline functions", + journal = "Numerical Mathematics", + volume = "31", + pages = "377--403", + year = "1979", +} + +@Article{Crick89, + author = "F. Crick", + title = "The Recent Excitement About Neural Networks", + journal = nature, + volume = "337", + pages = "129--132", + year = "1989", +} + +@Article{Crisanti86, + author = "A. Crisanti and D. J. Amit and H. Gutfreund", + title = "Saturation Level of the Hopfield Model for Neural + Network", + journal = eul, + volume = "2", + pages = "337--341", + year = "1986", +} + +@Article{Crisanti87, + author = "A. Crisanti and H. Sompolinsky", + title = "Dynamics of Spin Systems with Randomly Asymmetric + Bonds: Langevin Dynamics and a Spherical Model", + journal = prA, + volume = "36", + pages = "4922--4939", + year = "1987", +} + +@Book{Cristianini+Shawe-Taylor-2000, + author = "Nello Cristianini and John Shawe-Taylor", + title = "An Introduction to Support Vector Machines and other + kernel-based learning methods", + publisher = "Cambridge University Press", + address = "Cambridge, UK", + year = "2000", +} + +@InProceedings{Cristianini-2002, + author = "N. Cristianini and J. Shawe-Taylor and J. Kandola", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Spectral Kernel Methods for Clustering", + publisher = "{MIT} Press", + address = "Cambridge, MA", + year = "2002", +} + +@InProceedings{Cristianini02, + author = "N. Cristianini and J. Shawe-Taylor and A. Elisseeff + and J. Kandola", + title = "On Kernel-Target Alignment", + editor = NIPS14ed, + booktitle = NIPS14, + volume = "14", + pages = "367--373", + year = "2002", +} + +@InProceedings{Cristianini2002, + author = "N. Cristianini and J. Shawe-Taylor and J. Kandola", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Spectral Kernel Methods for Clustering", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2002", + original = "orig/AA16.ps", +} + +@Article{cucker+grigoriev99, + author = "Felipe Cucker and Dima Grigoriev", + title = "Complexity Lower Bounds for Approximation Algebraic + Computation Trees", + journal = "Journal of Complexity", + volume = "15", + number = "4", + pages = "499--512", + year = "1999", +} + +@TechReport{Cybenko88, + author = "G. Cybenko", + title = "Continuous Valued Neural Networks with Two Hidden + Layers Are Sufficient", + institution = "Department of Computer Science, Tufts University", + address = "Medford, MA", + year = "1988", +} + +@Article{Cybenko89, + author = "G. Cybenko", + title = "Approximation by Superpositions of a Sigmoidal + Function", + journal = mcss, + volume = "2", + pages = "303--314", + year = "1989", +} + +@InProceedings{Dahmen2000, + author = "J. Dahmen and D. Keysers and M. Pitz and H. Ney", + booktitle = "22nd Symposium of the German Association for Pattern + Recognition", + title = "Structured covariance matrices for statistical image + object recognition", + address = "Kiel, Germany", + year = "2000", +} + +@InProceedings{Dai95, + author = "H. Dai and J. M. Lina and B. Goulard and J. W. Thomson + and C. K. Scott", + booktitle = "1995 Robotic and Knowledge Based Sytems Workshop", + title = "An Expert Diagnostic System Introducing Wavelets + Analysis and Neural Network", + address = "St. Hubert, Canada", + pages = "", + year = "1995", +} + +@InProceedings{darken-moody91, + author = "Christian Darken and John Moody", + editor = NIPS3ed, + booktitle = NIPS3, + title = "Note on learning rate schedules for stochastic + optimization", + publisher = "Morgan Kaufmann, Palo Alto", + address = "Denver, CO", + pages = "832--838", + year = "1991", +} + +@Article{DarrochJ1972, + author = "J. N. Darroch and D. Ratcliff", + title = "Generalized iterative scaling for log-linear models", + journal = "Annals of Mathematical Statistics", + number = "43", + pages = "1470--1480", + year = "1972", +} + +@InProceedings{Das-nips93, + author = "S. Das and C. L. Giles and G. Z. Sun", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Using Prior Knowledge in an {NNPDA} to Learn + Context-Free Languages", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + year = "1993", +} + +@InProceedings{Das-nips94, + author = "S. Das and M. C. Mozer", + editor = NIPS6ed, + booktitle = NIPS6, + title = "A Unified Gradient-Descent/Clustering Architecture for + Finite State Machine Induction", + publisher = "Morgan Kaufmann", + year = "1994", +} + +@Article{daubechies90, + author = "Ingrid Daubechies", + title = "The Wavelet Transform, Time-Frequency Localization and + Signal Analysis", + journal = "IEEE Transaction on Information Theory", + volume = "36", + number = "5", + pages = "961--1005", + month = sep, + year = "1990", +} + +@article{daume09searn, + author = {Hal {Daum\'e III} and John Langford and Daniel Marcu}, + title = {Search-based Structured Prediction}, + year = {2009}, + booktitle = {Machine Learning Journal}, +} + +@InProceedings{Davis89, + author = "L. Davis", + editor = "J. D. Schaffer", + booktitle = "Proceedings of the Third International Conference on + Genetic Algorithms", + title = "Mapping neural networks into classifier systems", + publisher = "Morgan Kaufmann, San Mateo", + address = "Arlington 1989", + pages = "375--378", + year = "1989", +} + +@Article{davis94adaptive, + author = "G. Davis and S. Mallat and Z. Zhang", + title = "Adaptive time-frequency decompositions", + journal = "Optical Engineering", + volume = "33", + number = "7", + pages = "2183--2191", + month = jul, + year = "1994", +} + +@InProceedings{Dayan93, + author = "P. Dayan and G. E. Hinton", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Feudal Reinforcement Learning", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + year = "1993", +} + +@Article{Dayan95, + author = "Peter Dayan and Geoffrey E. Hinton and Radford Neal and + Rich Zemel", + title = "The {Helmholtz} machine", + journal = "Neural Computation", + volume = "7", + pages = "889--904", + year = "1995", +} + +@inproceedings{debiecristianini03, +author = "{de Bie}, T. and Cristianini, N.", +title = "Convex methods for transduction", +editor = NIPS16ed, +booktitle = NIPS16, +year = 2003, +} + +@article{debiecristianini06, +author = "{de Bie}, T. and Cristianini, N.", +title = "Fast {SDP} relaxations of graph cut +clustering, transduction, and other combinatorial problems", +journal = jmlr, +volume = 7, +year = 2006, +} + + +@TechReport{deRidder+Duin-2002, + author = {Dick {de Ridder} and Robert P. W. Duin}, + title = {Locally linear embedding for classification}, + number = {PH-2002-01}, + institution = {Pattern Recognition Group, Dept. of Imaging Science and Technology, + Delft University of Technology}, + address = {Delft, The Netherlands}, + year = 2002, +} + +@inproceedings{deRidder+al-2003, + author = {Dick {de Ridder} and Olga Kouropteva and Oleg Okun and Matti Pietik{\"a}inen and Robert P. W. Duin}, + title = {Supervised Locally Linear Embedding}, + booktitle = {ICANN}, + year = {2003}, + pages = {333-341}, + ee = {http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2714&spage=333}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + +@InProceedings{debollivier-gallinari-thiria-90, + author = "M. deBollivier and P. Gallinari and S. Thiria", + booktitle = "Proc. of the International Neural Network Conference + 90", + title = "Multi-module neural networks for classification", + address = "Paris", + pages = "777--780", + year = "1990", +} + +@Article{Decoste-2002, + author = "Dennis Decoste and Bernhard Sch{\"o}lkopf", + title = "Training invariant support vector machines", + journal = "Machine Learning", + volume = "46", + pages = "161--190", + year = "2002", +} + +@Article{Deerwester90, + author = "S. Deerwester and S. T. Dumais and G. W. Furnas and T. + K. Landauer and R. Harshman", + title = "Indexing by latent semantic analysis", + journal = "Journal of the American Society for Information + Science", + volume = "41", + number = "6", + pages = "391--407", + year = "1990", +} + +@Article{Dehaene87, + author = "S. Dehaene and J.-P. Changeux and J.-P. Nadal", + title = "Neural Networks That Learn Temporal Sequences by + Selection", + journal = PNAS, + volume = "84", + pages = "2727--2731", + year = "1987", +} + +@InProceedings{Delalleau+al-2005-short, + author = "Olivier Delalleau and Yoshua Bengio and Nicolas {Le Roux}", + editor = aistats05ed, + booktitle = aistats05, + title = "Efficient Non-Parametric Function Induction in + Semi-Supervised Learning", + pages = "96--103", + year = "2005", +} + +@InProceedings{DeLaTorreF2006, + author = "Fernando De la Torre Frade and Takeo Kanade", + booktitle = "International Conference on Machine Learning", + title = "Discriminative Cluster Analysis", + volume = "148", + publisher = "ACM Press", + address = "New York, NY, USA", + pages = "241--248", + month = jun, + year = "2006", +} + +@Article{Delgutte+Kiang84, + author = "B. Delgutte and N. Y. S. Kiang", + title = "Speech coding in the auditory nerve", + journal = jasa, + volume = "75", + number = "3", + pages = "866--907", + year = "1984", +} + +@Article{Delgutte80, + author = "B. Delgutte", + title = "Representation of speech-like sounds in the discharge + patterns of auditory nerve fibers", + journal = jasa, + volume = "68", + number = "3", + pages = "843--857", + year = "1980", +} + +@Misc{delve, + author = "C. Rasmussen and R. Neal and G. E. Hinton and D. van + Camp and Z. Ghahramani and R. Kustra and R. + Tibshirani", + title = "The {DELVE} Manual", + year = "1996", + note = "{DELVE} can be found at + http://www.cs.toronto.edu/\%7Edelve", +} + +@InProceedings{DeMers+Cottrell93, + author = "David DeMers and Garrison W. Cottrell", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Non-linear dimensionality reduction", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + pages = "580--587", + year = "1993", +} + +@InProceedings{Demichelis89, + author = "P. DeMichelis and L. Fissore and P. Laface and G. + Micca and E. Piccolo", + booktitle = icassp, + title = "On the Use of Neural Networks for Speaker Independent + Isolated Word Recognition", + address = "Glaskow (Scotland)", + year = "1989", +} + +@InProceedings{DeMori+Palakal85, + author = "R. De Mori and M. Palakal", + booktitle = "Proc. Ninth International Joint Conference on + Artificial Intelligence", + title = "On the use of taxonomy of time-frequency morphologies + for automatic speech recognition", + address = "Los Angeles, CA", + pages = "877--879", + year = "1985", +} + +@Article{DeMori85, + author = "R. De Mori and P. Laface and Y. Mong", + title = "Parallel algorithms for syllable recognition in + continuous speech", + journal = ieeetpami, + volume = "7", + pages = "56--69", + year = "1985", +} + +@Article{DeMori87, + author = "R. De Mori and L. Lam and M. Gilloux", + title = "Learning and plan refinement in a knowledge-based + system for automatic speech recognition", + journal = ieeetpami, + volume = "2", + pages = "289--305", + year = "1987", +} + +@InCollection{DeMori96, + author = "R. {De Mori} and F. Brugnara", + editor = "R. A. Cole and J. Mariani and H. Uszkoriet and A. + Zaenen and V. Zue", + booktitle = "Survey of the State of the Art in Human Language + Technology", + title = "{HMM} Methods in Speech Recognition", + publisher = "Cambridge University Press", + address = "http://www.cse.ogi.edu/CSLU/HLTsurvey/HLTsurvey.html", + pages = "24--34", + year = "1996", +} + +@Article{Dempster77, + author = "A. P. Dempster and N. M. Laird and D. B. Rubin", + title = "Maximum-likelihood from incomplete data via the {EM} + algorithm", + journal = "Journal of Royal Statistical Society B", + volume = "39", + pages = "1--38", + year = "1977", +} + +@InProceedings{denker-lecun-93, + author = "Yann {LeCun} and John S. Denker", + booktitle = "IEEE Workshop on the Physics of Computation", + title = "Natural versus Universal Probability Complexity, and + Entropy", + publisher = "IEEE", + pages = "122--127", + year = "1992", +} + +@InProceedings{Denker86, + author = "J. Denker", + editor = "J. S. Denker", + booktitle = snowbird, + title = "Neural Network Refinements and Extensions", + publisher = "American Institute of Physics, New York", + address = "Snowbird 1986", + pages = "121--128", + year = "1986", +} + +@Article{Denker87, + author = "J. Denker and D. Schwartz and B. Wittner and S. Solla + and R. Howard and L. Jackel and J. Hopfield", + title = "Large Automatic Learning, Rule Extraction, and + Generalization", + journal = cs, + volume = "1", + pages = "877--922", + year = "1987", +} + +@InProceedings{Denker91, + author = "J. S. Denker and Y. {LeCun}", + editor = NIPS3ed, + booktitle = NIPS3, + title = "Transforming neural-net output levels to probability + distributions", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + pages = "853--859", + year = "1991", +} + +@InProceedings{Denker94, + author = "J. Denker and C. J. C. Burges", + booktitle = "The Mathematics of Generalization: Proceedings of the + SFI/CNLS Workshop on Formal Approaches to Supervised + Learning", + title = "Image Segmentation and Recognition", + publisher = "Addison Wesley, ISBN 0-201-40985-2", + year = "1994", +} + +@Article{Deprit89, + author = "E. Deprit", + title = "Implementing Recurrent Back-Propagation on the + Connection Machine", + journal = "Neural Networks", + volume = "2", + number = "4", + pages = "295--314", + year = "1989", +} + +@ARTICLE{Derenyi94, + author = {{Der{\'e}nyi}, I. and {Geszti}, T. and {Gy{\"o}rgyi}, G.}, + title = "{Generalization in the programed teaching of a perceptron}", + journal = {Physical Review {E}}, + year = 1994, + month = "October", + volume = 50, + pages = {3192-3200}, + doi = {10.1103/PhysRevE.50.3192}, + adsurl = {http://adsabs.harvard.edu/abs/1994PhRvE..50.3192D}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} + +@Article{Derrida87, + author = "B. Derrida and E. Gardner and A. Zippelius", + title = "An Exactly Soluble Asymmetric Neural Network Model", + journal = eul, + volume = "4", + pages = "167--173", + year = "1987", +} + +@TechReport{Derthick84, + author = "M. Derthick", + title = "Variations on the {Boltzmann} Machine", + number = "CMU--CS--84--120", + institution = "Department of Computer Science, Carnegie Mellon + University", + address = "Pittsburgh, PA", + year = "1984", +} + +@inproceedings{deSaV93, + address = {San Francisco, CA}, + author = {de Sa, Virginia R. }, + editor = NIPS5ed, + booktitle = NIPS5, + citeulike-article-id = {350518}, + keywords = {multiview, semisupervised}, + pages = {112--119}, + posted-at = {2008-08-12 16:46:39}, + priority = {2}, + publisher = {Morgan Kaufmann Publishers}, + title = {Learning Classification with Unlabeled Data}, + year = {1993} +} + %url = {http://citeseer.ist.psu.edu/desa94learning.html}, + +@InProceedings{DeSieno88, + author = "D. DeSieno", + booktitle = icnn, + title = "Adding a Conscience to Competitive Learning", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "117--124", + year = "1988", +} + +@InProceedings{DeSilva+Tenenbaum-2003, + author = "V. {de Silva} and J. B. Tenenbaum", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Global Versus Local Methods in Nonlinear + Dimensionality Reduction", + publisher = "{MIT} Press", + address = "Cambridge, MA", + pages = "705--712", + year = "2003", +} + +@Book{Devaney89, + author = "R. L. Devaney", + title = "An Introduction to Chaotic Dynamical Systems", + publisher = "Addison-Wesley", + year = "1989", +} + +@Article{Devereux84, + author = "J. Devereux and P. Haeberli and O. Smithies", + title = "A comprehensive set of sequence analysis programs for + the {VAX}", + journal = "Nucleic Acids Research", + volume = "12", + pages = "387--395", + year = "1984", +} + +@Book{Devijver82, + author = "P. A. Devijver and J. Kittler", + title = "Pattern Recognition: {A} Statistical Approach", + publisher = "Prentice-Hall", + address = "London", + year = "1982", +} + +@Article{Devijver87, + author = "J. Voisin and P. A. Devijver", + title = "An application of the multiedit-condensing technique + to the reference selection problem in a print + recognition system", + journal = "Pattern Recognition", + volume = "20", + number = "5", + pages = "465--474", + year = "1987", +} + +@Article{deVries92, + author = "B. \mbox{de Vries} and J. C. Principe", + title = "The gamma model -- {A} new neural net model for + temporal processing", + journal = nn, + volume = "5", + pages = "565--576", + year = "1992", +} + +@Book{Devroye-book96, + author = "L. Devroye and L. Gyröfi and G. Lugosi", + title = "A Probabilistic Theory of Pattern Recognition", + publisher = "Springer-Verlag", + year = "1996", +} + +@Article{Devroye88, + author = "Luc Devroye", + title = "Automatic Pattern Recognition: {A} Study of the + Probability of Error", + journal = "IEEE Transactions on Pattern Analysis and Machine + Intelligence", + volume = "10", + number = "4", + pages = "530--543", + month = jul, + year = "1988", +} + +@Book{Diamantras-96, + author = "K. I. Diamantras and S. Y. Kung", + title = "Principal Component Neural Networks: theory and applications", + publisher = "Wiley", + year = "1996", +} + +@Article{Diebold+Mariano95, + author = "F. X. Diebold and R. S. Mariano", + title = "Comparing Predictive Accuracy", + journal = "Journal of Business and Economic Statistics", + volume = "13", + number = "3", + pages = "253--263", + year = "1995", +} + +@InCollection{Diebold93, + author = "F. X. Diebold and J. H. Lee and G. C. Weinbach", + editor = "C. Hargreaves", + booktitle = "Nonstationary Time Series Analysis and Cointegration", + title = "Regime switching with time-varying transition + probabilities", + publisher = "Oxford University Press", + address = "Oxford", + year = "1993", +} + +@InCollection{Diebold93b, + author = "F. X. Diebold and G. Rudebusch and E. Sichel", + editor = "J. H. Stock and M. W. Watson", + booktitle = "Business Cycles, Indicators, and Forecasting", + title = "Further evidence on business-cycle duration + dependence", + publisher = "University of Chicago Press", + address = "Chicago", + year = "1993", +} + +@Article{DieboldKilian, + author = "F. X. Diebold and L. Kilian", + title = "Measuring Predictability:Theory and Macroeconomics + Applications", + journal = "NBER technical working paper", + volume = "213", + year = "1997", +} + +@InCollection{DieboldLopez, + author = "F. X. Diebold and J. A. Lopez", + editor = "G. S. Maddala and C. R. Rao", + booktitle = "Handbook of Statistics, Vol. 14", + title = "Forecast Evaluation and Combination", + publisher = "Elsevier Science", + pages = "241--268", + year = "1996", +} + +@Article{Diederich87, + author = "S. Diederich and M. Opper", + title = "Learning of Correlated Patterns in Spin-Glass Networks + by Local Learning Rules", + journal = prl, + volume = "58", + pages = "949--952", + year = "1987", +} + +@InProceedings{Diegert90, + author = "C. Diegert", + booktitle = "Proceedings of IEEE-IJCNN90", + title = "Out-of-core Backpropagation", + volume = "II", + address = "San Diego, CA", + pages = "97--103", + year = "1990", +} + +@Article{dietterich, + author = "T. G. Dietterich", + title = "Approximate Statistical Tests for Comparing Supervised + Classification Learning Algorithms", + journal = "Neural Computation", + volume = "10", + number = "7", + pages = "1895--1924", + year = "1998", +} + +@Article{Dietterich1998, + author = "Thomas G. Dietterich", + title = "Approximate Statistical Test For Comparing Supervised + Classification Learning Algorithms", + journal = "Neural Computation", + volume = "10", + number = "7", + pages = "1895--1923", + year = "1998", + URL = "citeseer.ist.psu.edu/dietterich98approximate.html", +} + +@Article{dietterich97, + author = "Thomas G. Dietterich and Richard H. Lathrop and Tomas + Lozano-Perez", + title = "Solving the Multiple Instance Problem with + Axis-Parallel Rectangles", + journal = "Artificial Intelligence", + volume = "89", + number = "1-2", + pages = "31--71", + year = "1997", +} + + +@Article{Diggle+Gratton-1984, + author = "P. Diggle and R. Gratton", + title = "Monte Carlo Methods of Inference for Implicit Statistical Models", + journal = "Journal of the Royal Statistical Society. Series B (Methodological)", + volume = "46", + number = "2", + pages = "193--227", + year = "1984", + publisher = "Blackwell Publishing for the Royal Statistical Society", +} + + +@InCollection{Doi-2006, + author = "Eizaburo Doi and Doru C. Balcan and Michael S. + Lewicki", + editor = NIPS18ed, + booktitle = NIPS18, + title = "A Theoretical Analysis of Robust Coding over Noisy + Overcomplete Channels", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "307--314", + year = "2006", +} + +@InProceedings{DoiE2007, + author = "Eizaburo Doi and Michael S. Lewicki", + editor = NIPS19ed, + booktitle = NIPS19, + title = "A Theory of Retinal Population Coding.", + publisher = "MIT Press", + pages = "353--360", + year = "2007", +} + +@book{Doidge-2007, + author = {Doidge, Norman}, + howpublished = {Paperback}, + isbn = {0143113100}, + month = {December}, + publisher = {Penguin Group}, + title = {The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science}, + year = {2007} +} + +@InCollection{DollarP2007, + author = "Piotr Doll\'ar and Serge Belongie and Vincent Rabaud", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Learning to Traverse Image Manifolds", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "361--368", + year = "2007", +} + +@inproceedings{ DollarP2007b, + author = "P. Doll\'ar and V. Rabaud and S. Belongie", + title = "Non-Isometric Manifold Learning: Analysis and an Algorithm", + booktitle = ICML07, + editor = ICML07ed, + publisher = ICML07publ, + month = "June", + year = "2007" +} + +@TechReport{Donoho+Carrie-03, + author = "D. L. Donoho and C. Grimes", + title = "Hessian Eigenmaps: new locally linear embedding + techniques for high-dimensional data", + number = "2003-08", + institution = "Dept. Statistics, Stanford University", + year = "2003", +} + +@article{Donoho-2006, + author = {David Donoho}, + title = {Compressed sensing}, + journal = {{IEEE} Transactions on Information Theory}, + volume = 52, + number = 4, + pages = {1289--1306}, + year = 2006, +} + +@Book{Dorigo98, + author = "M. Dorigo and M. Colombetti", + title = "Robot shaping: {An} experiment in behavior + engineering", + publisher = "MIT Press/Bradford Books", + year = "1998", +} + +@book{Doucet+al-2001, + editor = "A. Doucet and N. {de Freitas} and N. Gordon", + title = "Sequential Monte Carlo Methods in Practice", + publisher = "Springer-Verlag", + year = "2001", +} + +@TechReport{Doya93bif, + author = "K. Doya", + title = "Bifurcations of Recurrent Neural Networks in Gradient + Learning", + institution = "Department of Biology, University of California", + address = "La Jolla, CA", + year = "1993", + note = "Submitted", +} + +@TechReport{Doya93un, + author = "K. Doya", + title = "Universality of Fully-Connected Recurrent Neural + Networks", + institution = "Department of Biology, University of California", + address = "La Jolla, CA", + year = "1993", + note = "Submitted", +} + +@Article{Doyle+Snell-1984, + author = "Peter G. Doyle and J. Laurie Snell", + title = "Random Walks and Electric Networks", + journal = "Mathematical Association of America", + year = "1984", +} + +@Book{Draper81, + author = "N. R. Draper and H. Smith", + title = "Applied Regression Analysis", + publisher = "John Wiley and Sons", + year = "1981", +} + +@InProceedings{Driancourt91, + author = "X. Driancourt and L. Bottou and P. Gallinari", + booktitle = ijcnn, + title = "Learning Vector Quantization, Multi-Layer Perceptron + and Dynamic Programming: Comparison and Cooperation", + volume = "2", + pages = "815--819", + year = "1991", + OPTaddress = "Seattle WA", +} + +@InProceedings{Drucker93, + author = "H. Drucker and R. Schapire and R. Simard", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Improving performance in neural networks using a + boosting algorithm", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "42--49", + year = "1993", +} + +@Article{Drucker93b, + author = "H. Drucker and R. Schapire and R. Simard", + title = "Boosting performance in neural networks", + journal = "International Journal of Pattern Recognition and + Artificial Intelligence", + pages = "61--76", + year = "1993", + note = "Special Issue on Applications of Neural Networks to + Pattern Recognition (I. Guyon Ed.)", +} + +@article{Duane-1987, + author = {S. Duane and A.D. Kennedy and B. Pendleton and D. Roweth}, + title = {Hybrid {M}onte {C}arlo}, + journal = {Phys. Lett. {B}}, + volume = 195, + pages = {216--222}, + year = 1987, +} + +@Book{Duda-Hart, + author = "R. O. Duda and P. E. Hart", + title = "Pattern Classification and Scene Analysis", + publisher = "Wiley", + address = "New York", + year = "1973", +} + +@Book{Duda-Hart-2000, + author = "R. O. Duda and P. E. Hart and D. G. Stork", + title = "Pattern Classification, Second Edition", + publisher = "Wiley and Sons", + address = "New York", + year = "2001", +} + +@Book{Duda73, + author = "R. O. Duda and P. E. Hart", + title = "Pattern Classification and Scene Analysis", + publisher = "Wiley", + address = "New York", + year = "1973", +} + +@Article{Dugas+al-2003, + author = "C. Dugas and Y. Bengio and N. Chapados and P. Vincent + and G. Denoncourt and C. Fournier", + title = "Statistical Learning Algorithms Applied to Automobile + Insurance Ratemaking", + journal = "CAS Forum", + volume = "1", + number = "1", + pages = "179--214", + month = "Winter", + year = "2003", +} + +@TechReport{Dugas00, + author = "C. Dugas and O. Bardou and Y. Bengio", + title = "Analyses Empiriques sur des Transactions d'options", + number = "1176", + institution = "D\'epartment d'informatique et de Recherche + Op\'erationnelle, Universit\'e de Montr\'eal", + address = "Montr\'eal, Qu\'ebec, Canada", + year = "2000", +} + +@InProceedings{Dugas01, + author = "C. Dugas and Y. Bengio and F. B\'elisle and C. + Nadeau", + editor = NIPS13ed, + booktitle = NIPS13, + title = "Incorporating Second-Order Functional Knowledge for Better Option Pricing", + publisher = "{MIT} Press", + pages = "472--478", + year = "2001", +} + +%%InProceedings{Bengio2000, +%% author = "Y. Bengio", +%% booktitle = icjnn +%% title = "Incorporating Second-Order Functional Knowledge for Better Option Pricing", +%% volume = "V", +%% pages = "79--84", +%% year = "2000", +%%} + +@inproceedings{Bengio2000, + title={Probabilistic neural network models for sequential data}, + author={Bengio, Y.}, + booktitle=ijcnn, + year={2000}, + volume={5}, + pages={79-84}, + abstract={Artificial neural networks (ANN) can be incorporated into probabilistic models. In this paper we review some of the approaches which have been proposed to incorporate them into probabilistic models of sequential data, such as hidden Markov models (HMM). We also discuss new developments and new ideas in this area, in particular how ANN can be used to model high-dimensional discrete and continuous data to deal with the curse of dimensionality and how the ideas proposed in these models could be applied to statistical language modeling to represent longer-term context than allowed by trigram models, while keeping word-order information}, + keywords={computational linguistics, hidden Markov models, neural nets, probabilityANN, HMM, hidden Markov models, longer-term context, probabilistic models, probabilistic neural network models, sequential data, statistical language modeling, trigram models, word-order information}, + doi={10.1109/IJCNN.2000.861438}, +} + +@InProceedings{Bengio-hyper-2000, + author = "Yoshua Bengio", + booktitle = ijcnn, + title = "Continuous Optimization of Hyper-Parameters", + volume = "V", + pages = "305--310", + year = "2000", +} + +@InProceedings{Ghosn2000, + author = "J. Ghosn and Y. Bengio", + booktitle = ijcnn, + title = "Bias Learning, Knowledge Sharing", + volume = "I", + pages = "9--14", + year = "2000", +} + +@Article{Durbin87, + author = "R. Durbin and D. Willshaw", + title = "An Analogue Approach to the Travelling Salesman + Problem Using an Elastic Net Method", + journal = nature, + volume = "326", + pages = "689--691", + year = "1987", +} + +@MastersThesis{Dzwonczyk91, + author = "M. Dzwonczyk", + title = "Quantitative failure models of feed-forward neural + networks", + school = "MIT", + year = "1991", +} + +@Book{econometric-G-97, + author = "W. H. Greene", + title = "Econometric Analysis 3rd edition", + publisher = "Prentice Hall, Inc.", + year = "1997", +} + +@Article{efficient-KW-82, + author = "W. W. Krasker and R. R. Welsch", + title = "Efficient Bounded-Influence Regression Estimation", + journal = "J. Am. Stat. Asso.", + volume = "77", + pages = "595--604", + year = "1982", +} + +@Book{Efron+Tibs93, + author = "Bradley Efron and Robert J. Tibshirani", + title = "An introduction to the Bootstrap", + publisher = "Chapman and Hall", + address = "New York", + year = "1993", +} + +@TechReport{eigen-TR2, + author = "Yoshua Bengio and Pascal Vincent and Jean-Fran{\cc}ois + Paiement and Olivier Delalleau and Marie Ouimet and + Nicolas {Le Roux}", + title = "Spectral Clustering and Kernel {PCA} are Learning + Eigenfunctions", + number = "1239", + institution = "D\'epartement d'informatique et recherche + op\'erationnelle, Universit\'e de Montr\'eal", + year = "2003", +} + +@InProceedings{Eisner96, + author = "J. Eisner", + booktitle = "COLING-96", + title = "Three new probabilistic models for dependency parsing: + an exploration", + address = "Copenhagen, Denmark", + pages = "340--345", + year = "1996", +} + +@Article{EladAharon2006, + author = "Michael Elad and Michal Aharon", + title = "Image Denoising Via Sparse and Redundant + Representations Over Learned Dictionaries", + journal = "IEEE Transactions on Image Processing", + volume = "15", + number = "12", + pages = "3736--3745", + month = dec, + year = "2006", + bibsource = "http://www.visionbib.com/bibliography/image-proc131.html#TT8737", +} + +@InProceedings{ElHihi+Bengio-nips8-small, + author = "S. ElHihi and Y. Bengio", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Hierarchical Recurrent Neural Networks for Long-Term + Dependencies", + publisher = "MIT Press, Cambridge, MA", + pages = "493--499", + year = "1996", +} + +@InProceedings{ellis+poliner-icassp2007, + author = "D. Ellis and G. Poliner", + editor = "", + booktitle = "{Proceedings of the 2007 International Conference on + Acoustics, Speech and Signal Processing (ICASSP)}", + title = "Identifying Cover Songs with Chroma Features and + Dynamic Programming", + publisher = "IEEE Signal Processing Society", + pages = "", + year = "2007", +} + +@Article{Elman88, + author = "J. L. Elman and D. Zipser", + title = "Learning the Hidden Structure of Speech", + journal = jasa, + volume = "83", + pages = "1615--1626", + year = "1988", +} + +@Article{Elman88Jasa88, + author = "J. L. Elman and D. Zipser", + title = "Learning the Hidden Structure of Speech", + journal = "Journal of the Acoustical Society of America", + volume = "83", + year = "1988", +} + +@Article{Elman90, + author = "J. L. Elman", + title = "Finding Structure in Time", + journal = "Cognitive Science", + volume = "14", + pages = "179--211", + year = "1990", +} + +@Article{Elman93, + author = "Jeffrey L. Elman", + title = "Learning and development in neural networks: {The} + importance of starting small.", + journal = "Cognition", + volume = "48", + pages = "781--799", + year = "1993", + url = "http://www3.isrl.uiuc.edu/~junwang4/langev/localcopy/pdf/elman93cognition.pdf" +} + +@TechReport{ElmanTR88, + author = "J. L. Elman", + title = "Finding Structure in Time", + number = "CRL TR 8801", + institution = "Center for Research in Language, University of + California at San Diego", + year = "1988", +} + +@TechReport{EM-tech-rep, + author = "Y. Bengio and P. Frasconi", + title = "Learning Sequential Behavior: an {EM} Approach", + institution = "Universit\`a di Firenze", + year = "1994", + note = "(in preparation)", +} + +@Article{Engel-Mannor-Meir-2003, + author = "Y. Engel and S. Mannor and R. Meir", + title = "The kernel recursive least squares algorithm", + journal = "IEEE Trans. Sig. Proc.", + volume = "52", + number = "8", + pages = "2275--2285", + year = "2004", +} + +@Article{erhan06qsar, + author = "Dumitru Erhan and Pierre-Jean L'Heureux and Shi Yi Yue + and Yoshua Bengio", + title = "Collaborative Filtering on a Family of Biological + Targets.", + journal = "Journal of Chemical Information and Modeling", + volume = "46", + number = "2", + pages = "626--635", + year = "2006", +} + +@techreport{Erhan-09-visualization-tr, + author = {Dumitru Erhan and Yoshua Bengio and Aaron Courville and Pascal Vincent}, + title = "Visualizing Higher-Layer Features of a Deep Network", + institution = "Universit\'{e} de Montr\'{e}al", + number = "1341", + year = 2009, +} + +@inproceedings{Erhan2009-small, + author = {Dumitru Erhan and Pierre-Antoine Manzagol and Yoshua Bengio and Samy Bengio and Pascal Vincent}, + booktitle = "Proceedings of AISTATS'2009", + title = "The Difficulty of Training Deep Architectures and the +Effect of Unsupervised Pre-Training", + year = 2009, +} + +@inproceedings{Erhan2009-short, + author = {D. Erhan and P.-A. Manzagol and Y. Bengio and S. Bengio and P. Vincent}, + booktitle = "AI \& Stat.'2009", + title = "The Difficulty of Training Deep Architectures and the +Effect of Unsupervised Pre-Training", + year = 2009, +} + +@Book{EverittB1981, + author = {B. S. Everitt and D. J. Hand}, + title = {Finite Mixture Distributions}, + publisher = {Chapman and Hall}, + address = {London}, + year = {1981}, + series = {Monographs on Statistics and Applied Probability}, +} + +@InProceedings{evgeniou04, + author = "Theodoros Evgeniou and Massimiliano Pontil", + booktitle = "KDD '04: Proceedings of the 2004 ACM SIGKDD + international conference on Knowledge discovery and + data mining", + title = "Regularized multi--task learning", + publisher = "ACM Press", + address = "New York, NY, USA", + pages = "109--117", + year = "2004", + location = "Seattle, WA, USA", +} + +@Article{evgeniou05, + author = "Theodoros Evgeniou and Charles A. Micchelli and + Massimiliano Pontil", + title = "Learning Multiple Tasks with Kernel Methods", + journal = jmlr, + volume = "6", + pages = "615--637", + month = apr, + year = "2005", +} + +@InProceedings{Fahlman83, + author = "S. E. Fahlman and G. E. Hinton and T. J. Sejnowski", + booktitle = "Proceedings of the National Conference on Artificial + Intelligence AAAI-83", + title = "Massively parallel architectures for {AI}: {NETL}, + Thistle, and {Boltzmann} machines", + year = "1983", +} + +@InProceedings{Fahlman89, + author = "S. E. Fahlman", + editor = "D. Touretzky and G. Hinton and T. Sejnowski", + booktitle = cmss88, + title = "Fast-Learning Variations on Back-Propagation: An + Empirical Study", + publisher = "Morgan Kaufmann, San Mateo", + address = "Pittsburg 1988", + pages = "38--51", + year = "1989", +} + +@InProceedings{Fahlman90, + author = "Scott E. Fahlman and Christian Lebiere", + editor = NIPS2ed, + booktitle = NIPS2, + title = "The Cascade-Correlation Learning Architecture", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "524--532", + year = "1990", +} + +@InProceedings{Fahlman90-small, + author = "S. E. Fahlman and C. Lebiere", + booktitle = "NIPS 2", + title = "The Cascade-Correlation Learning Architecture", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "524--532", + year = "1990", +} + +@Article{Fama+French, + author = "E. F. Fama and K. R. French", + title = "Permanent and Temporary Components of Stock Prices", + journal = "Journal of Political Economy", + volume = "96", + number = "2", + pages = "246--273", + year = "1988", +} + +@Book{Fant60, + author = "G. Fant", + title = "Acoustic Theory of Speech Production", + publisher = "Mouton and Co.", + year = "1960", +} + +@Book{Fant73, + author = "G. Fant", + title = "Speech Sounds and Features", + publisher = "MIT Press, Cambridge, MA", + year = "1973", +} + +@Article{Farhat85, + author = "N. H. Farhat and D. Psaltis and A. Prata and E. Paek", + title = "Optical Implementation of the Hopfield Model", + journal = applopt, + volume = "24", + year = "1985", +} + +@Article{Farhat87, + author = "N. H. Farhat", + title = "Optoelectronic Analogs of Self-Programming Neural + Nets: Architectures and Methods for Implementing Fast + Stochastic Learning by Simulated Annealing", + journal = applopt, + volume = "26", + pages = "5093--5103", + year = "1987", +} + +@Article{Farmer87, + author = "D. Farmer and J. Sidorowich", + title = "Predicting Chaotic Time Series", + journal = prl, + volume = "59", + pages = "845--848", + year = "1987", +} + +@InCollection{Farmer88, + author = "D. Farmer and J. Sidorowich", + editor = "W. C. Lee", + booktitle = "Evolution, Learning, and Cognition", + title = "Exploiting Chaos to Predict the Future and Reduce + Noise", + publisher = "World Scientific", + address = "Singapore", + pages = "277--330", + year = "1988", +} + +@inproceedings{Fei-Fei.2004, + author = {Fei-Fei, Li and Fergus, Rod and Perona, Pietro}, + doi = {10.1109/CVPR.2004.109}, + journal = {Computer Vision and Pattern Recognition Workshop, 2004 Conference on}, + keywords = {categorization, computer-vision, generative-models}, + pages = {178}, + posted-at = {2007-08-10 12:20:22}, + priority = {3}, + title = {Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories}, + url = {http://dx.doi.org/10.1109/CVPR.2004.109}, + year = {2004} +} + +@Article{Feldman82, + author = "J. A. Feldman and D. H. Ballard", + title = "Connectionist Models and Their Properties", + journal = cogsci, + volume = "6", + year = "1982", +} + +@Article{feldman96, + author = "Jerome A. Feldman and George Lakoff and David Bailey + and Srini Narayanan and Terry Regier and Andreas + Stolcke", + title = "{L0} - The First Five Years of an Automated Language + Acquisition Project", + journal = "Artificial Intelligence Review", + volume = "10", + number = "1-2", + pages = "103--129", + year = "1996", + URL = "citeseer.ist.psu.edu/feldman96first.html", +} + +@Book{Fellbaum1996, + author = "Christine Fellbaum", + title = "{WordNet}: An Electronic Lexical Database and Some of + its Application", + publisher = "MIT Press", + year = "1996", +} + +@Misc{Fellbaum1998, + author = "Christiane Fellbaum Editor", + title = "{WordNet}: An Electronic Lexical Database", + URL = "citeseer.nj.nec.com/fellbaum98wordnet.html", +} + +@Book{Feller68, + author = "W. Feller", + title = "An Introduction to Probability Theory and Its + Applications", + volume = "1", + publisher = "Wiley", + address = "New York", + year = "1968", +} + +@InProceedings{Feng-Statlog, + author = "C. Feng and A. Sutherland and R. King and S. Muggleton + and R. Henery", + booktitle = "Proceedings of the Fourth International Workshop on + Artificial Intelligence and Statistics", + title = "Comparison of machine learning classifiers to + statistics and neural networks", + pages = "41--52", + year = "1993", +} + +@article{Field-1994, + author = {David J. Field}, + title = {What is the goal of sensory coding?}, + journal = {Neural Computation}, + volume = {6}, + number = {4}, + year = {1994}, + issn = {0899-7667}, + pages = {559--601}, + doi = {http://dx.doi.org/10.1162/neco.1994.6.4.559}, + publisher = {MIT Press}, + address = {Cambridge, MA, USA}, +} + +@article{Fisher-1936, + author = {Ronald A. Fisher}, + journal = {Annals of Eugenics}, + pages = {179--188}, + title = {The use of multiple measurements in taxonomic problems}, + volume = {7}, + year = {1936} +} + +@Book{Fischer90, + author = "K. H. Fischer and J. A. Hertz", + title = "Spin Glasses", + publisher = "Cambridge University Press", + address = "Cambridge", + year = "1990", +} + +@TechReport{Fix+Hodges-51, + author = "E. Fix and J. L. Hodges", + title = "Discriminatory analysis, non-parametric + discrimination, consistency properties", + number = "Report 21-49-004", + institution = "{USAF} School of Aviation Medicine, Randolph Field, + Texas", + year = "1951", +} + +@Article{FixHodges51, + author = "Evelyn Fix and Joseph L. Hodges Jr.", + title = "Discriminatory Analysis: Nonparametric discrimination: + Consistency properties", + journal = "USAF School of Aviation Medecine", + volume = "4", + pages = "261--279", + year = "1951", +} + +@Article{FixHodges52, + author = "Evelyn Fix and Joseph L. Hodges Jr.", + title = "Discriminatory Analysis: Nonparametric discrimination: + Small sample performance", + journal = "USAF School of Aviation Medecine", + volume = "11", + pages = "280--322", + year = "1952", +} + +@MastersThesis{Flammia91, + author = "G. Flammia", + title = "Speaker Independent Consonant Recognition in + Continuous Speech with Distinctive Phonetic Features", + school = "McGill University, School of Computer Science", + year = "1991", +} + +@Book{Flanagan72, + author = "J. L. Flanagan", + title = "Speech Analysis, Synthesis, and Perception", + publisher = "Springer--Verlag", + address = "Berlin", + edition = "2nd", + year = "1972", +} + +@Book{Fletcher87, + author = "Roger Fletcher", + title = "Practical Methods of Optimization", + publisher = "Wiley", + address = "New York", + edition = "Second", + year = "1987", +} + +@InCollection{FleuretF2006, + author = "Francois Fleuret and Gilles Blanchard", + editor = NIPS18ed, + booktitle = NIPS18, + title = "Pattern Recognition from One Example by Chopping", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "371--378", + year = "2006", +} + +@InProceedings{Foldiak89, + author = "P. F{\"o}ldi\'ak", + booktitle = ijcnn, + title = "Adaptive Network for Optimal Linear Feature + Extraction", + volume = "1", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "401--405", + year = "1989", +} + +@Article{Foldiak91, + author = "P. F{\"o}ldi\'ak", + title = "Learning Invariance from Transformation Sequences", + journal = "Neural Computation", + volume = "3", + number = "2", + pages = "194--200", + year = "1991", +} + +@TechReport{Fontaine, + author = "T. Fontaine", + title = "{GRAD}-{CM2}: {A} Data-parallel Connectionist Network + Simulator", + number = "MS-CIS-92-55/LINC LAB 232", + institution = "University of Pennsylvania", + month = jul, + year = "1992", + OPTnote = "", +} + +@Article{Foster+George94, + author = "D. Foster and E. George", + title = "The risk inflation criterion for multiple regression", + journal = "Annals of Statistics", + volume = "22", + pages = "1947--1975", + year = "1994", +} + +@PhdThesis{Foster2002, + author = "George Foster", + title = "Text Prediction for Translators", + school = "Dept. IRO, Université de Montréal", + year = "2002", +} + +@incollection{Fox-2009, + title = {Nonparametric Bayesian Learning of Switching Linear Dynamical Systems}, + author = {Emily Fox and Erik Sudderth and Michael Jordan and Alan Willsky}, + booktitle = NIPS21, + editor = NIPS21ed, + pages = {457--464}, + year = {2009} +} + +@Article{Fralick67, + author = {Stanley C. Fralick}, + title = {Learning to Recognize Patterns without a Teacher}, + journal = {IEEE Transactions on Information Theory}, + year = 1967, + volume = 13, + pages = {57-64} +} + +@InProceedings{Franzini87, + author = "M. A. Franzini", + booktitle = "Proceedings of the Ninth Annual Conference of the IEEE + Engineering in Medicine and Biology Society", + title = "Speech Recognition with Back Propagation", + publisher = "IEEE, New York", + address = "Boston 1987", + pages = "1702--1703", + year = "1987", +} + +@InProceedings{Franzini90, + author = "M. A. Franzini and K. F. Lee and A. Waibel", + booktitle = icassp, + title = "Connectionist {Viterbi} Training: a New Hybrid Method + for Continuous Speech Recognition", + address = "Albuquerque, NM", + pages = "425--428", + year = "1990", +} + +@InProceedings{Frasconi-icnn93, + author = "P. Frasconi and M. Gori and A. Tesi", + booktitle = icnn, + title = "Backpropagation for Linearly Separable Patterns: a + Detailed Analysis", + publisher = "IEEE Press", + address = "S. Francisco CA", + pages = "1818--1822", + year = "1993", +} + +@InProceedings{Frasconi-ijcnn91, + author = "P. Frasconi and M. Gori and M. Maggini and G. Soda", + booktitle = ijcnn, + title = "A Unified Approach for Integrating Explicit Knowledge + and Learning by Example in Recurrent Networks", + pages = "811--816", + year = "1991", + OPTaddress = "Seattle WA", +} + +@Article{Frasconi-ijmpC93, + author = "P. Frasconi and M. Gori and G. Soda", + title = "Daphne: Data Parallelism Neural Network Simulator", + journal = "Int. Journal of Modern Physics C", + volume = "4", + number = "1", + pages = "17--28", + year = "1993", + note = "Special Issue: ``Science on the Connection Machine''", +} + +@InProceedings{Frasconi-milano, + author = "P. Frasconi and M. Gori and G. Soda", + booktitle = "Computational Intelligence 90", + title = "Recurrent Networks for Continuous Speech Recognition", + publisher = "Elsevier", + address = "Milano (Italy)", + year = "1990", +} + +@MastersThesis{Frasconi-msthesis, + author = "P. Frasconi", + title = "Progetto e realizzazione di un simulatore per reti + neurali ricorrenti e implementazione di prototipi per + il riconoscimento vocale in tempo reale", + school = "Universit\`a di Firenze", + year = "1990", + note = "(in Italian)", +} + +@Article{Frasconi-nc92, + author = "P. Frasconi and M. Gori and G. Soda", + title = "Local Feedback Multi-Layered Networks", + journal = nc, + volume = "4", + number = "1", + pages = "120--130", + year = "1992", +} + +@PhdThesis{Frasconi-PhD, + author = "Paolo Frasconi", + title = "Reti Ricorrenti ed Elaborazione Adattiva di Sequenze", + school = "Universit\`a di Firenze", + address = "Italy", + year = "1994", + note = "(in Italian)", +} + +@InCollection{Frasconi-pinn93, + author = "P. Frasconi and M. Gori and A. Tesi", + editor = "Omid Omidvar", + booktitle = "Progress in Neural Networks", + title = "Successes and Failures of Backpropagation: a + Theoretical Investigation", + publisher = "Ablex Publishing", + year = "1993", +} + +@InProceedings{Frasconi-spie93, + author = "Paolo Frasconi and Marco Gori", + editor = "D. Ruck", + booktitle = "Proc. Conf. Science of Artificial Neural Networks II", + title = "Multilayered networks and the {C}-{G} uncertainty + principle", + volume = "SPIE-1966", + organization = "International Society for Optical Engineering (SPIE)", + address = "Orlando, FL", + year = "1993", +} + +@TechReport{Frasconi-TR92, + author = "P. Frasconi and M. Gori and G. Soda", + title = "Injecting Nondeterministic Finite State Automata into + Recurrent Neural Networks", + number = "DSI-RT15/92", + institution = "Universit\`a di Firenze (Italy)", + month = aug, + year = "1992", +} + +@Unpublished{Frasconi-unp94, + author = "P. Frasconi and Y. Bengio", + title = "An {EM} Approach to Grammatical Inference", + year = "1994", + note = "Submitted to the 12-th {\em International Conference + on Pattern Recognition}", + OPTannote = "", +} + +@InProceedings{Frasconi-v91, + author = "P. Frasconi and M. Gori and M. Maggini and G. Soda", + editor = "E. Caianiello", + booktitle = "Proc. of the 4th Italian Workshop on Parallel + Architectures and Neural Networks", + title = "Learning Automata with Sigmoidal Networks", + publisher = "World Scientific Pub", + address = "Vietri (Italy)", + pages = "69--77", + year = "1991", +} + +@InProceedings{Frasconi90, + author = "P. Frasconi and M. Gori and G. Soda", + editor = "E. Caianiello", + booktitle = "Proc. of the 3rd Italian Workshop on Parallel + Architectures and Neural Networks", + title = "Recurrent Networks with Activation Feedback", + publisher = "World Scientific Pub", + address = "Vietri (Italy)", + pages = "329--335", + year = "1990", +} + +@InProceedings{Frasconi97, + author = "P. Frasconi and M. Gori and A. Sperduti", + booktitle = "Proc. Int. Joint Conf. on Artificial Intelligence", + title = "On the Efficient Classification of Data Structures by + Neural Networks", + year = "1997", +} + +@Article{Frasconi-kde93, + author = "P. Frasconi and M. Gori and M. Maggini and G. Soda", + title = "Unified Integration of Explicit Rules and Learning by + Example in Recurrent Networks", + journal = ieeetrkde, + year = "1993", + note = "(in press)", +} + +@Article{Frean90, + author = "M Frean", + title = "The Upstart Algorithm: {A} Method for Constructing and + Training Feedforward Neural Networks", + journal = nc, + volume = "2", + pages = "198--209", + year = "1990", +} + +@TechReport{Freund+Haussler-94, + author = "Yoav Freund and David Haussler", + title = "Unsupervised learning of distributions on binary + vectors using two layer networks", + number = "UCSC-CRL-94-25", + institution = "University of California, Santa Cruz", + year = "1994", +} + +@InProceedings{Freund+Haussler92, + author = "Yoav Freund and David Haussler", + editor = NIPS4ed, + booktitle = NIPS4, + title = "A fast and exact learning rule for a restricted class + of {Boltzmann} machines", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "912--919", + year = "1992", +} + +@Article{Freund-Schapire-98, + author = "Yoav Freund and Robert E. Schapire", + title = "Adaptive Game Playing using Multiplicative Weights", + journal = "Games and Economic Behavior", + year = "1998", +} + +@InProceedings{Freund1995, + author = "Yoav Freund and Robert E. Schapire", + booktitle = "Proceedings of the Second European Conference on + Computational Learning Theory", + title = "A decision-theoretic generalization of on-line + learning and an application to boosting", + publisher = "Springer-Verlag", + pages = "23--37", + year = "1995", + ISBN = "3-540-59119-2", +} + +@TechReport{freund94, + author = "Y. Freund and D. Haussler", + title = "Unsupervised learning of distributions of binary + vectors using two layer networks", + number = "CRL-94-25", + institution = "UCSC", + year = "1994", +} + +@Unpublished{Freund97, + author = "Y. Freund and R. E. Schapire and P. Bartlett and W. S. + Lee", + title = "Boosting the margin: {A} new explanation for the + effectiveness of voting methods", + year = "1997", + note = "Presented at the Machines that Learn Conference, + Snowbird, Utah", +} + +@InProceedings{Frey96, + author = "Brendan J. Frey and Geoffrey E. Hinton and Peter Dayan", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Does the wake-sleep algorithm learn good density estimators?", + publisher = "MIT Press, Cambridge, MA", + pages = "661--670", + year = "1996", +} + +@InProceedings{Frey-Hinton96, + author = "B. J. Frey and G. E. Hinton", + booktitle = "Proceedings of the Data Compression Conference", + title = "Free Energy Coding", + publisher = "IEEE Computer Society Press", + address = "Los Alamitos, CA", + pages = "", + year = "1997", +} + +@Book{Frey98, + author = "Brendan J. Frey", + title = "Graphical models for machine learning and digital + communication", + publisher = "{MIT} Press", + year = "1998", +} + +@InProceedings{frey99estimating, + author = "B. J. Frey and N. Jojic", + booktitle = cvpr99, + title = "Estimating Mixture Models of Images and Inferring + Spatial Transformations Using the {EM} Algorithm", + pages = "416--422", + year = "1999", + URL = "citeseer.ist.psu.edu/frey99estimating.html", +} + +@InProceedings{FreyUAI00, + author = "Brendan Frey and Nebojsa Jojic", + booktitle = UAI00, + title = "Learning Graphical Models of Images, Videos and Their + Spatial Transformations", + publisher = "Morgan Kaufmann", + address = "San Francisco, CA", + pages = "184--1", + year = "2000", +} + +@Article{Friedman+Fisher-99, + author = "J. H. Friedman and N. I. Fisher", + title = "Bump hunting in high-dimensional data", + journal = "Statistics and Computing", + volume = "9", + number = "2", + pages = "123--143", +} + +@Article{Friedman+Hastie+Tibshirani:AdaBoost-theory, + author = "J. Friedman and T. Hastie and R. Tibshirani", + title = "Additive Logistic Regression: a Statistical View of + Boosting", + journal = "The Annals of Statistics", + volume = "28", + pages = "307--337", + year = "2000", +} + +@Article{Friedman-2001, + author = "J. Friedman", + title = "Greedy function approximation: a gradient boosting + machine", + journal = "Annals of Statistics", + volume = "29", + pages = "1180", + year = "2001", +} + +@Book{Friedman71, + author = "A. Friedman", + title = "Advanced Calculus", + publisher = "Holt, Rinehart and Winston", + address = "New York, NY", + year = "1971", +} + +@article{Friedman+Tukey-1974, + author = {J. H. Friedman and J. W. Tukey}, + title = {A Projection Pursuit Algorithm for Exploratory Data Analysis}, + journal = {IEEE Transactions on Computers}, + volume = {23}, + number = {9}, + year = {1974}, + issn = {0018-9340}, + pages = {881--890}, + doi = {http://dx.doi.org/10.1109/T-C.1974.224051}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, +} + +@Article{Friedman87, + author = "J. H. Friedman", + title = "Exploratory projection pursuit", + journal = "Journal of the American Statistical Association", + volume = "92", + pages = "249--266", + year = "1987", +} + +@Article{Friedman91, + author = "J. H. Friedman", + title = "Multivariate adaptive regression splines", + journal = "The Annals of Statistics", + volume = "19", + pages = "1--141", + year = "1991", +} + +@TechReport{friedman94flexible, + author = "J. Friedman", + title = "Flexible metric nearest neighbor classification", + number = "113", + institution = "Stanford University Statistics Department", + year = "1994", +} + +@TechReport{Friedman98, + author = "J. Friedman and T. Hastie and R. Tibshirani", + title = "Additive logistic regression: {A} statistical view of + boosting", + institution = "Stanford University", + address = "CA, USA", + year = "1998", +} + +@Misc{friedman99greedy, + author = "J. Friedman", + title = "Greedy Function Approximation: a Gradient Boosting + Machine", + year = "1999", + note = "IMS 1999 Reitz Lecture, February 24, 1999, Dept. of + Statistics, Stanford University", +} + +@InProceedings{Friess98, + author = "T. Friess and N. Cristianini and C. Campbel", + booktitle = "Proceedings of the Fifteenth International Conference + on Machine Learning", + title = "The Kernel-Adatron: a Fast and Simple Learning + Procedure for Support Vector Machines", + pages = "188--196", + year = "1998", +} + +@InProceedings{Fritzke94, + author = "B. Fritzke", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Supervised learning with growing cell structures", + publisher = "Morgan Kaufmann", + year = "1994", +} + +@InProceedings{fs-lmcpa-98, + author = "Yoav Freund and Robert E. Schapire", + booktitle = "Proc. 11th Annu. Conf. on Comput. Learning Theory", + title = "Large margin classification using the perceptron + algorithm", + publisher = "ACM Press, New York, NY", + pages = "209--217", + year = "1998", +} + +@Article{fs-ppr-81, + author = "J. H. Friedman and W. Stuetzle", + title = "Projection Pursuit Regression", + journal = "J. American Statistical Association", + volume = "76", + number = "376", + pages = "817--823", + month = dec, + year = "1981", + comment = "Good description of projection pursuit", +} + +@Article{Fu86, + author = "Y. Fu and P. W. Anderson", + title = "Application of Statistical Mechanics to {NP}-Complete + Problems in Combinatorial Optimization", + journal = jpa, + volume = "19", + pages = "1605--1620", + year = "1986", +} + +@InProceedings{Fukumizu96, + author = "K. Fukumizu", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Active Learning in Multilayer Perceptrons", + publisher = "MIT Press, Cambridge, MA", + year = "1996", +} + +@Article{Fukumizu+Amari-2000, + author = "Kenji Fukumizu and {Shun-ichi} Amari", + title = "Local Minima and Plateaus in Hierarchical Structures of Multilayer Perceptrons", + journal = "Neural Networks", + volume = "13", + number = "3", + pages = "317--327", + year = "2000", +} + +@Article{Fukushima75, + author = "K. Fukushima", + title = "Cognitron: {A} Self-Organizing Multilayered Neural + Network", + journal = biocyb, + volume = "20", + pages = "121--136", + year = "1975", +} + +@Article{Fukushima80, + author = "K. Fukushima", + title = "Neocognitron: {A} Self-Organizing Neural Network Model + for a Mechanism of Pattern Recognition Unaffected by + Shift in Position", + journal = biocyb, + volume = "36", + pages = "193--202", + year = "1980", +} + +@Article{Fukushima82, + author = "K. Fukushima and S. Miyake", + key = "Fukushima", + title = "Neocognitron: {A} new algorithm for pattern + recognition tolerant of deformations and shifts in + position", + journal = "Pattern Recognition", + volume = "15", + pages = "455--469", + year = "1982", +} + +@Article{Fukushima83, + author = "K. Fukushima and S. Miyake and T. Ito", + title = "Neocognitron: {A} Neural Network Model for a Mechanism + of Visual Pattern Recognition", + journal = ieeesmc, + volume = "13", + year = "1983", +} + +@Article{Funahashi89, + author = "K. Funahashi", + title = "On the approximate realization of continuous mappings + by neural networks", + journal = "Neural Networks", + volume = "2", + pages = "183--192", + year = "1989", +} + +@Article{Funahashi93, + author = "Ken-Ichi Funahashi and Yuichi Nakamura", + title = "Approximation of Dynamical Systems by Continuous Time + Recurrent Neural Networks", + journal = nn, + volume = "6", + pages = "801--806", + year = "1993", +} + +@InProceedings{Fung-Crawford90, + author = "R. M. Fung and S. L. Crawford", + booktitle = "Eighth National Conference on Artificial Intelligence, + Boston, Massachusetts, American Association for + Artificial Intelligence", + title = "A system for induction of probabilistic models", + pages = "762--779", + year = "1990", +} + +@TechReport{Galland+Hinton89, + author = "C. C. Galland and G. E. Hinton", + title = "Deterministic learning in networks with asymmetric + connectivity", + number = "CRG-TR-89-6", + institution = "Department of Computer Science, University of + Toronto", + address = "Toronto, Ontario", + year = "1989", +} + +@InProceedings{Gallant86, + author = "S. I. Gallant", + booktitle = "Eighth International Conference on Pattern + Recognition", + title = "Optimal Linear Discriminants", + publisher = "IEEE, New York", + address = "Paris 1986", + pages = "849--852", + year = "1986", +} + +@Misc{gallant90perceptron-based, + author = "S. Gallant", + title = "Perceptron-based learning algorithms", + year = "1990", + text = "S. Gallant, Perceptron-based learning algorithms, IEEE + Trans. Neural Networks 1, 179 (1990).", +} + +@InProceedings{Gallinari87, + author = "Patrick Gallinari and Yann {LeCun} and Sylvie Thiria and + Francoise Fogelman-Soulie", + booktitle = "Proceedings of COGNITIVA 87", + title = "Memoires associatives distribuees", + address = "Paris, La Villette", + year = "1987", +} + +@InProceedings{Gallinari88, + author = "P. Gallinari and S. Thiria and F. Fogelman-Souli\'e", + booktitle = "Proc. International Conference on Neural Networks + '88", + title = "Multilayer perceptrons and data analysis", + publisher = "IEEE", + pages = "391--399", + year = "1988", +} + +@InCollection{Gao-Goodman-Miao-2001, + author = "J. Gao and J. Goodman and J. Miao", + booktitle = "Computational Linguistics and Chinese Language + Processing", + title = "The Use of Clustering Techniques for Asian Language + Modeling", + volume = "6", + number = "1", + pages = "27--60", + year = "2001", +} + +@TechReport{Garcia-Perron95, + author = "R. Garcia and P. Perron", + title = "An analysis of the real interest rate under regime + shift", + number = "95s-5", + institution = "CIRANO", + address = "Montreal, Quebec, Canada", + year = "1995", +} + +@Article{Garcia-Perron96, + author = "R. Garcia and P. Perron", + title = "An analysis of the real interest rate under regime + shift", + journal = "The Review of Economics and Statistics", + year = "1996", +} + +@TechReport{Garcia-Schaller95, + author = "R. Garcia and H. Schaller", + title = "Are the effects of monetary policy asymmetric", + number = "95s-6", + institution = "CIRANO", + address = "Montreal, Quebec, Canada", + year = "1995", +} + +@TechReport{Garcia95, + author = "R. Garcia", + title = "Asymptotic null distribution of the likelihood ratio + test in Markov switching models", + number = "95s-7", + institution = "CIRANO", + address = "Montreal, Quebec, Canada", + year = "1995", +} + +@TechReport{Garcia98, + author = "R. Garcia and R. Gen\c{c}ay", + title = "{Pricing and Hedging Derivative Securities with Neural + Networks and a Homogeneity Hint}", + number = "98s-35", + institution = "CIRANO", + address = "Montr\'eal, Qu\'ebec, Canada", + year = "1998", +} + +@Article{Gardner87, + author = "E. Gardner", + title = "Maximum Storage Capacity in Neural Networks", + journal = eul, + volume = "4", + pages = "481--485", + year = "1987", +} + +@Article{Gardner88a, + author = "E. Gardner", + title = "The Space of Interactions in Neural Network Models", + journal = jpa, + volume = "21", + pages = "257--270", + year = "1988", +} + +@Article{Gardner88b, + author = "E. Gardner and B. Derrida", + title = "Optimal Storage Properties of Neural Network Models", + journal = jpa, + volume = "21", + pages = "271--284", + year = "1988", +} + +@Article{Gardner89a, + author = "E. Gardner and B. Derrida", + title = "Three Unfinished Works on the Optimal Storage Capacity + of Networks", + journal = jpa, + volume = "22", + pages = "1983--1994", + year = "1989", +} + +@Article{Gardner89b, + author = "E. Gardner and H. Gutfreund and I. Yekutieli", + title = "The Phase Space of Interactions in Neural Networks + with Definite Symmetry", + journal = jpa, + volume = "22", + pages = "1995--2008", + year = "1989", +} + +@Book{Garey79, + author = "M. R. Garey and D. S. Johnson", + title = "Computers and Intractability: {A} Guide to the Theory + of {NP}-Completeness", + publisher = "Freeman", + address = "New York", + year = "1979", +} + +@InCollection{GarriguesP2008, + author = "Pierre Garrigues and Bruno Olshausen", + editor = NIPS20ed, + booktitle = NIPS20, + title = "Learning Horizontal Connections in a Sparse Coding + Model of Natural Images", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "505--512", + year = "2008", +} + +@InCollection{GarriguesP2008-small, + author = "Pierre Garrigues and Bruno Olshausen", + booktitle = "NIPS'20", + title = "Learning Horizontal Connections in a Sparse Coding + Model of Natural Images", + year = "2008", +} + +@Article{Gartner03, + author = "T. G{\"a}rtner", + title = "A survey of kernels for structured data", + journal = "ACM SIGKDD Explorations Newsletter", + volume = "5", + number = "1", + pages = "49--58", + year = "2003", +} + +@InProceedings{Gauvain:2003:icassp, + author = "Jean-Luc Gauvain and L. Lamel and Holger Schwenk and + G. Adda and L. Chen and F.\ Lef\`evre", + booktitle = icassp, + title = "Conversational Telephone Speech Recognition", + volume = "1", + pages = "212--215", + year = "2003", +} + +@InProceedings{Gaynier93, + author = "R. J. Gaynier and T. Downs", + booktitle = "IEEE International Conference on Neural Networks", + title = "A Method of Training Multi-layer Networks with + Heaviside Characteristics Using Internal + Representations", + address = "San Francisco, CA", + pages = "1812--1817", + year = "1993", +} + +@InProceedings{GehlerP2006, + author = "Peter V. Gehler and Alex D. Holub and Max Welling", + booktitle = ICML06, + editor = ICML06ed, + publisher = ICML06publ, + title = "The rate adapting poisson model for information + retrieval and object recognition", + address = "New York, NY, USA", + pages = "337--344", + year = "2006", + ISBN = "1-59593-383-2", + doi = "http://doi.acm.org/10.1145/1143844.1143887", + location = "Pittsburgh, Pennsylvania", +} + +@Article{Geman84, + author = {Geman, Stuart and Geman, Donald}, + title = "Stochastic Relaxation, Gibbs Distributions, and the + {Bayesian} Restoration of Images", + doi = {10.1080/02664769300000058}, + journal = ieeetpami, + volume = "6", + keywords = {annealing, mrf, simulated}, + month = {November}, + pages = {721--741}, + url = {http://dx.doi.org/10.1080/02664769300000058}, + year = "1984", +} + +@Article{Geman92, + author = "S. Geman and E. Bienenstock and R. Doursat", + title = "Neural Networks and the Bias/Variance Dilemma", + journal = nc, + volume = "4", + number = "1", + pages = "1--58", + year = "1992", +} + +@Article{Genest-Zideck-86, + author = "C. Genest and J. V. Zideck", + title = "Combining probability distributions: {A} critique and + an annotated bibliography", + journal = "Statistical Science", + volume = "1", + pages = "114--148", + year = "1986", +} + +@article{Geng+al-2005, + author = {Xin Geng and De-Chuan Zhan and Zhi-Hua Zhou}, + title = {Supervised nonlinear dimensionality reduction for visualization and classification}, + journal = {IEEE Transactions on Systems, Man, and Cybernetics, Part B}, + volume = {35}, + number = {6}, + year = {2005}, + pages = {1098-1107}, + ee = {http://dx.doi.org/10.1109/TSMCB.2005.850151}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + +@Article{Geszti87, + author = "T. Geszti and F. P\'azm\'andi", + title = "Learning Within Bounds and Dream Sleep", + journal = jpa, + volume = "20", + pages = "L1299--L1303", + year = "1987", +} + +@Book{Geszti90, + author = "T. Geszti", + title = "Physical Models of Neural Networks", + publisher = "World Scientific", + address = "Singapore", + year = "1990", +} + +@Article{Geweke1989, + author = "J. Geweke", + title = "Bayesian inference in econometric models using Monte + carlo integration", + journal = "Econometrica", + volume = "57", + pages = "1317--1339", + year = "1989", +} + +@InCollection{Gha94, + author = "Z. Ghahramani", + booktitle = "Proceedings of the 1993 Connectionist Models Summer + School", + title = "Solving inverse problems using an {EM} approach to + density estimation", + publisher = "Erlbaum", + address = "Hillsdale, NJ", + year = "1994", +} + +@InProceedings{ghabea00, + author = "Z. Ghahramani and M. J. Beal", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Variational inference for {Bayesian} mixtures of + factor analysers", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2000", + URL = "citeseer.nj.nec.com/article/ghahramani00variational.html", +} + +@TechReport{ghahramani96em, + author = "Z. Ghahramani and G. E. Hinton", + title = "The {EM} Algorithm for Mixtures of Factor Analyzers", + number = "CRG-TR-96-1", + institution = "Dpt. of Comp. Sci., Univ. of Toronto", + month = jan, + year = "1996", + URL = "citeseer.nj.nec.com/ghahramani97em.html", +} + +@TechReport{GhaJor93, + author = "Z. Ghahramani and M. I. Jordan", + title = "Function approximation via density estimation", + type = "Computational Cognitive Science", + number = "TR 9304", + institution = "MIT", + address = "Cambridge, MA", + year = "1993", +} + +@InProceedings{Gherrity89, + author = "M. Gherrity", + booktitle = ijcnn, + title = "A Learning Algorithm for Analog, Fully Recurrent + Neural Networks,", + publisher = "IEEE Press", + address = "Washington D.C.", + pages = "643--644", + month = jun, + year = "1989", +} + +@Article{Ghosh+Hwang-1989, + author = "J. Ghosh and K. Hwang", + title = "Mapping Neural Networks onto Message-Passing + Multicomputers", + journal = "Journal of Parallel and Distributed Computing", + volume = "6", + number = "2", + publisher = "Academic Press", + pages = "291--330", + year = "1989", +} + +@Article{Ghosn2003, + author = "J. Ghosn and Y. Bengio", + title = "Bias Learning, Knowledge Sharing", + journal = "{IEEE} Transactions on Neural Networks", + volume = "14", + pages = "748--765", + month = jul, + year = "2003", + issue = "4", +} + +@TechReport{Ghysel93, + author = "E. Ghysel", + title = "A time series model with periodic stochastic regime + switching", + number = "C.R.D.E. Discussion paper 1093", + institution = "C.R.D.E., Universite de Montreal", + address = "Montreal, Quebec, Canada", + year = "1993", +} + +@book{Giarratano+Riley-2004, + author = {Giarratano, Joseph C. and Riley, Gary D. }, + howpublished = {Hardcover}, + isbn = {0534384471}, + month = {October}, + posted-at = {2008-05-19 22:17:30}, + priority = {2}, + publisher = {{Course Technology}}, + edition = {Fourth}, + title = {Expert Systems: Principles and Programming}, + url = {http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0534384471}, + year = {2004} +} + + +@Article{Giles86, + author = "Y. C. Lee and G. Doolen and H. H. Chen and G. Z. Sun + and T. Maxwell and H. Y. Lee and C. L. Giles", + title = "Machine Learning Using a Higher Order Correlation + Network", + journal = "Physica D", + volume = "2", + number = "1-3", + pages = "276", + year = "1986", +} + +@article{giles:1987, + author = {C. Lee Giles and Tom Maxwell}, + journal = {Applied Optics}, + keywords = {}, + number = {23}, + pages = {4972}, + publisher = {OSA}, + title = {Learning, Invariance, and Generalization in High-Order Neural Networks}, + volume = {26}, + year = {1987}, + url = {http://ao.osa.org/abstract.cfm?URI=ao-26-23-4972}, +} + +@InProceedings{Giles90, + author = "C. L. Giles and G. Z. Sun and H. H. Chen and Y. C. Lee + and D. Chen", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Higher Order Recurrent Networks \& Grammatical + Inference", + publisher = "Morgan Kaufmann Publishers", + address = "San Mateo, CA", + pages = "380--387", + year = "1990", +} + +@InProceedings{Giles-nnsp92, + author = "C. L. Giles and C. W Omlin", + editor = "Kung and Fallside and Sorenson and Kamm", + booktitle = "Neural Networks for Signal Processing II, Proceedings + of the 1992 IEEE workshop", + title = "Inserting Rules into Recurrent Neural Networks", + publisher = "IEEE Press", + pages = "13--22", + year = "1992", +} + +@Article{Giles94, + author = "C. L. Giles and C. W. Omlin", + title = "Extraction, Insertion and Refinement of Symbolic Rules + in Dynamically-Driven Recurrent Neural Networks", + journal = "Connection Science", + pages = "", + year = "1994", +} + +@Article{Giles-nc92, + author = "C. L. Giles and C. B. Miller and D. Chen and G. Z. Sun + and H. H. Chen and Y. C. Lee", + title = "Learning and Extracting Finite State Automata with + Second-Order Recurrent Neural Networks", + journal = nc, + volume = "4", + number = "3", + pages = "393--405", + year = "1992", +} + +@Book{Gill81, + author = "P. E. Gill and W. Murray and M. H. Wright", + title = "Practical Optimization", + publisher = "Academic Press", + year = "1981", +} + +@InProceedings{Gillman+Sipser94, + author = "David Gillman and Michael Sipser", + booktitle = colt94, + title = "Inference and minimization of hidden Marko chains", + publisher = "ACM", + pages = "147--158", + year = "1994", +} + +@Book{Gilmore-74, + author = "R. Gilmore", + title = "{Lie} groups, {Lie} algebras and some of their + applications", + publisher = "Wiley", + address = "New-York", + year = "1974", +} + +@InProceedings{Gingras-Bengio-Nadeau-2000, + author = "F. Gingras and Y. Bengio and C. Nadeau", + editor = "", + booktitle = "Computational Finance 2000", + title = "On Out-of-Sample Statistics for Time-Series", + publisher = "", + location = "London, U.K.", + pages = "", + year = "2000", +} + +@InProceedings{chapados+bengio-2000, + author = "N. Chapados and Y. Bengio", + editor = "", + booktitle = "Computational Finance 2000", + title = "{VaR}-based Asset Allocation using Neural Networks", + publisher = "", + pages = "", + year = "2000", +} + +@InProceedings{Pigeon+Bengio-99, + author = "S. Pigeon and Y. Bengio", + editor = "", + booktitle = "Proceedings of the Data Compression Conference, DCC'1999", + title = "Binary Pseudowavelets and Application to Bilevel Image Processing", + publisher = "", + pages = "", + year = "1999", +} + +@InProceedings{Girard+Paugam-Moisy-1994, + author = "D. Girard and H\'{e}l\`{e}ne Paugam-Moisy", + booktitle = "Proceedings of the {IFIP} {WG10.3} Working Conference + on Applications in Parallel and Distributed Computing", + title = "Strategies of Weight Updating for Parallel + Back-propagation", + publisher = "North-Holland Publishing Co.", + address = "Amsterdam, The Netherlands", + pages = "335--336", + year = "1994", + ISBN = "0-444-81870-7", +} + +@InProceedings{Girju+al-2003, + author = "Roxana Girju and Adriana Badulescu and Dan Moldovan", + booktitle = "NAACL '03: Proceedings of the 2003 Conference of the + North American Chapter of the Association for + Computational Linguistics on Human Language + Technology", + title = "Learning semantic constraints for the automatic + discovery of part-whole relations", + publisher = "Association for Computational Linguistics", + address = "Morristown, NJ, USA", + pages = "1--8", + year = "2003", + location = "Edmonton, Canada", +} + +@Article{Girolami-2001, + author = "M. Girolami", + title = "Orthogonal series density estimation and the kernel + eigenvalue problem", + journal = "Neural Computation", + volume = "14", + number = "3", + pages = "669--688", + year = "2001", +} + +@Misc{girosi97an, + author = "F. Girosi", + title = "An equivalence between sparse approximation and + Support Vector Machines", + year = "1997", + text = "F. Girosi. An equivalence between sparse approximation + and Support Vector Machines. A.I. Memo 1606, MIT + Artificial Intelligence Laboratory, 1997. (available at + the URL: + http://www.ai.mit.edu/people/girosi/svm.html).", +} + +@Article{Glauber63, + author = "R. J. Glauber", + title = "Time-Dependent Statistics of the Ising Model", + journal = jmp, + volume = "4", + pages = "294--307", + year = "1963", +} + +@Book{GLM-book-89, + author = "P. McCullagh and J. Nelder", + title = "Generalized Linear Models", + publisher = "Chapman and Hall", + address = "London", + year = "1989", +} + +@InCollection{GlobersonA2006, + author = "Amir Globerson and Sam Roweis", + editor = NIPS18ed, + booktitle = NIPS18, + title = "Metric Learning by Collapsing Classes", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "451--458", + year = "2006", +} + +@Book{Gluck90, + author = "M. A. Gluck and D. E. Rumelhart", + title = "Neuroscience and connectionist theory", + publisher = "Lawrence Erlbaum, London", + year = "1990", +} + +@Article{Godin89, + author = "C. Godin and P. Lockwood", + title = "{DTW} Schemes for Continuous Speech Recognition: {A} + Unified view", + journal = cspla, + volume = "3", + pages = "169--198", + year = "1989", +} + +@book{Gold+Morgan-1999, + author = {Gold, Ben and Morgan, Nelson}, + howpublished = {Hardcover}, + isbn = {0471351547}, + month = {July}, + publisher = {Wiley}, + title = {Speech and Audio Signal Processing: Processing and Perception of Speech and Music}, + year = {1999} +} + +@Book{Goldberg89, + author = "D. E. Goldberg", + title = "Genetic Algorithms in Search, Optimization, and + Machine Learning", + publisher = "Addison-Wesley", + address = "Reading", + year = "1989", +} + +@Article{Goldfeld73, + author = "S. M. Goldfeld and R. M. Quandt", + title = "A Markov model for switching regressions", + journal = "Journal of Econometrics", + volume = "1", + pages = "3--16", + year = "1973", +} + +@TechReport{Goldhor85, + author = "R. S. Goldhor", + title = "Representation of consonants in the peripheral + auditory system: {A} modeling study of the + correspondance between response properties and phonetic + features", + number = "505", + institution = "RLE.", + publisher = "MIT Press, Cambridge, MA", + year = "1985", +} + +@Article{Golomb90, + author = "D. Golomb and N. Rubin and H. Sompolinsky", + title = "Willshaw Model: Associative Memory with Sparse Coding + and Low Firing Rates", + journal = prA, + volume = "41", + pages = "1843--1854", + year = "1990", +} + +@Book{Golub+VanLoan-1996, + author = "Gene H. Golub and Charles F. Van Loan", + title = "Matrix Computations", + howpublished = "Paperback", + publisher = "{The Johns Hopkins University Press}", + month = oct, + year = "1996", + ISBN = "0-8018-5414-8", +} + +@TechReport{Goodman-LM-2001, + author = "Joshua Goodman", + title = "A Bit of Progress in Language Modeling", + number = "MSR-TR-2001-72", + institution = "Microsoft Research", + address = "Redmond, Washington", + year = "2001", +} + +@InProceedings{Goodman2001, + author = "J. Goodman", + booktitle = icassp, + title = "Classes for Fast Maximum Entropy Training", + address = "Utah", + year = "2001", +} + +@InProceedings{Gori-ijcnn89, + author = "M. Gori and Y. Bengio and R. \mbox{De Mori}", + booktitle = ijcnn, + title = "{BPS}: {A} Learning Algorithm for Capturing the + Dynamical Nature of Speech", + publisher = "IEEE, New York", + address = "Washington D.C.", + pages = "643--644", + year = "1989", +} + +@InProceedings{Gori-nimes89, + author = "M Gori", + booktitle = "Proceedings of Neuro-Nimes", + title = "An Extension of {BPS}", + address = "Nimes (France)", + pages = "83--93", + year = "1989", +} + +@Article{Gori-pami91, + author = "M. Gori and A. Tesi", + title = "On the problem of local minima in Backpropagation", + journal = ieeetpami, + volume = "PAMI-14", + number = "1", + pages = "76--86", + year = "1992", +} + +@TechReport{Gori-tr94, + author = "M. Gori and M. Maggini and G. Soda", + title = "Insertion of Finite State Automata into Recurrent + Radial Basis Function Networks", + number = "DSI-17/93", + institution = "Universit\`a di Firenze (Italy)", + year = "1993", + note = "(submitted)", + OPTannote = "", +} + +@InProceedings{GoriNimes, + author = "M. Gori", + booktitle = "Proceedings of Neuro-Nimes", + title = "An Extension of {BPS}", + address = "Nimes (France)", + pages = "83--93", + month = nov, + year = "1989", +} + +@Article{Gorman88a, + author = "R. P. Gorman and T. J. Sejnowski", + title = "Analysis of Hidden Units in a Layered Network Trained + to Classify Sonar Targets", + journal = nn, + volume = "1", + pages = "75--89", + year = "1988", +} + +@Article{Gorman88b, + author = "R. P. Gorman and T. J. Sejnowski", + title = "Learned Classification of Sonar Targets Using a + Massively-Parallel Network", + journal = ieeetassp, + volume = "36", + pages = "1135--1140", + year = "1988", +} + +@Unpublished{Gorse94, + author = "D. Gorse and J. G. Taylor and T. G. Clarkson", + title = "A pulse-based reinforcement algorithm for learning + continuous functions", + year = "1994", + note = "Submitted to WCNN '94 San Diego", +} + +@Article{Goudreau-trnn93, + author = "M. W. Goudreau and C. L. Giles and S. T. Chakradhar + and D. Chen", + title = "First-order vs. second-order single layer recurrent + neural networks", + journal = ieeetrnn, + year = "1993", + note = "(in press)", +} + +@Article{Goudreau93tb, + author = "M. W. Goudreau and C. L. Giles and S. T. Chakradhar + and D. Chen", + title = "First-Order Vs. Second-Order Single Layer Recurrent + Neural Networks", + journal = "IEEE Transactions on Neural Networks", + year = "1993", +} + +@inproceedings{Gould+al:NIPS09, + author = {S. Gould and T. Gao and D. Koller}, + title = {Region-based Segmentation and Object Detection}, + booktitle = "Advances in Neural Information Processing Systems (NIPS 2009)", + year = 2009, +} + +@Article{goutte97, + author = "C. Goutte", + title = "Note on free lunches and cross-validation", + journal = "Neural Computation", + volume = "9", + number = "6", + pages = "1053--1059", + year = "1997", +} + +@Article{Gower-68, + author = "J. C. Gower", + title = "Adding a point to vector diagrams in multivariate + analysis", + journal = "Biometrika", + volume = "55", + number = "3", + pages = "582--585", + year = "1968", +} + +@InProceedings{Graepel2000, + author = "Thore Graepel and Ralf Herbrich and John + Shawe-Taylor", + booktitle = "Thirteenth Annual Conference on Computational Learning + Theory, 2000", + title = "Generalization error bounds for sparse linear + classifiers", + publisher = "Morgan Kaufmann", + year = "2000", + note = "in press", +} + +@InProceedings{Graepel99, + author = "T. Graepel and R. Herbrich and P. Bollmann-Sdorra and + K. Obermayer", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Classification on Pairwise Proximity Data", + year = "1999", +} + +@InProceedings{graf-90a, + author = "H. P. Graf and D. Henderson", + booktitle = "ISSCC Digest", + title = "A Reconfigurable {CMOS} Neural Network", + organization = "ISSCC", + year = "1990", +} + +@InProceedings{Graf86, + author = "H. P. Graf and L. D. Jackel and R. E. Howard and B. + Straughn and J. S. Denker and W. Hubbard and D. M. + Tennant and D. Schwartz", + editor = "J. S. Denker", + booktitle = snowbird, + title = "{VLSI} Implementation of a Neural Network Memory with + Several Hundreds of Neurons", + publisher = "American Institute of Physics, New York", + address = "Snowbird 1986", + pages = "182--187", + year = "1986", +} + +@InProceedings{Graf88, + author = "D. H. Graf and W. R. LaLonde", + booktitle = icnn, + title = "A Neural Controller for Collision-Free Movement of + General Robot Manipulators", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "77--84", + year = "1988", +} + +@InProceedings{Graf92, + author = "H. P. Graf and C. R. Nohl and J. Ben", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Image segmentation with networks of variable scales", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + pages = "480--487", + year = "1992", +} + +@InProceedings{Grandvalet98a, + author = "Y. Grandvalet", + editor = "L. Niklasson and M. Boden and T. Ziemske", + booktitle = "ICANN'98", + title = "Least absolute shrinkage is equivalent to quadratic + penalization", + volume = "1", + publisher = "Springer", + pages = "201--206", + year = "1998", + series = "Perspectives in Neural Computing", +} + +@InProceedings{Grandvalet98a-short, + author = "Y. Grandvalet", + booktitle = "ICANN'98", + title = "Least absolute shrinkage is equivalent to quadratic + penalization", + pages = "201--206", + year = "1998", +} + +@InProceedings{GrandvaletY2005, + author = "Yves Grandvalet and Yoshua Bengio", + editor = NIPS17ed, + booktitle = NIPS17, + title = "{Semi-supervised Learning by Entropy + Minimization}", + publisher = "MIT Press", + address = "Cambridge, MA", + month = dec, + year = "2005", +} +%deprecate this version as we need to put the date of publication not the date of the conference. use GrandvaletY2005 instead. +@InProceedings{GrandvaletY2004, + author = "Yves Grandvalet and Yoshua Bengio", + editor = NIPS17ed, + booktitle = NIPS17, + title = "{Semi-supervised Learning by Entropy + Minimization}", + publisher = "MIT Press", + address = "Cambridge, MA", + month = dec, + year = "2005", +} + +@INCOLLECTION {GrandvaletY2006, +title = {Entropy Regularization}, +author = {Grandvalet, Yves and Bengio, Yoshua}, +editor = {Chapelle, Olivier and {Sch\"{o}lkopf}, Bernhard and Zien, Alexander}, +booktitle = {Semi-Supervised Learning}, +year = {2006}, +pages = {151--168}, +publisher = {{MIT} Press}, +} + +@Article{GrangerNewbold76, + author = "C. W. J. Granger and P. Newbold", + title = "Forecasting transformed series", + journal = "J. Roy. Statist. Soc. B", + volume = "38", + pages = "189--203", + year = "1976", +} + +@InProceedings{Gray-Moore-2003, + author = "Alexander Gray and Andrew Moore", + booktitle = "Artificial Iintelligence and Statistics", + title = "Rapid Evaluation of Multiple Density Models", + year = "2003", +} + +@Article{Gray84, + author = "R. M. Gray", + title = "Vector Quantization", + journal = ieeeassp, + pages = "4--29", + month = apr, + year = "1984", +} + +@Article{Greenwood+Durand60, + author = "T. A. Greenwood and D. Durand", + title = "", + journal = "Technometrics", + volume = "2", + pages = "55--56", + year = "1960", +} + +@InProceedings{GregoryD2007, + author = "Gregory Druck and Chris Pal and Andrew Mccallum and + Xiaojin Zhu", + booktitle = "KDD '07: Proceedings of the 13th ACM SIGKDD + international conference on Knowledge discovery and + data mining", + title = "Semi-supervised classification with hybrid + generative/discriminative methods", + publisher = "ACM", + address = "New York, NY, USA", + pages = "280--289", + year = "2007", + OPTciteulike-article-id = "2304687", + OPTdoi = "10.1145/1281192.1281225", + OPTisbn = "9781595936097", + OPTkeywords = "classification", + OPTpriority = "2", +} + %url = "http://portal.acm.org/citation.cfm?id=1281192.1281225", + +@Article{Gribskov87, + author = "M. Gribskov and M. McLachlan and D. Eisenber", + title = "Profile analysis: detection of distantly related + proteins", + journal = PNAS, + volume = "84", + pages = "4355--4358", + year = "1987", +} + +@TechReport{Griffin-Holub-Perona-07, + author = "Gregory Griffin and Alex Holub and Pietro Perona", + title = "Caltech-256 Object Category Dataset", + number = "Technical Report 7694", + institution = "California Institute of Technology", + year = "2007", +} + +@Article{grigoriev95, + author = "Dima Grigoriev and Marek Karpinski and Andrew Chi-Chih + Yao", + title = "An Exponential Lower Bound on the Size of Algebraic + Decision Trees for {MAX}", + journal = "Electronic Colloquium on Computational Complexity + (ECCC)", + volume = "2", + number = "057", + year = "1995", +} + +@Article{Grimes-Rao-2005, + author = "D. B. Grimes and R. P. N. Rao", + title = "Bilinear Sparse Coding for Invariant Vision", + journal = "Neural Computation", + volume = "17", + number = "1", + pages = "47--73", + year = "2005", +} + +@Article{Grossberg67, + author = "S. Grossberg", + title = "Nonlinear Difference-Differential Equations in + Prediction and Learning Theory", + journal = PNAS, + volume = "58", + pages = "1329--1334", + year = "1967", +} + +@Article{Grossberg68a, + author = "S. Grossberg", + title = "Some Nonlinear Networks Capable of Learning a Spatial + Pattern of Arbitrary Complexity", + journal = PNAS, + volume = "59", + pages = "368--372", + year = "1968", +} + +@Article{Grossberg68b, + author = "S. Grossberg", + title = "Some Physiological and Biochemical Consequences of + Psychological Postulates", + journal = PNAS, + volume = "60", + pages = "758--765", + year = "1968", +} + +@Article{Grossberg69, + author = "S. Grossberg", + title = "Embedding Fields: {A} Theory of Learning with + Physiological Implications", + journal = jmpsych, + volume = "6", + pages = "209--239", + year = "1969", +} + +@Article{Grossberg72, + author = "S. Grossberg", + title = "Neural Expectation: Cerebellar and Retinal Analogs of + Cells Fired by Learnable or Unlearned Pattern Classes", + journal = kyb, + volume = "10", + pages = "49--57", + year = "1972", +} + +@Article{Grossberg76a, + author = "S. Grossberg", + title = "Adaptive Pattern Classification and Universal + Recoding: {I}. Parallel Development and Coding of + Neural Feature Detectors", + journal = biocyb, + volume = "23", + year = "1976", +} + +@Article{Grossberg76b, + author = "S. Grossberg", + title = "Adaptive Pattern Classification and Universal + Recoding: {II}. Feedback, Expectation, Olfaction, + Illusions", + journal = biocyb, + volume = "23", + pages = "187--202", + year = "1976", +} + +@Article{Grossberg80, + author = "S. Grossberg", + title = "How Does the Brain Build a Cognitive Code?", + journal = psyrev, + volume = "87", + year = "1980", +} + +@Book{Grossberg87a, + author = "S. Grossberg", + title = "The Adaptive Brain", + volume = "1--2", + publisher = "Elsevier", + address = "Amsterdam", + year = "1987", +} + +@Article{Grossberg87b, + author = "S. Grossberg", + title = "Competitive Learning: From Interactive Activation to + Adaptive Resonance", + journal = cogsci, + volume = "11", + pages = "23--63", + year = "1987", +} + +@inproceedings{Grosse-2007, + author = {Roger Grosse and Rajat Raina and Helen Kwong and Andrew Y. Ng}, + title = {Shift-Invariant Sparse Coding for Audio Classification}, + booktitle = UAI07, + year = 2007, +} + +@InProceedings{Grossman-nips89, + author = "T. Grossman R. Meir and E. Domany", + editor = NIPS1ed, + booktitle = NIPS1, + title = "Learning by choice of internal representation", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "73--80", + year = "1989", +} + +@Article{Grossman89, + author = "T. Grossman and R. Meir and E. Domany", + title = "Learning by Choice of Internal Representations", + journal = cs, + volume = "2", + pages = "555--575", + year = "1989", +} + +@InProceedings{Grossman90, + author = "T. Grossman", + editor = NIPS2ed, + booktitle = NIPS2, + title = "The {CHIR} Algorithm for Feed Forward Networks with + Binary Weights", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "516--523", + year = "1990", +} + +@Article{Guillery2005, + author = "R. W. Guillery", + title = "Is postnatal neocortical maturation hierarchical?", + journal = "Trends in Neuroscience", + volume = "28", + number = "10", + pages = "512--517", + month = oct, + year = "2005", +} + +@InCollection{Gull88, + author = "S. F. Gull", + editor = "G. Erickson and C. Smith", + booktitle = "Maximum Entropy and {Bayesian} Methods in Science and + Engineering", + title = "{Bayesian} inductive inference and maximum entropy", + volume = "1", + publisher = "Kluwer", + address = "Dordrecht", + pages = "53--74", + year = "1988", +} + +@Article{gullapalli:nn:1990, + author = "V. Gullapalli", + title = "A Stochastic Reinforcement Learning Algorithm for + Learning Real-Valued Functions", + journal = nn, + volume = "3", + pages = "671--692", + year = "1990", +} + +@Article{Gunn+Kandola01, + author = "S. R. Gunn and J. Kandola", + title = "Structural Modelling with Sparse Kernels", + journal = "Machine Learning", + volume = "special issue on New Methods for Model Combination and + Model Selection", + year = "2001", + note = "to appear", +} + +@inproceedings{Guo+Schuurmans-2007, +author = "Guo, Y. and Schuurmans, D.", +title = "Convex relaxations of latent variable training", +editor = NIPS20ed, +booktitle = NIPS20, +year = 2007, +} + +@inproceedings{guoschuurmans07b, +author = "Guo, Y. and Schuurmans, D.", +title = "Discriminative batch mode active learning", +editor = NIPS20ed, +booktitle = NIPS20, +year = 2007, +} + +@inproceedings{Guo+Schuurmans-2008, +author = "Guo, Y. and Schuurmans, D.", +title = "Efficient global optimization for exponential family {PCA} and +low-rank matrix factorization", +booktitle = "Proceedings of the Forty-sixth Annual Allerton Conference on +Communication, Control, and Computing (Allerton)", +year = 2008, +} + +@Article{Gutfreund88a, + author = "H. Gutfreund", + title = "Neural Networks with Hierarchically Correlated + Patterns", + journal = prA, + volume = "37", + pages = "570--577", + year = "1988", +} + +@Article{Gutfreund88b, + author = "H. Gutfreund and M. M\'ezard", + title = "Processing of Temporal Sequences in Neural Networks", + journal = prl, + volume = "61", + pages = "235--238", + year = "1988", +} + +@InProceedings{Gutzmann87, + author = "K. Gutzmann", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Combinatorial Optimization Using a Continuous State + {Boltzmann} Machine", + volume = "3", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "721--734", + year = "1987", +} + +@Article{guyon-91, + author = "I. Guyon and P. Albrecht and Y. {Le Cun} and J. S. + Denker and W. Hubbard", + title = "design of a neural network character recognizer for a + touch termin al", + journal = "Pattern Recognition", + volume = "24", + number = "2", + pages = "105--119", + year = "1991", +} + +@InProceedings{Guyon92, + author = "I. Guyon and V. Vapnik and B. Boser and L. Bottou and + S. A. Solla", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Structural Risk Minimization for Character + Recognition", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + pages = "471--479", + year = "1992", +} + +@InCollection{Guyon92b, + author = "I. Guyon", + editor = "S. Impedovo", + booktitle = "From Pixels to Features III", + title = "Writer independent and writer adaptive neural network + for on-line character recognition", + publisher = "Elsevier", + address = "Amsterdam", + pages = "493--506", + year = "1992", +} + +@InProceedings{Guyon93, + author = "I. Guyon and B. Boser and V. Vapnik", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Automatic Capacity Tuning of Very Large {VC}-dimension + Classifiers", + publisher = "Morgan Kaufmann", + address = "Denver, CO", + pages = "147--155", + year = "1993", +} + +@InProceedings{Guyon95, + author = "I. Guyon and F. Pereira", + booktitle = ICDAR95, + title = "Design of a linguistic postprocessor using variable + memory length {Markov} models", + publisher = "IEEE Computer Society Press", + address = "Montreal, Canada", + pages = "454--457", + month = aug, + year = "1995", +} + +@InCollection{Guyon96, + author = "I. Guyon and M. Schenkel and J. Denker", + editor = "P. S. P. Wang and H. Bunke", + booktitle = "Handbook on Optical Character Recognition and Document + Image Analysis", + title = "Overview and synthesis of on-line cursive handwriting + recognition techniques", + publisher = "World Scientific", + year = "1996", +} + +@article{Guyon+Elisseeff-2003, + address = {Cambridge, MA}, + author = {Guyon, Isabelle and Elisseeff, Andre}, + issn = {1533-7928}, + journal = jmlr, + pages = {1157--1182}, + publisher = {MIT Press}, + title = {An introduction to variable and feature selection}, + volume = {3}, + year = {2003} +} + %url = {http://portal.acm.org/citation.cfm?id=944968}, + +@book{Guyon+al-2006, + editor = "Isabelle Guyon and Steve Gunn and Masoud Nikravesh and Lofti Zadeh", + title = "Feature Extraction, Foundations and Applications", + publisher = "Springer", + year = "2006", +} + + +@Article{Gyorgyi90a, + author = "G. Gy{\"o}rgyi", + title = "Inference of a Rule by a Neural Network with Thermal + Noise", + journal = prl, + volume = "64", + pages = "2957--2960", + year = "1990", +} + +@InCollection{Gyorgyi90b, + author = "G. Gyorgyi and N. Tishby", + editor = "W. K. Theumann and R. Koeberle", + booktitle = "Neural Networks and Spin Glasses", + title = "Statistical Theory of Learning a Rule", + publisher = "World Scientific", + address = "Singapore", + year = "1990", +} + +@InProceedings{ha93, + author = "J. Y. Ha and S. C. Oh and J. H. Kim and Y. B. Kwon", + booktitle = "Third International Workshop on Frontiers in + Handwriting Recognition", + title = "Unconstrained handwritten word recognition with + interconnected hidden {Markov} models", + publisher = "IAPR", + address = "Buffalo", + pages = "455--460", + month = may, + year = "1993", +} + +@Article{haasdonk2002tdk, + author = "B. Haasdonk and D. Keysers", + title = "{Tangent distance kernels for support vector + machines}", + journal = "Proc. of the 16th ICPR", + volume = "2", + pages = "864--868", + year = "2002", +} + +@inproceedings {hadsell-chopra-lecun-06, +original = "orig/hadsell-chopra-lecun-06.pdf", +author = "Hadsell, Raia and Chopra, Sumit and {LeCun}, Yann", +title = "Dimensionality Reduction by Learning an Invariant Mapping", +booktitle = cvpr06, +publisher = "IEEE Press", +pages = "1735--1742", +year = 2006 +} + +@inproceedings {hadsell-chopra-lecun-06-small, +original = "orig/hadsell-chopra-lecun-06.pdf", +author = "Hadsell, Raia and Chopra, Sumit and {LeCun}, Yann", +title = "Dimensionality Reduction by Learning an Invariant Mapping", +booktitle = "CVPR'2006", +publisher = "IEEE Press", +year = 2006 +} + +@inproceedings{hadsell-iros-08, + original = "orig/hadsell-iros-08.pdf", + author = "Hadsell, Raia and Erkan, Ayse and Sermanet, Pierre and Scoffier, Marco and Muller, Urs and {LeCun}, Yann", + title = "Deep Belief Net Learning in a Long-Range Vision System for Autonomous Off-Road Driving", + booktitle = "Proc. Intelligent Robots and Systems (IROS'08)", + pages = "628--633", + year = "2008", +} + %url = "http://www.cs.nyu.edu/~raia/docs/iros08-farod.pdf", + +@TechReport{Haffner+96, + author = "P. Haffner and L. Bottou and J. Bromley and C. J. C. + Burges and T. Cauble and Y. {Le Cun} and C. Nohl and C. + Stanton and C. Stenard and P. Vincent", + title = "the {HCAR50} check amount reading system", + number = "Forthcoming publication", + institution = "Lucent Technologies, Bell Labs Innovation", + address = "Holmdel, New-Jersey", + year = "1996", +} + +@InProceedings{Haffner89, + author = "P. Haffner and A. Waibel and K. Shikano", + booktitle = "Proceedings of Eurospeech'89", + title = "Fast back-propagation learning methods for large + phonemic neural networks", + year = "1989", +} + +@InProceedings{Haffner91, + author = "P. Haffner and M. Franzini and A. Waibel", + booktitle = icassp, + title = "Integrating Time Alignment and Neural Networks for + High Performance Continuous Speech Recognition", + address = "Toronto", + pages = "105--108", + year = "1991", +} + +@Book{HAJ90, + author = "X. D. Huang and Y. Ariki and M. Jack", + title = "Hidden Markov Models for Speech Recognition", + publisher = "University Press", + address = "Edinburgh", + year = "1990", +} + +@inproceedings{HagiwaraK2000, + title = {Regularization Learning and Early Stopping in Linear Networks}, + author = {Hagiwara, Katsuyuki and Kuno, Kazuhiro}, + booktitle = ijcnn, + year = {2000}, + isbn = {0-7695-0619-4}, + pages = {4511}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, + } + +@TechReport{Ham2003, + author = "J. Ham and D. D. Lee and S. Mika and B. + Sch{\"o}lkopf", + title = "A kernel view of the dimensionality reduction of + manifolds", + number = "TR-110", + institution = "Max Planck Institute for Biological Cybernetics", + address = "Germany", + year = "2003", +} + +@Article{Hamilton88, + author = "J. D. Hamilton", + title = "Rational-Expectations Econometric Analysis of Changes + in Regime", + journal = "Journal of Economic Dynamics and Control", + volume = "12", + pages = "385--423", + year = "1988", +} + +@Article{hamilton89, + author = "J. D. Hamilton", + title = "A new approach to the economic analysis of + non-stationary time series and the business cycle", + journal = "Econometrica", + volume = "57", + number = "2", + pages = "357--384", + month = mar, + year = "1989", +} + +@Article{Hamilton90, + author = "J. D. Hamilton", + title = "Analysis of time series subject to changes in regime", + journal = "Journal of Econometrics", + volume = "45", + pages = "39--70", + year = "1990", +} + +@InCollection{Hamilton93, + author = "J. D. Hamilton", + editor = "R. Engle and D. {McFadden}", + booktitle = "Handbook of Econometrics", + title = "State-Space Models", + publisher = "North Holland, New York", + year = "1993", +} + +@Article{Hamilton94, + author = "J. D. Hamilton and R. Susmel", + title = "Autoregressive conditional heteroskedasticity and + changes in regime", + journal = "Journal of Econometrics", + volume = "64", + number = "1-2", + pages = "307--33", + year = "1994", +} + +@Article{Hamilton96, + author = "J. D. Hamilton", + title = "Specification testing in Markov-switching time-series + models", + journal = "Journal of Econometrics", + volume = "70", + pages = "127--157", + year = "1996", +} + +@misc{Hammersley+Clifford-1971, + author = {John M. Hammersley and Peter Clifford}, + year = 1971, + title = {Markov field on finite graphs and lattices}, + howpublished = {Unpublished manuscript} +} + +@InProceedings{HammondSimoncelli07, + author = "David K. Hammond and Eero P. Simoncelli", + booktitle = ICIP07, + title = "A Machine Learning Framework for Adaptive Combination + of Signal Denoising Methods", + volume = "6", + pages = "29--32", + year = "2007", +} + +@Article{hampshire90, + author = "John B. Hampshire and Alexander H. Waibel", + title = "A Novel Objective Function for Improved Phoneme + Recognition Using Time-Delay Neural Networks", + journal = "IEEE Transactions of Neural Networks", + volume = "1", + number = "2", + pages = "216--228", + month = jun, + year = "1990", +} + +@InProceedings{HAMPSHIRE92A, + author = "J. B. Hampshire and B. V. K. Vijaya Kumar", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Shooting Craps in Search of an Optimal Strategy for + Training Connectionist Pattern Classifiers", + publisher = "Morgan Kaufmann", + address = "Denver, CO", + pages = "1125--1132", + year = "1992", +} + +@InProceedings{Han96, + author = "H-H. Han and H-C. Jung and Y-R. Lee and S-C. Jeong", + booktitle = nipc-hmit96, + title = "Application of Neural Network for {PWR} Steam + Generator Water Level Control at Low Power Operation", + volume = "1", + publisher = ans, + pages = "49--52", + year = "1996", +} + +@InProceedings{Hanson89, + author = "S. J. Hanson and L. Pratt", + editor = NIPS1ed, + booktitle = NIPS1, + title = "A Comparison of Different Biases for Minimal Network + Construction with Back-Propagation", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "177--185", + year = "1989", +} + +@Book{Hardle2004, + author = "Wolfgang H{\"a}rdle and Marlene M{\"u}ller and Stefan Sperlich and Axel + Werwatz", + title = "Nonparametric and Semiparametric Models", + publisher = "Springer", + address = "http://www.xplore-stat.de/ebooks/ebooks.html", + year = "2004", +} + +@article{Hardoon+al-2004, + address = {Cambridge, MA, USA}, + author = {Hardoon, David R. and Szedmak, Sandor R. and Shawe-Taylor, John R. }, + doi = {10.1162/0899766042321814}, + issn = {0899-7667}, + journal = {Neural Computation}, + month = {December}, + number = {12}, + pages = {2639--2664}, + publisher = {MIT Press}, + title = {Canonical Correlation Analysis: An Overview with Application to Learning Methods}, + url = {http://portal.acm.org/citation.cfm?id=1119696.1119703}, + volume = {16}, + year = {2004} +} + +@InProceedings{HardoonD2007, + author = "David R. Hardoon and John Shawe-Taylor and Antti + Ajanki and Kai Puolamäki and Samuel Kaski", + booktitle = "Proceedings of AISTATS 2007", + title = "Information Retrieval by Inferring Implicit Queries + from Eye Movements", + year = "2007", +} + +@InProceedings{Harmeling02, + author = "S. Harmeling and A. Ziehe and M. Kawanabe and K.-R. + M{\"u}ller", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Kernel Feature Spaces and Nonlinear Blind Souce + Separation", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2002", + original = "orig/AA34.ps", +} + +@InProceedings{Harp90, + author = "S. A. Harp and T. Samad and A. Guha", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Designing Application-Specific Neural Networks Using + the Genetic Algorithm", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "447--454", + year = "1990", +} + +@Article{Hartman90, + author = "E. J. Hartman and J. D. Keeler and J. M. Kowalski", + title = "Layered Neural Networks with {G}aussian Hidden Units As + Universal Approximations", + journal = nc, + volume = "2", + pages = "210--215", + year = "1990", +} + +@Article{Haruno01, + author = "M. Haruno and DM. Wolpert and M. Kawato", + title = "{MOSAIC} model for sensorimotor learning and control", + journal = "Neural Computation", + volume = "13", + number = "10", + pages = "2201--2220", + year = "2001", +} + +@InProceedings{Hassibi-nips93, + author = "B. Hassibi and D. G. Stork", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Second Order Derivatives for Network Pruning: Optimal + Brain Surgeon", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "164--171", + year = "1993", +} + +@InProceedings{Hastad86, + author = "Johan H{\aa}stad", + booktitle = "Proceedings of the 18th annual ACM Symposium on Theory + of Computing", + title = "Almost optimal lower bounds for small depth circuits", + publisher = "ACM Press", + address = "Berkeley, California", + pages = "6--20", + year = "1986", +} + +@Book{Hastad87, + author = "Johan T. H{\aa}stad", + title = "Computational Limitations for Small Depth Circuits", + publisher = "{MIT} Press", + year = "1987", +} + +@Article{Hastad91, + author = "Johan H{\aa}stad and Mikael Goldmann", + title = "On the power of small-depth threshold circuits", + journal = "Computational Complexity", + volume = "1", + pages = "113--129", + year = "1991", +} + +@Article{Hastie-Stuetzle-1989, + author = "T. Hastie and W. Stuetzle", + title = "Principal Curves", + journal = "Journal of the American Statistical Association", + volume = "84", + pages = "502--516", + year = "1989", +} + +@Book{Hastie2001, + author = "T. Hastie and R. Tibshirani and J. Friedman", + title = "The elements of statistical learning: data mining, + inference and prediction", + publisher = "Springer Verlag", + year = "2001", + series = "Springer Series in Statistics", + annote = "ISBN: 0387952845", +} + +@Article{Hastie2004, + author = "Trevor Hastie and Saharon Rosset and Robert Tibshirani + and Ji Zhu", + title = "The entire regularization path for the support vector + machine", + journal = jmlr, + volume = "5", + pages = "1391--1415", + year = "2004", +} + +@InProceedings{hastie96discriminant, + author = "T. Hastie and R. Tibshirani", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Discriminant Adaptive Nearest Neighbor Classification + and Regression", + volume = "8", + publisher = "{MIT} Press", + pages = "409--415", + year = "1996", + URL = "citeseer.nj.nec.com/hastie94discriminant.html", +} + +@Article{Hathaway85, + author = "R. J. Hathaway", + title = "A constrained formulation of Maximum-Likelihood + estimation for normal mixture distributions", + journal = "The Annals of Statistics", + volume = "13", + number = "2", + year = "1985", +} + +@article{hausser:2003, + author = {Michael Ha{\"u}sser and Bartlett Mel}, + title = {Dendrites: Bug or Feature?}, + journal = {Current Opinion in Neurobiology}, + volume = {13}, + year = {2003}, + pages = {372-383}, +} + +@InProceedings{Haussler89, + author = "D. Haussler", + booktitle = "Proc. of the 30th Annual Symposium on the Foundations + of Computer Science", + title = "Generalizing the {PAC} model: sample size bounds from + metric dimension-based uniform convergence results", + publisher = "IEEE", + year = "1989", +} + +@InProceedings{haussler95, + author = "D. Haussler and J. Kivinen and M. K. Warmuth", + booktitle = "Computational Learning Theory, 2nd European + Conference, EuroCOLT'95", + title = "Sequential prediction of individual sequences under + general loss functions", + publisher = "Springer", + pages = "69--83", + year = "1995", +} + +@book{hay01nnn, + author = {Haykin, Simon}, + edition = {2}, + howpublished = {Hardcover}, + isbn = {0132733501}, + keywords = {network, neural}, + month = {July}, + posted-at = {2009-07-04 21:37:33}, + priority = {2}, + publisher = {Prentice Hall}, + title = {Neural Networks: A Comprehensive Foundation (2nd Edition)}, + url = {http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0132733501}, + year = {1998} +} + + +@TechReport{He+Niyogi-2002, + author = "X. He and P. Niyogi", + title = "Locality Preserving Projections ({LPP})", + number = "TR-2002-09", + institution = "University of Chicago, Computer Science", + year = "2002", +} + +@incollection{He+Niyogi-2004, + author = "Xiaofei He and Partha Niyogi", + title = "Locality Preserving Projections", + editor = NIPS16ed, + booktitle = NIPS16, + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2004", +} + +@Book{Hebb49, + author = "D. O. Hebb", + title = "The Organization of Behavior", + publisher = "Wiley", + address = "New York", + year = "1949", +} + +@InProceedings{Hecht-Nielsen87a, + author = "R. Hecht-Nielsen", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Combinatorial Hypercompression", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "455--461", + year = "1987", +} + +@Article{Hecht-Nielsen87b, + author = "R. Hecht-Nielsen", + title = "Counterpropagation Networks", + journal = applopt, + volume = "26", + pages = "4979--4984", + year = "1987", +} + +@Article{Hecht-Nielsen88, + author = "R. Hecht-Nielsen", + title = "Applications of Counterpropagation Networks", + journal = nn, + volume = "1", + pages = "131--139", + year = "1988", +} + +@InProceedings{Hecht-Nielsen89, + author = "R. Hecht-Nielsen", + booktitle = ijcnn, + title = "Theory of the Backpropagation Neural Network", + volume = "1", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "593--605", + year = "1989", +} + +@Article{Hecht-Nielsen-1995, + author = "R. Hecht-Nielsen", + title = "Replicator neural networks for universal optimal source coding", + journal = "Science", + volume = "269", + pages = "1860-1863", + year = "1995", +} + +@TechReport{Heckerman96, + author = "D. Heckerman", + title = "A tutorial on learning with {Bayesian} networks", + number = "TR-95-06", + institution = "Microsoft Research", + address = "ftp://ftp.research.microsoft.com/pub/Tech-Reports/Winter94-95/TR-95-06.PS", + month = jan, + year = "1996", +} + +@article{HeckermanD2000, + author = {David Heckerman and David Maxwell Chickering and Christopher Meek and Robert Rounthwaite and Carl Kadie}, + title = {Dependency networks for inference, collaborative filtering, and data visualization}, + journal = jmlr, + year = {2000}, + volume = {1}, + pages = {49--75} +} + +@article{heeger:1992a, + author={David J. Heeger}, + title ={Normalization of Cell Responses in Cat Striate Cortex}, + journal ={Visual Neuroscience}, + volume={9}, + number={2}, + pages={181-198}, + year={1992}, +} + +@InProceedings{Hegde88, + author = "S. U. Hegde and J. L. Sweet and W. B. Levy", + booktitle = icnn, + title = "Determination of Parameters in a Hopfield/Tank + Computational Network", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "291--298", + year = "1988", +} + +@article{HedgeJ2000, + address = {Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.}, + author = {Jay Hegd\'{e} and David C. {Van Essen} }, + citeulike-article-id = {465720}, + issn = {1529-2401}, + journal = {Journal of Neuroscience}, + keywords = {contour, v2}, + month = {March}, + number = {5}, + posted-at = {2006-01-15 12:57:15}, + priority = {0}, + title = {Selectivity for complex shapes in primate visual area V2}, + volume = {20}, + year = {2000} +} + %url = {http://view.ncbi.nlm.nih.gov/pubmed/10684908}, + +@inproceedings{Heitz+al:NIPS08a, + title = {Cascaded Classification Models: {C}ombining Models for Holistic Scene Understanding}, + author = {G. Heitz and S. Gould and A. Saxena and D. Koller}, + booktitle = "Advances in Neural Information Processing Systems (NIPS 2008)", + year = 2008, +} + +@InProceedings{HeldM1998, + author = "Marcus Held and Joachim M. Buhmann", + editor = NIPS10ed, + booktitle = NIPS10, + title = "Unsupervised on-line learning of decision trees for + hierarchical data analysis", + publisher = "MIT Press", + address = "Cambridge, MA, USA", + pages = "514--520", + year = "1998", + ISBN = "0-262-10076-2", + location = "Denver, Colorado, United States", +} + +@InProceedings{herlocker99, + author = "Jonathan L. Herlocker and Joseph A. Konstan and Al + Borchers and John Riedl", + booktitle = "SIGIR '99: Proceedings of the 22nd annual + international ACM SIGIR conference on Research and + development in information retrieval", + title = "An algorithmic framework for performing collaborative + filtering", + publisher = "ACM Press", + address = "New York, NY, USA", + pages = "230--237", + year = "1999", + location = "Berkeley, California, United States", +} + +@InProceedings{Hermansky-genova91, + author = "Hynek Hermansky and Nelson Morgan and Aruna Bayya and + Phil Kohn", + booktitle = "Proc. of Eurospeech 91", + title = "Compensation for the Effect of the Communication + Channel in Auditory-like Analysis of Speech + ({RASTA}-{PLP})", + address = "Genova (Italy)", + pages = "1367--1371", + year = "1991", +} + +@TechReport{Hermansky-icsi91, + author = "Hynek Hermansky and Nelson Morgan and Aruna Bayya and + Phil Kohn", + title = "{RASTA}-{PLP} Speech Analysis", + number = "TR-91-069", + institution = "International Computer Science Institute", + address = "Berkeley, CA", + month = dec, + year = "1991", + OPTnote = "Most speech parameter estimation techniques are easily + influenced by the frequency response of the + communication channel. We have developed a technique + that is more robust to such steady-state spectral + factors in speech. The approach is conceptually simple + and computationally efficient. The new method is + described, and experimental results are reported, + showing a significant advantage for the proposed + method.", +} + +@Article{Hermansky-jasa90, + author = "Hynek Hermansky", + title = "Perceptual Linear Predictive ({PLP}) Analysis for + Speech", + journal = jasa, + year = "1990", + OPTnote = "", + OPTpages = "1738--1752", +} + +@Book{Hernandez-Lerma+Lasserre-2003, + author = "On\'esimo Hern\'andez-Lerma and Jean Bernard + Lasserre", + title = "Markov Chains and Invariant Probabilities", + publisher = "Birkh{\"a}user Verlag", + year = "2003", +} + +@InProceedings{Hertz86, + author = "J. A. Hertz and G. Grinstein and S. Solla", + editor = "J. S. Denker", + booktitle = snowbird, + title = "Memory Networks with Asymmetric Bonds", + publisher = "American Institute of Physics, New York", + address = "Snowbird 1986", + pages = "212--218", + year = "1986", +} + +@InProceedings{Hertz87, + author = "J. A. Hertz and G. Grinstein and S. Solla", + editor = "J. L. van Hemmen and I. Morgenstern", + booktitle = "Heidelberg Colloquium on Glassy Dynamics", + title = "Irreversible Spin Glasses and Neural Networks", + publisher = "Springer-Verlag, Berlin", + address = "Heidelberg 1986", + pages = "538--546", + year = "1987", +} + +@Article{Hertz89a, + author = "J. A. Hertz", + title = "A Gauge Theory in Computational Vision: {A} Model for + Outline Extraction", + journal = pscrip, + volume = "39", + pages = "161--167", + year = "1989", +} + +@Article{Hertz89b, + author = "J. A. Hertz and A. Krogh and G. I. Thorbergsson", + title = "Phase Transitions in Simple Learning", + journal = jpa, + volume = "22", + pages = "2133--2150", + year = "1989", +} + +@TechReport{Hertz90, + author = "J. A. Hertz", + title = "Statistical Dynamics of Learning", + type = "Preprint", + number = "90/34 S", + institution = "Nordita", + address = "Copenhagen, Denmark", + year = "1990", +} + +@Article{Herz89, + author = "A. Herz and B. Sulzer and R. K{\"u}hn and J. L. van + Hemmen", + title = "Hebbian Learning Reconsidered: Representation of + Static and Dynamic Objects in Associative Neural Nets", + journal = biocyb, + volume = "60", + pages = "457--467", + year = "1989", +} + +@Article{Heskes-98, + author = "T. Heskes", + title = "Bias/variance decompositions for likelihood-based + estimators", + journal = "Neural Computation", + volume = "10", + pages = "1425--1433", + year = "1998", +} + +@Article{heskes00, + author = "Tom Heskes", + title = "On Natural Learning and Pruning in Multilayered + Perceptrons", + journal = "Neural Computation", + volume = "12", + number = "4", + pages = "881--901", + year = "2000", +} + +@InProceedings{heskes98, + author = "Tom Heskes", + booktitle = "International Conference On Machine Learning", + title = "Solving a huge number of similar tasks: a combination + of multi-task learning and a hierarchical {Bayesian} + approach", + year = "1998", +} + +@Article{Hestenes+Stiefel-1952, + author = "Magnus R. Hestenes and Eduard Stiefel", + title = "Methods of Conjugate Gradients for Solving Linear + Systems", + journal = "Journal of Research of National Bureau Standards", + volume = "49", + number = "6", + pages = "409--436", + year = "1952", +} + +@Article{Hettich-93, + author = "R. Hettich and K. O. Kortanek", + title = "Semi-infinite programming: theory, methods, and + applications", + journal = "{SIAM} Review", + volume = "35", + number = "3", + pages = "380--429", + year = "1993", +} + +@InProceedings{Hines96, + author = "J. W. Hines", + booktitle = nipc-hmit96, + title = "A Logarithmic Neural Network Architecture for a {PRA} + Approximation", + volume = "1", + publisher = ans, + pages = "235--241", + year = "1996", +} + +@Article{HinOsiWel2006, + author = "Geoffrey E. Hinton and Simon Osindero and Max Welling + and {Yee Whye} Teh", + title = "Unsupervised Discovery of Non-Linear Structure using + Contrastive Backpropagation", + journal = "Cognitive Science", + volume = "30", + number = "4", + year = "2006", +} + +@Article{Hinton+Ghahramani-97, + author = "G. E. Hinton and Z. Ghahramani", + title = "Generative models for discovering sparse distributed + representations", + journal = "Philosophical Transactions of the Royal Society of + London", + volume = "B", + number = "352", + pages = "1177--1190", + year = "1997", +} + +@InCollection{Hinton-bo86, + author = "G. E. Hinton and T. J. Sejnowski", + editor = "D. E. Rumelhart and J. L. McClelland", + booktitle = "Parallel Distributed Processing: Explorations in the + Microstructure of Cognition. Volume 1: Foundations", + title = "Learning and relearning in {Boltzmann} machines", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "282--317", + year = "1986", +} + +@InProceedings{Hinton-ICA-2001, + author = "G. E. Hinton and M. Welling and Y. W. Teh and S. + Osindero", + booktitle = "Proceedings of 3rd International Conference on Independent Component Analysis and Blind Signal Separation (ICA'01)", + title = "A New View of {ICA}", + address = "San Diego, CA", + pages = "746--751", + year = "2001", +} + +@InProceedings{Hinton-nips95, + author = "G. E. Hinton and M. Revow and P. Dayan", + editor = NIPS7ed, + booktitle = NIPS7, + title = "Recognizing handwritten digits using mixtures of + linear models", + publisher = "MIT Press, Cambridge, MA", + pages = "1015--1022", + year = "1995", +} + +@TechReport{Hinton-PoE-2000, + author = "Geoffrey E. Hinton", + title = "Training Products of Experts by Minimizing Contrastive + Divergence", + number = "GCNU TR 2000-004", + institution = "Gatsby Unit, University College London", + year = "2000", +} + +@Article{Hinton-Science2006, + author = "Geoffrey E. Hinton and Ruslan Salakhutdinov", + title = "Reducing the dimensionality of data with neural + networks", + journal = "Science", + volume = "313", + number = "5786", + pages = "504--507", + month = jul, + year = "2006", +} + +%I deprecate the following one as this is a duplicate of the preceding one! +@Article{Hinton+Salakhutdinov-2006, + author = "Geoffrey E. Hinton and Ruslan {Salakhutdinov}", + title = "{Reducing the Dimensionality of Data with Neural + Networks}", + journal = "Science", + volume = "313", + pages = "504--507", + month = jul, + year = "2006", +} + + +@Article{Hinton06, + author = "Goeffrey E. Hinton and Simon Osindero and {Yee Whye} Teh", + title = "A fast learning algorithm for deep belief nets", + journal = "Neural Computation", + volume = "18", + pages = "1527--1554", + year = "2006", + +} + +@Article{Hinton06-small, + author = "G. E. Hinton and S. Osindero and Y.-W. Teh", + title = "A fast learning algorithm for deep belief nets", + journal = "Neural Computation", + volume = "18", + pages = "1527--1554", + year = "2006", + +} + +@InProceedings{hinton1994amd, + author = "Geoffrey E. Hinton and R. S. Zemel", + title = "Autoencoders, minimum description length, and + Helmholtz free energy", + booktitle = NIPS6, + editor = NIPS6ed, + publisher = "Morgan Kaufmann Publishers, Inc.", + pages = "3--10", + year = "1994", +} + +@Article{Hinton2002, + author = "Geoffrey E. Hinton", + title = "Training products of experts by minimizing contrastive + divergence", + journal = "Neural Computation", + volume = "14", + pages = "1771--1800", + year = "2002", +} + +@InProceedings{Hinton83, + author = "G. E. Hinton and T. J. Sejnowski", + booktitle = cvpr83, + title = "Optimal Perceptual Inference", + publisher = "IEEE, New York", + address = "Washington 1983", + pages = "448--453", + year = "1983", +} + +@TechReport{Hinton84, + author = "G. E. Hinton and T. J. Sejnowski and D. H. Ackley", + title = "{Boltzmann} machines: Constraint satisfaction networks + that learn", + number = "TR-CMU-CS-84-119", + institution = "Carnegie-Mellon University, Dept. of Computer + Science", + year = "1984", +} + +@InCollection{Hinton86a, + author = "G. E. Hinton and T. J. Sejnowski", + editor = "D. E. Rumelhart and J. L. McClelland", + booktitle = pdp, + title = "Learning and Relearning in {Boltzmann} Machines", + chapter = "7", + volume = "1", + publisher = "MIT Press", + address = "Cambridge", + pages = "282--317", + year = "1986", +} + +@InProceedings{Hinton86b, + author = "Geoffrey E. Hinton", + booktitle = "Proceedings of the Eighth Annual Conference of the + Cognitive Science Society", + title = "Learning Distributed Representations of Concepts", + publisher = "Lawrence Erlbaum, Hillsdale", + address = "Amherst 1986", + pages = "1--12", + year = "1986", +} + +@InProceedings{Hinton86b-small, + author = "Geoffrey E. Hinton", + booktitle = "Proc. 8th Annual Conf. Cog. Sc. Society", + title = "Learning Distributed Representations of Concepts", + pages = "1--12", + year = "1986", +} + +@InProceedings{Hinton87, + author = "Geoffrey E. Hinton", + editor = "J. W. {de Bakker} and A. J. Nijman and P. C. + Treleaven", + booktitle = "Proceedings of {PARLE} Conference on Parallel + Architectures and Languages Europe", + title = "Learning translation invariant in massively parallel + networks", + publisher = "Springer-Verlag", + address = "Berlin", + pages = "1--13", + year = "1987", +} + +@Article{Hinton89, + author = "Geoffrey E. Hinton", + title = "Deterministic {Boltzmann} Learning Performs Steepest + Descent in Weight Space", + journal = nc, + volume = "1", + pages = "143--150", + year = "1989", +} + +@Article{Hinton89b, + author = "Geoffrey E. Hinton", + title = "Connectionist learning procedures", + journal = "Artificial Intelligence", + volume = "40", + pages = "185--234", + year = "1989", +} + +@Article{Hinton90, + author = "G. E. Hinton and S. J. Nowlan", + title = "The bootstrap Widrow-Hoff rule as a cluster-formation + algorithm", + journal = nc, + volume = "2", + pages = "355--362", + year = "1990", +} + +@InProceedings{Hinton92, + author = "G. E. Hinton and C. K. I. Williams and M. D. Revow", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Adaptive elastic models for hand-printed character + recognition", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + pages = "512--519", + year = "1992", +} + +@Misc{Hinton93, + author = "Geoffrey E. Hinton", + title = "Using the minimum description length principle to + discover factorial codes", + howpublished = "Lecture given at the 1993 Connectionist Models Summer + School", + year = "1993", +} + +@Article{Hinton95, + author = "Geoffrey E. Hinton and Peter Dayan and Brendan J. Frey and Radford M. + Neal", + title = "The wake-sleep algorithm for unsupervised neural + networks", + journal = "Science", + volume = "268", + pages = "1558--1161", + year = "1995", +} + +@Article{hinton97modelling, + author = "G. E. Hinton and P. Dayan and M. Revow", + title = "Modelling the manifolds of images of handwritten + digits", + journal = "IEEE Transactions on Neural Networks", + volume = "8", + pages = "65--74", + year = "1997", +} + +@InProceedings{Hinton99, + author = "Geoffrey E. Hinton", + booktitle = "Proceedings of the Ninth International Conference on + Artificial Neural Networks (ICANN)", + title = "Products of Experts", + volume = "1", + publisher = "IEE", + address = "Edinburgh, Scotland", + pages = "1--6", + year = "1999", +} + +@InProceedings{HintonG2005, + author = "Geoffrey E. Hinton and Simon Osindero and Kejie Bao", + editor = aistats05ed, + booktitle = aistats05, + title = "Learning Causally Linked Markov Random Fields", + publisher = "Society for Artificial Intelligence and Statistics", + pages = "128--135", + year = "2005", +} + +@InProceedings{HintonG2005-small, + author = "Geoffrey E. Hinton and Simon Osindero and Kejie Bao", + booktitle = "Proceedings of AISTATS 2005", + title = "Learning Causally Linked Markov Random Fields", + year = "2005", +} + +@TechReport{HintonG2006, + author = "Geoffrey E. Hinton", + title = "To recognize shapes, first learn to generate images", + number = "UTML TR 2006-003", + institution = "University of Toronto", + year = "2006", +} + +@InCollection{HintonG2007, + author = "Geoffrey E. Hinton", + editor = "Paul Cisek and Trevor Drew and John Kalaska", + booktitle = "Computational Neuroscience: Theoretical Insights into + Brain Function", + title = "To recognize shapes, first learn to generate images", + publisher = "Elsevier", + year = "2007", +} + +@TechReport{Hinton-Boltzmann, + author = "G. E. Hinton and T. J. Sejnowski and D. H. Ackley", + title = "{Boltzmann} machines: Constraint satisfaction networks + that learn", + number = "TR-CMU-CS-84-119", + institution = "Carnegie-Mellon University, Dept. of Computer + Science", + year = "1984", + OPTnote = "", +} + +@InProceedings{Hirayama-nips92, + author = "M. Yirayama and E. Vatikiotis-Bateson and M. Kawato + and M. I. Jordan", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Forward Dynamics Modeling of Speech Motor Control + Using Physiological Data", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "191--198", + year = "1992", + OPTnote = "", +} + +@Article{Hjort96, + author = "N. L. Hjort and M. C. Jones", + title = "Locally parametric nonparametric density estimation", + journal = "Annals of Statistics", + volume = "24", + number = "4", + pages = "1619--1647", + year = "1996", +} + +@InProceedings{Ho95, + author = "Tin Kam Ho", + booktitle = ICDAR95, + title = "Random Decision Forest", + address = "Montreal, Canada", + pages = "278--282", + year = "1995", +} + +@Misc{Hochreiter91, + author = "S. Hochreiter", + title = "{ Untersuchungen zu dynamischen neuronalen Netzen. + Diploma thesis, Institut f\"{u}r Informatik, Lehrstuhl + Prof. Brauer, Technische Universit\"{a}t M\"{u}nchen}", + year = "1991", + url = "http://www7.informatik.tu-muenchen.de/~Ehochreit", +} + +@Article{Hoerl+Kennard70, + author = "A. Hoerl and R. Kennard", + title = "Ridge regression: biased estimation for non-orthogonal + problems", + journal = "Technometrics", + volume = "12", + pages = "55--67", + year = "1970", +} + +@inproceedings{Hoff-2008, + author = {H.D. Hoff}, + title = {Modeling homophily and stochastic equivalence in symmetric relational data}, + editor = NIPS20ed, + booktitle = NIPS20, + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "657--664", + year = "2008", +} + +@InProceedings{Holger-icpr96, + author = "H. Schwenk and M. Milgram", + booktitle = icpr, + title = "Constraint Tangent Distance For On-Line Character + Recognition", + pages = "520--524", + year = "1996", +} + +@InProceedings{Holger-nips96, + author = "H. Schwenk and M. Milgram", + editor = NIPS7ed, + booktitle = NIPS7, + title = "Transformation invariant autoassociation with + application to handwritten character recognition", + publisher = "MIT Press", + pages = "991--998", + year = "1995", +} + +@Book{Holland75, + author = "J. H. Holland", + key = "Holland", + title = "Adaptation in Natural and Artificial Systems", + publisher = "University of Michigan Press", + year = "1975", +} + +@Article{Holley+Karplus89, + author = "L. H. Holley and M. Karplus", + title = "Protein secondary structure prediction with a neural + network", + journal = PNAS, + volume = "86", + pages = "152--156", + year = "1989", +} + +@InCollection{HolTre93, + author = "J. Hollatz and V. Tresp", + editor = "I. Aleksander and J. Taylor", + booktitle = "Artificial Neural Networks II", + title = "A rule-based network architecture", + publisher = "Elsevier", + address = "Amsterdam", + year = "1992", +} + +@TechReport{HolTreAhm92, + author = "J. Hollatz and V. Tresp and S. Ahmad", + title = "Network structuring and training using rule-based + knowledge", + type = "Technical Report", + institution = "Siemens AG", + address = "M{\"u}nchen, Germany", + year = "1992", +} + +@InProceedings{HolubA2005, + author = "Alex Holub and Pietro Perona", + booktitle = cvpr05, + title = "A Discriminative Framework for Modelling Object + Classes", + publisher = "IEEE Computer Society", + address = "Washington, DC, USA", + pages = "664--671", + year = "2005", + ISBN = "0-7695-2372-2", + doi = "http://dx.doi.org/10.1109/CVPR.2005.25", +} + +@InCollection{HonglakL2009, + author = "Honglak Lee and Roger Grosse and Rajesh Ranganath and Andrew Y. Ng", + booktitle = ICML09, + editor = ICML09ed, + publisher = ICML09publ, + title = "Convolutional deep belief networks for scalable unsupervised + learning of hierarchical representations", + address = "Montreal (Qc), Canada", + year = "2009", +} + +@InCollection{HonglakL2008, + author = "Honglak Lee and Chaitanya Ekanadham and Andrew Ng", + editor = NIPS20ed, + booktitle = NIPS20, + title = "Sparse deep belief net model for visual area {V2}", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "873--880", + year = "2008", +} + +@incollection{HonglakLNIPS2009, + title = {Unsupervised feature learning for audio classification using convolutional deep belief networks}, + author = {Honglak Lee and Peter Pham and Yan Largman and Andrew Ng}, + booktitle = NIPS22, + editor = NIPS22ed, + pages = {1096--1104}, + year = {2009} +} + +@Book{Hopcroft79, + author = "J. E. Hopcroft and J. D. Ullman", + title = "Introduction to Automata Theory, Languages, and + Computation", + publisher = "Addison-Wesley Publishing Company, Inc.", + address = "Reading, MA", + year = "1979", +} + +@Article{Hopfield82, + author = "John J. Hopfield", + title = "Neural Networks and Physical Systems with Emergent + Collective Computational Abilities", + journal = PNAS, + volume = "79", + year = "1982", +} + +@Article{Hopfield83, + author = "J. J. Hopfield and D. I. Feinstein and R. G. Palmer", + title = "``Unlearning'' Has a Stabilizing Effect in Collective + Memories", + journal = nature, + volume = "304", + pages = "158--159", + year = "1983", +} + +@Article{Hopfield84, + author = "J. J. Hopfield", + title = "Neurons with Graded Responses Have Collective + Computational Properties Like Those of Two-State + Neurons", + journal = PNAS, + volume = "81", + year = "1984", +} + +@Article{Hopfield85, + author = "J. J. Hopfield and D. W. Tank", + title = "``Neural'' Computation of Decisions in Optimization + Problems", + journal = biocyb, + volume = "52", + pages = "141--152", + year = "1985", +} + +@Article{Hopfield86, + author = "J. J. Hopfield and D. W. Tank", + title = "Computing with Neural Circuits: {A} Model", + journal = science, + volume = "233", + pages = "625--633", + year = "1986", +} + +@Article{Hopfield87, + author = "J. J. Hopfield", + title = "Learning Algorithms and Probability Distributions in + Feed-Forward and Feed-Back Networks", + journal = PNAS, + volume = "84", + pages = "8429--8433", + year = "1987", +} + +@InCollection{Hopfield89, + author = "J. J. Hopfield and D. W. Tank", + editor = "J. H. Byrne and W. O. Berry", + booktitle = "Neural Models of Plasticity", + title = "Neural Architecture and Biophysics for Sequence + Recognition", + publisher = "Academic Press", + address = "San Diego", + pages = "363--377", + year = "1989", +} + +@Article{Hornik89, + author = "Kurt Hornik and Maxwell Stinchcombe and Halbert White", + title = "Multilayer Feedforward Networks Are Universal + Approximators", + journal = nn, + volume = "2", + pages = "359--366", + year = "1989", +} + +@Article{Hotelling1933, + author = "H. Hotelling", + title = "Analysis of a Complex of Statistical Variables into + Principal Components", + journal = "Journal of Educational Psychology", + volume = "24", + pages = "417--441, 498--520", + year = "1933", +} + +@article{Hotelling-1936, + author = {H. Hotelling}, + title = {Relations between two sets of variates}, + journal = {Biometrika}, + volume = 28, + pages = {321--377}, + year = 1936, +} + +@TechReport{Houde91, + author = "J. F. Houde", + title = "Recursive estimation of articulatory control", + type = "Computational Cognitive Science", + number = "TR", + institution = "MIT", + address = "Cambridge, MA", + year = "1991", +} + +@InProceedings{Howlett+Lawrence-1995a, + author = "R. J. Howlett and D. H. Lawrence", + booktitle = "World Transputer Congress~'95", + title = "The Class-Distributed Neural Network", + address = "Harrogate, UK", + year = "1995", +} + +@InProceedings{Howlett+Lawrence-1995b, + author = "R. J. Howlett and D. H. Lawrence", + booktitle = "Proceedings of the IEEE International Conference on + Neural Networks", + title = "A Multi-Computer Neural Network Applied to + Machine-Vision", + volume = "2", + address = "Perth, Australia", + pages = "1150--1153", + year = "1995", +} + +@InProceedings{Hsu88, + author = "K. Hsu and D. Brady and D. Psaltis", + editor = nips87ed, + booktitle = nips87, + title = "Experimental Demonstration of Optical Neural + Computers", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "377--386", + year = "1988", +} + +@Article{huang04dynamic, + author = "X. Huang and F. Peng and A. An and D. Schuurmans", + title = "Dynamic web log session identification with + statistical language models", + journal = "Journal of the American Society for Information + Science and Technology", + volume = "55", + number = "14", + pages = "1290--1303", + year = "2004", +} + +@Book{Huang87, + author = "K. Huang", + title = "Statistical Mechanics", + publisher = "Wiley", + address = "New York", + year = "1987", +} + +@InProceedings{Huang88, + author = "W. Y. Huang and R. P. Lippmann", + editor = nips87ed, + booktitle = nips87, + title = "Neural Net and Traditional Classifiers", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "387--396", + year = "1988", +} + +@TechReport{Huang89, + author = "X. D. Huang and H. W. Hon and K. F. Lee", + title = "Multiple Codebook Semi-Continuous Hidden {Markov} + Models for Speaker-Independent Continuous Speech + Recognition", + number = "CMU-CS-89-136", + institution = "School of Computer Science Carnegie-Mellon + University", + address = "Pittburgh, Pensylvania", + month = apr, + year = "1989", +} + +@InProceedings{Huang90, + author = "Xuedong Huang and Kai-Fu Lee and Hsiao-Wuen Hon", + booktitle = icassp, + title = "On Semi-Continuous Hidden {Markov} Modeling", + pages = "689--692", + year = "1990", +} + +@article{Hubel+Wiesel-1959, + title = {Receptive Fields of Single Neurons in the Cat's Striate Cortex}, + author = {David H. Hubel and Torsten N. Wiesel}, + journal = {Journal of Physiology}, + pages = {574--591}, + volume = {148}, + year = {1959}, + biburl = {http://www.bibsonomy.org/bibtex/202c5cf1ee910eadba5efa77b3cd043f6/idsia}, +} + +@Article{Hubel62, + author = "D. H. Hubel and T. N. Wiesel", + title = "Receptive Fields, Binocular Interaction, and Functional Architecture in the Cat's Visual Cortex", + journal = jphysiol, + volume = "160", + pages = "106--154", + year = "1962", +} + +@article{Hubel+Wiesel-1968, + author = {D.H. Hubel and T.N. Wiesel}, + title = {Receptive fields and functional architecture of monkey striate cortex}, + journal = jphysiol, + volume = 195, + pages = {215--243}, + year = 1968, +} + +@article{Huber-1985, + author = {Huber, Peter J. }, + comment = {Projection Pursuit}, + journal = {The Annals of Statistics}, + number = {2}, + pages = {435--475}, + title = {Projection Pursuit}, + url = {http://www.jstor.org/stable/2241175}, + volume = {13}, + year = {1985} +} + +@InProceedings{Hueter88, + author = "G. J. Hueter", + booktitle = icnn, + title = "Solution of the Travelling Salesman Problem with an + Adaptive Ring", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "85--92", + year = "1988", +} + +@InProceedings{Hush88, + author = "D. R. Hush and J. M. Salas", + booktitle = icnn, + title = "Improving the Learning Rate of Back-Propagation with + the Gradient Reuse Algorithm", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "441--447", + year = "1988", +} + +@Article{Hush92, + author = "D. R. Hush and B. Horne and J. M. Solas", + title = "Error Surfaces for Multilayer Perceptrons", + journal = ieeesmc, + volume = "22", + number = "5", + pages = "1152--1161", + month = sep, + year = "1992", +} + +@InCollection{Hutchins+Hazlehurst-02, + author = "Edwin Hutchins and Brian Hazlehurst", + editor = "A. Cangelosi and D. Parisi", + booktitle = "Simulating the Evolution of Language", + title = "Auto-organization and Emergence of Shared Language + Structure", + publisher = "London: Springer-Verlag", + pages = "279--305", + year = "2002", +} + +@InCollection{Hutchins+Hazlehurst-95, + author = "Edwin Hutchins and Brian Hazlehurst", + editor = "N. Gilbert and R. Conte", + booktitle = "Artificial Societies: the computer simulation of + social life", + title = "How to invent a lexicon: the development of shared + symbols in interaction", + publisher = "London: UCL Press", + pages = "157--189", + year = "1995", +} + +@Article{Hutchinson94, + author = "J. M. Hutchinson and A. W. Lo and T. Poggio", + title = "{A Nonparametric Approach to Pricing and Hedging + Derivative Securities Via Learning Networks}", + journal = "Journal of Finance", + volume = "49", + number = "3", + pages = "851--889", + year = "1994", +} + +@Book{Hutter2005, + author = "Marcus Hutter", + title = "Universal Artificial Intelligence: Sequential + Decisions based on Algorithmic Probability", + publisher = "Springer, Berlin", + year = "2005", +} + +@Article{Hwang+al-1992, + author = "Frank K. Hwang and Dana Richards and Pawel Winter", + title = "The {Steiner} Tree Problem", + journal = "Annals of Discrete Mathematics", + volume = "53", + publisher = "Elsevier", + address = "Amsterdam", + year = "1992", +} + +@article{Hyvarinen-1999, + author = {Hyv\"arinen, A. }, + journal = {Neural Computing Surveys}, + keywords = {ica, separation, waspaa07bib}, + pages = {94--128}, + title = {Survey on Independent Component Analysis}, + url = {http://citeseer.ist.psu.edu/223687.html}, + volume = {2}, + year = {1999} +} + +@book{Hyvarinen-2001, + author = {Hyv{\"{a}}rinen, Aapo and Karhunen, Juha and Oja, Erkki }, + howpublished = {Hardcover}, + isbn = {047140540X}, + month = {May}, + posted-at = {2008-07-02 02:13:00}, + priority = {2}, + publisher = {Wiley-Interscience}, + title = {Independent Component Analysis}, + url = {http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/047140540X}, + year = {2001} +} + +@Article{Hyvarinen+al-01, + author = "Aapo Hyv{\"{a}}rinen and Patrik O. Hoyer and Mika + Inki", + title = "Topographic Independent Component Analysis", + journal = "Neural Computation", + volume = "13", + number = "7", + pages = "1527--1558", + year = "2001", +} + +@Article{HyvarinenA2001, + author = "Aapo Hyv{\"{a}}rinen and Patrik O. Hoyer and Mika O. + Inki", + title = "Topographic Independent Component Analysis", + journal = "Neural Computation", + volume = "13", + number = "7", + publisher = "MIT Press", + address = "Cambridge, MA, USA", + pages = "1527--1558", + year = "2001", + ISSN = "0899-7667", +} + +@Article{HyvarinenA2001-small, + author = "Aapo Hyv{\"{a}}rinen and Patrick O. Hoyer and Mika O. Inki", + title = "Topographic Independent Component Analysis", + journal = "Neural Computation", + volume = "13", + number = "7", + pages = "1527--1558", + year = "2001", +} + +@Article{Hyvarinen-2005, + author = "Aapo Hyv{\"{a}}rinen ", + title = "Estimation of non-normalized statistical models using score matching", + journal = jmlr, + volume = "6", + pages = "695--709", + year = "2005", +} + +@Article{Hyvarinen-2007, + author = "Aapo Hyv{\"{a}}rinen ", + title = "Some extensions of score matching", + journal = "Computational Statistics and Data Analysis", + volume = "51", + pages = "2499--2512", + year = "2007", +} + +@Article{Hyvarinen-2007b, + author = "Aapo Hyv{\"{a}}rinen ", + title = "Connections between score matching, contrastive divergence, and pseudolikelihood + for continuous-valued variables", + journal = "{IEEE} Transactions on Neural Networks", + volume = "18", + pages = "1529--1531", + year = "2007", +} + +@article{HyvarinenA2008, + author = {Hyv\"{a}rinen,, Aapo}, + title = {Optimal approximation of signal priors}, + journal = {Neural Computation}, + volume = {20}, + number = {12}, + year = {2008}, + pages = {3087--3110}, + publisher = {MIT Press}, + address = {Cambridge, MA, USA}, + } + +@article{kording2004, +author={Konrad P. K{\"o}rding and Christoph Kayser and Wolfgang +Einh{\"a}user and Peter K{\"o}nig}, +title = "How Are Complex Cell Properties Adapted to the Statistics of +Natural Stimuli?", +year = 2004, +journal = "Journal of Neurophysiology", +volume = 91, +pages = {206--212}, +url="jn.physiology.org/cgi/reprint/91/1/206.pdf" +} + +@inproceedings{Koster-Hyvarinen-2007, + author = {Urs K{\"{o}}ster and Aapo Hyv{\"{a}}rinen}, + title = {A two-layer {ICA}-like model estimated by {S}core {M}atching}, + booktitle = {Int. Conf. Artificial Neural Networks (ICANN'2007)}, + pages = {798--807}, + year = 2007, +} + +@article{Iba-2001, + author = "Yukito Iba", + title = "Extended Ensemble Monte Carlo", + journal = "International Journal of Modern Physics", + volume = "C12", + pages = "623--656", + year = "2001", +} + +@InProceedings{icml2009_093, + author = {Hossein Mobahi and Ronan Collobert and Jason Weston}, + title = {Deep Learning from Temporal Coherence in Video}, + booktitle = {Proceedings of the 26th International Conference on Machine Learning}, + pages = {737--744}, + year = 2009, + editor = {L\'{e}on Bottou and Michael Littman}, + address = {Montreal}, + month = {June}, + publisher = {Omnipress} +} + +@InProceedings{icann:Holger+Yoshua:1997, + author = "Holger Schwenk and Yoshua Bengio", + booktitle = "International Conference on Artificial Neural + Networks", + title = "{AdaBoosting} Neural Networks: Application to on-line + Character Recognition", + publisher = "Springer Verlag", + pages = "967--972", + year = "1997", +} + +@Article{Ide1998, + author = "Nancy Ide and Jean Veronis", + title = "Introduction to the Special Issue on Word Sense + Disambiguation: The State of the Art", + journal = "Computational Linguistics", + volume = "24", + number = "1", + pages = "1--40", + year = "1998", +} + +@Article{IEEE-KDE:Frasconi95, + author = "P. Frasconi and M. Gori and M. Maggini and G. Soda", + title = "Unified Integration of Explicit Rules and Learning by + Example in Recurrent Networks", + journal = "IEEE Transactions on Knowledge and Data Engineering", + volume = "7", + number = "2", + pages = "340--346", + year = "1995", + OPTmonth = "", +} + +@Article{igel05, + author = "C. Igel and M. Toussaint and W. Weishui", + title = "Rprop using the natural gradient compared to + Levenberg-Marquardt optimization", + journal = "Trends and Applications in Constructive Approximation. + International Series of Numerical Mathematics.", + volume = "151", + publisher = "Birkhäuser Verlag", + pages = "259--272", + year = "2005", +} + +@Article{intrator, + author = "Nathan Intrator and Shimon Edelman", + title = "How to make a low-dimensional representation suitable + for diverse tasks", + journal = "Connection Science, Special issue on Transfer in + Neural Networks", + volume = "8", + pages = "205--224", + year = "1996", +} + +@Article{intrator96, + author = "Nathan Intrator and Shimon Edelman", + title = "How to make a low-dimensional representation suitable + for diverse tasks", + journal = "Connection Science, Special issue on Transfer in + Neural Networks", + volume = "8", + pages = "205--224", + year = "1996", +} + +@Article{Inzenman-91, + author = "A. J. Inzenman", + title = "Recent developments in nonparametric density + estimation", + journal = "Journal of the American Statistical Association", + volume = "86", + number = "413", + pages = "205--224", + year = "1991", +} + +@TechReport{IOHMM-TR, + author = "Y. Bengio and P. Frasconi", + title = "An {EM} Approach to Learning Sequential Behavior", + number = "RT-DSI-11/94", + institution = "University of Florence", + year = "1994", +} + +@InProceedings{Irie88, + author = "B. Irie and S. Miyake", + booktitle = "IEEE Second International Conference on Neural + Networks, San Diego", + title = "Capabilities of three layer perceptrons", + year = "1988", +} + +@Article{Irino+Kawahara90, + author = "T. Irino and H. Kawahara", + title = "A Method for Designing Neural Networks Using Nonlinear + Multivariate Analysis: Application to + Speaker-Independent Vowel Recognition", + journal = "Neural Computation", + volume = "2", + type = "Letter", + number = "3", + pages = "386--397", + year = "1990", +} + +@article{ItoM2004, + author = {Ito, Minami and Komatsu, Hidehiko }, + citeulike-article-id = {451606}, + doi = {http://dx.doi.org/10.1523/JNEUROSCI.4364}, + journal = {Journal of Neuroscience}, + keywords = {cnv, v2}, + month = {March}, + number = {13}, + pages = {3313--3324}, + posted-at = {2007-03-30 11:19:11}, + priority = {0}, + title = {Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys}, + volume = {24}, + year = {2004} +} + %url = {http://dx.doi.org/10.1523/JNEUROSCI.4364}, + +@Article{Jaakkola+Jordan99, + author = "T. Jaakkola and M. I. Jordan", + title = "Varitional methods and the {QMR}-{DT} database", + journal = "Journal of Artificial Intelligence", + volume = "10", + pages = "291--322", + year = "1999", +} + +%I deprecated because the year in the tag is wrong +@InProceedings{Jaakkola98, + author = "Tommi S. Jaakkola and David Haussler", + editor = NIPS11ed, + booktitle = NIPS11, + title = "Exploiting generative models in discriminative + classifiers", + publisher = "MIT Press, Cambridge, MA", + pages = "487--493", + year = "1999", +} + +@InProceedings{Jaakkola99, + author = "Tommi S. Jaakkola and David Haussler", + editor = NIPS11ed, + booktitle = NIPS11, + title = "Exploiting generative models in discriminative + classifiers", + publisher = "MIT Press, Cambridge, MA", + pages = "487--493", + year = "1999", +} + +@Misc{jaakkola98exploiting, + author = "T. Jaakkola and D. Haussler", + title = "Exploiting generative models in discriminative + classifiers", + year = "1998", + note = "Preprint, Dept.of Computer Science, Univ. of California. + A shorter version is in Advances in Neural + Information Processing Systems 11", + howpublished = "Available from http://www.cse.ucsc.edu/~haussler/pubs.html", +} + +@Article{Jacobs-nc91, + author = "R. A. Jacobs and M. I. Jordan and S. J. Nowlan and G. + E. Hinton", + title = "Adaptive mixture of local experts", + journal = "Neural Computation", + volume = "3", + pages = "79--87", + year = "1991", +} + +@InCollection{Jacobs-nips91, + author = "R. A. Jacobs and M. I. Jordan", + editor = NIPS3ed, + booktitle = NIPS3, + title = "A competitive modular connectionist architecture", + publisher = "Morgan Kaufman Publishers", + address = "San Mateo, CA", + year = "1991", +} + +@TechReport{Jacobs-tr90, + author = "R. A. Jacobs and M. I. Jordan and A. G. Barto", + title = "Task Decomposition Through Competition in a Modular + Connectionist Architecture: The {What} and {Where} + Vision Tasks", + number = "COINS 90-27", + institution = "MIT", + address = "Cambridge MA", + year = "1990", +} + +@Article{Jacobs88, + author = "R. A. Jacobs", + title = "Increased Rates of Convergence Through Learning Rate + Adaptation", + journal = nn, + volume = "1", + pages = "295--307", + year = "1988", +} + +@Article{Jacobs91a, + author = "Robert A. Jacobs and Michael I. Jordan and Steven J. + Nowlan and Geoffrey E. Hinton", + title = "Adaptive Mixtures of Local Experts", + journal = nc, + volume = "3", + pages = "79--87", + year = "1991", +} + +@Article{Jacobs91b, + author = "R. A. Jacobs and M. I. Jordan and A. G. Barto", + title = "Task Decomposition Through Competition in a Modular + Connectionist Architecture: The What and Where Vision + Task", + journal = "Cognitive Science", + volume = "15", + pages = "219--250", + year = "1991", +} + +@Article{Jacobs94, + author = "R. A. Jacobs and S. M. Kosslyn", + title = "Encoding Shape and Spatial Relations: The Role of + Receptive Fields in Coordinating Complementary + Representations", + journal = "Cognitive Science", + year = "1994", +} + +@article{Jaeger-2007, + author = {Herbert Jaeger}, + title = {Echo state network}, + year = 2007, + journal = {Scholarpedia}, + volume = 2, + number = 9, + pages = 2330, +} + +@Article{Japkowicz2000, + author = "Nathalie Japkowicz and Stephen J. Hanson and Mark A. + Gluck", + title = "Nonlinear Autoassociation is not Equivalent to {PCA}", + journal = "Neural Computation", + volume = "12", + number = "3", + pages = "531--545", + year = "2000", +} + +@Article{Japkowicz2002, + author = "N. Japkowicz and S. Stephen", + title = "The Class Imbalance Problem: {A} Systematic Study", + journal = "Intelligent Data Analysis", + volume = "6", + number = "5", + year = "2002", +} + +@inproceedings {Jarrett-ICCV2009, + original = "orig/jarrett-iccv-09.pdf", + title = "What is the Best Multi-Stage Architecture for Object Recognition?", + author = "Jarrett, Kevin and Kavukcuoglu, Koray and Ranzato, {Marc'Aurelio} and {LeCun}, Yann", + booktitle = "Proc. International Conference on Computer Vision (ICCV'09)", + publisher = "IEEE", + year = "2009" +} + +@TechReport{Jauvin+Bengio-TR2003, + author = "Christian Jauvin and Yoshua Bengio", + title = "A Sense-Smoothed Bigram Language Model", + number = "1233", + institution = "Dept. IRO, Universit\'e de Montr\'eal", + year = "2003", +} + +@Book{Jaynes03, + author = "E. T. Jaynes", + title = "{Probability} {Theory}: {The} {Logic} of {Science}", + publisher = "Cambridge University Press", + year = "2003", +} + +@InCollection{Jaynes83, + author = "E. T. Jaynes", + booktitle = "Papers on Probability, Statistics and Statistical + Physics", + title = "{Bayesian} intervals versus confidence intervals", + publisher = "Kluwer", + year = "1983", + editors = "R. D. Rosencrantz", +} + +@Article{JCB:Baldi95t, + author = "Y. Chauvin and P. Baldi", + title = "Hidden Markov models of the {G}-Protein-Coupled + receptor family", + journal = "Journal of Computational Biology", + year = "1995", +} + +@InProceedings{jebara03, + author = "Tony Jebara and Risi Kondor", + booktitle = colt03, + title = "{Bhattacharyya and Expected Likelihood Kernels}", + year = "2003", +} + +@InProceedings{Jebara03Convex, + author = "T. Jebara", + editor = "", + booktitle = "Proceedings of AISTATS 2003", + title = "Convex Invariance Learning", + publisher = "", + pages = "", + year = "2003", +} + +@InProceedings{jebara04, + author = "Tony Jebara", + booktitle = ICML04, + editor = ICML04ed, + publisher = ICML04publ, + title = "{Multi-task feature and kernel selection for SVMs}", + address = "New York, NY, USA", + year = "2004", + location = "Banff, Alberta, Canada", +} + +@Book{JebaraT2003, + author = "Tony Jebara", + title = "Machine Learning: Discriminative and Generative (The + Kluwer International Series in Engineering and Computer + Science)", + howpublished = "Hardcover", + publisher = "Springer", + month = dec, + year = "2003", + citeulike-article-id = "134203", + comment = "- maximum entropy discriminative as unification of + discriminative and generative approaches", + keywords = "book, generative-discriminative, svm", + priority = "2", +} + %ISBN = "1402076479", + %URL = "http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/1402076479", + +@InCollection{Jelinek+Mercer80, + author = "F. Jelinek and R. L. Mercer", + editor = "E. S. Gelsema and L. N. Kanal", + booktitle = "Pattern Recognition in Practice", + title = "Interpolated estimation of Markov source parameters + from sparse data", + publisher = "North-Holland, Amsterdam", + year = "1980", +} + +@InProceedings{Jelinek-Chelba-99, + author = "Frederick Jelinek and Ciprian Chelba", + booktitle = "European Conference on Speech Communication and + Technology", + title = "Putting language into language modeling", + volume = "1", + address = "Budapest", + pages = "KN1--KN5", + year = "1999", +} + +@Article{Jelinek76, + author = "F. Jelinek", + title = "Continuous speech recognition by statistical methods", + journal = "Proceedings of the IEEE", + volume = "64", + pages = "532--556", + year = "1976", +} + +@InCollection{Jelinek80, + author = "F. Jelinek and R. L. Mercer", + editor = "E. S. Gelsema and L. N. Kanal", + booktitle = "Pattern Recognition in Practice", + title = "Interpolated Estimation of {Markov} Source Parameters + from Sparse Data", + publisher = "North-Holland", + address = "Amsterdam", + year = "1980", + copy = yes, +} + +@Book{Jelinek98, + author = "F. Jelinek", + title = "Statistical Methods for Speech Recognition", + publisher = "MIT Press", + address = "Cambridge, Massachussetts", + year = "1998", +} + +@InProceedings{JensenRiis2000, + author = "K. J. Jensen and S. Riis", + booktitle = "International Conference on Spoken Language + Processing", + title = "Self-organizing letter code-book for text-to-phoneme + neural network model", + volume = "3", + pages = "318--321", + year = "2000", +} + +@InProceedings{Jeong96, + author = "E. Jeong and K. Furuta and S. Kondo", + booktitle = nipc-hmit96, + title = "Identification of Transient in Nuclear Power Plant + using Adaptive Template Matching with Neural Network", + volume = "1", + publisher = ans, + pages = "243--250", + year = "1996", +} + +@InCollection{joachims99largescaleSVM, + author = "T. Joachims", + editor = "B. {Sch\"olkopf} and C. J. C. Burges and A. J. Smola", + booktitle = "Advances in Kernel Methods --- Support Vector + Learning", + title = "Making large-Scale {SVM} Learning Practical", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "1999", +} + +@InProceedings{joachims99transductive, + author = "Thorsten Joachims", + booktitle = ICML99, + editor = ICML99ed, + publisher = ICML99publ, + title = "Transductive Inference for Text Classification using + Support Vector Machines", + address = "Bled, SL", + pages = "200--209", + year = "1999", +} + %URL = "citeseer.ist.psu.edu/joachims99transductive.html", + +@TechReport{Johansson90, + author = "E. M. Johansson and F. U. Dowla and D. M. Goodman", + title = "Backpropagation learning for multi-layer feed-forward + neural networks using the conjugate gradient method", + number = "UCRL-JC-104850", + institution = "Lawrence Livermore National Laboratory", + month = sep, + year = "1990", +} + +@inproceedings{John+al-1994, + author = {John, George H. and Kohavi, Ron and Pfleger, Karl}, + booktitle = {Proceedings of the Eleventh International Conference on Machine Learning}, + pages = {121--129}, + title = {Irrelevant Features and the Subset Selection Problem}, + url = {http://citeseer.ist.psu.edu/john94irrelevant.html}, + year = {1994}, + publisher = {Morgan Kaufmann}, +} + +@Article{Johnson89, + author = "D. S. Johnson and C. R. Aragon and L. A. McGeoch and + C. Schevon", + title = "Optimization by Simulated Annealing: An Experimental + Evaluation; Part {I}, Graph Partitioning", + journal = opres, + volume = "37", + pages = "865--891", + year = "1989", +} + +@InProceedings{Joines92QQ23, + author = "J. A. Joines and M. W. White", + booktitle = "IJCNN", + title = "Improved Generalization Using Robust Cost Functions", + address = "Baltimore, Maryland", + pages = "911--918", + month = jun, + year = "1992", + ref = "QQ23", +} + +@Book{Jolliffe86, + author = "Ian T. Jolliffe", + title = "Principal Component Analysis", + publisher = "Springer-Verlag", + address = "New York", + year = "1986", +} + +@book{Jolliffe-2002, + author = {Ian T. Jolliffe}, + citeulike-article-id = {1154147}, + howpublished = {Hardcover}, + isbn = {0387954422}, + month = {October}, + posted-at = {2007-03-11 15:04:57}, + priority = {2}, + publisher = {Springer}, + title = {Principal Component Analysis}, + url = {http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0387954422}, + year = {2002} +} + +@Article{Jordan+Jacobs94, + author = "M. I. Jordan and R. A. Jacobs", + title = "Hierarchical mixtures of experts and the {E}{M} + algorithm", + journal = nc, + volume = "6", + pages = "181--214", + year = "1994", +} + +@TechReport{Jordan+Xu93, + author = "Michael I. Jordan and L. Xu", + title = "Convergence results for the {EM} approach to mixtures + of experts architecture", + number = "9303", + institution = "MIT Computational Cognitive Science", + month = sep, + year = "1993", +} + +@Article{Jordan-cs92, + author = "M. I. Jordan and D. E. Rumelhart", + title = "Forward models: Supervised learning with a distal + teacher", + journal = "Cognitive Science", + volume = "16", + pages = "307--354", + year = "1992", +} + +@InProceedings{Jordan-HMDT97, + author = "M. Jordan and Z. Ghahramani and L. Saul", + editor = NIPS9ed, + booktitle = NIPS9, + title = "Hidden Markov decision trees", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "", + year = "1997", +} + +@InProceedings{Jordan-nips92, + author = "M. I. Jordan and R. A. Jacobs", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Hierarchies of adaptive experts", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "985--992", + year = "1992", +} + +@TechReport{Jordan-tr86, + author = "M. I. Jordan", + title = "Serial Order: a Parallel Distributed Processing + Approach", + number = "8604", + institution = "ICS (Institute for Cognitive Science, University of + California)", + year = "1986", +} + +@InProceedings{Jordan86, + author = "M. I. Jordan", + booktitle = "Proceedings of the Eighth Annual Conference of the + Cognitive Science Society", + title = "Attractor Dynamics and Parallelism in a Connectionist + Sequential Machine", + publisher = "Lawrence Erlbaum, Hillsdale", + address = "Amherst 1986", + pages = "531--546", + year = "1986", +} + +@TechReport{Jordan88, + author = "M. I. Jordan", + title = "Supervised Learning and Systems with Excess Degrees of + Freedom", + number = "COINS Technical Report 88-27", + institution = "MIT", + address = "Cambridge MA", + year = "1988", +} + +@InCollection{Jordan89, + author = "M. I. Jordan", + editor = "J. L. Elman and D. E. Rumelhart", + booktitle = "Advances in Connectionist Theory: Speech", + title = "Serial Order: {A} Parallel, Distributed Processing + Approach", + publisher = "Lawrence Erlbaum", + address = "Hillsdale", + year = "1989", +} + +@InProceedings{Jordan89b, + author = "M. I. Jordan", + editor = "G. Hinton and D. S. Touretzky", + booktitle = "Proceedings of the 1988 Connectionist Models Summer + School", + title = "Supervised learning and systems with excess degrees of + freedom", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + year = "1989", +} + +@InCollection{Jordan90, + author = "M. I. Jordan", + editor = "M. Jeannerod", + booktitle = "Attention and Performance XIII", + title = "Motor learning and the degrees of freedom problem", + publisher = "Hillsdale, NJ: Erlbaum", + year = "1990", +} + +@Book{Jordan98, + author = "M. I. Jordan", + title = "Learning in Graphical Models", + publisher = "Kluwer", + address = "Dordrecht, Netherlands", + year = "1998", +} + +@Article{Jour:Freund:AdaBoostDetailed, + author = "Yoav Freund and Robert E. Schapire", + title = "A decision theoretic generalization of on-line + learning and an application to Boosting", + journal = "Journal of Computer and System Science", + volume = "55", + number = "1", + pages = "119--139", + year = "1997", +} + +@Article{Jour:Freund:boost, + author = "Yoav Freund", + title = "Boosting a weak learning algorithm by majority", + journal = "Information and Computation", + volume = "121", + number = "2", + pages = "256--285", + year = "1995", +} + +@Article{Jour-Freund-AdaBoostDetailed, + author = "Yoav Freund and Robert E. Schapire", + title = "A decision theoretic generalization of on-line + learning and an application to Boosting", + journal = "Journal of Computer and System Science", + volume = "55", + number = "1", + pages = "119--139", + year = "1997", +} + +@PhdThesis{Jouvet88, + author = "D. Jouvet", + title = "Reconnaissance de Mots Connectes Independamment du + Locuteur par des Methodes Statistiques", + number = "NST-88E006", + school = "Ecole National Superieure des Telecommunications", + year = "1988", +} + +@inproceedings{JuanA2001, + author = {Alfons Juan and Enrique Vidal}, + title = {On the use of Bernoulli Mixture Models for Text Classification}, + booktitle = {PRIS '01: Proceedings of the 1st International Workshop on Pattern Recognition in Information Systems}, + year = {2001}, + pages = {118--126}, + publisher = {ICEIS Press}, + } + +@inproceedings{JuanA2004, + author = {Alfons Juan and Enrique Vidal}, + title = {Bernoulli Mixture Models for Binary Images}, + booktitle = {ICPR '04: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR'04) Volume 3}, + year = {2004}, + pages = {367--370}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, + } + +@Article{Juang92, + author = "B. H. Juang and S. Katagiri", + title = "Discriminative learning for minimum error + classification", + journal = "IEEE Transactions on Signal Processing", + volume = "40", + number = "12", + pages = "3043--3054", + year = "1992", +} + +@Article{Judd88, + author = "S. Judd", + title = "On the complexity of loading shallow neural networks", + journal = "Journal of Complexity", + volume = "4", + pages = "177--192", + year = "1988", +} + +@Book{JuddBook, + author = "J. S. Judd", + title = "Neural Network Design and the Complexity of Learning", + publisher = "MIT press", + year = "1989", +} + +@book{Jurafsky+Martin-2008, + author = {Jurafsky, Daniel and Martin, James H.}, + howpublished = {Hardcover}, + month = {January}, + publisher = {Prentice Hall}, + edition = 2, + title = {Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition}, + year = {2008} +} + +@Article{Jutten+Herault-91, + author = "Christian Jutten and Jeanny Herault", + title = "Blind separation of sources, part {I}: an adaptive + algorithm based on neuromimetic architecture", + journal = "Signal Processing", + volume = "24", + pages = "1--10", + year = "1991", +} + +@InProceedings{Kahng89, + author = "A. B. Kahng", + booktitle = ijcnn, + title = "Travelling Salesman Heuristics and Embedding Dimension + in the Hopfield Model", + volume = "1", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "513--520", + year = "1989", +} + +@InProceedings{kai03, + author = "Yu Kai and Schwaighofer Anton and Tresp Volker and Ma + Wei-Ying and Zhang HongJiang", + booktitle = UAI03, + title = "Collaborative Ensemble Learning: Combining + Collaborative and Content-Based Information Filtering + via Hierarchical Bayes", + publisher = "Morgan Kaufmann Publishers", + address = "San Francisco, CA", + pages = "616--623", + year = "2003", +} + +@Article{Kalman61, + author = "R. Kalman and R. S. Bucy", + title = "New results in linear filtering and prediction", + journal = "Journal of Basic Engineering (ASME)", + volume = "83D", + pages = "95--108", + year = "1961", +} + +@article{Kambhatla+Leen-1997, + author = {Kambhatla, N. and Leen, T. K. }, + journal = {Neural Computation}, + pages = {1493--1516}, + title = {Dimension Reduction by Local Principal Component Analysis}, + volume = {9}, + year = {1997} +} + +@Article{Kammen88, + author = "D. M. Kammen and A. L. Yuille", + title = "Spontaneous Symmetry-Breaking Energy Functions and the + Emergence of Orientation Selective Cortical Cells", + journal = biocyb, + volume = "59", + pages = "23--31", + year = "1988", +} + +@InProceedings{Kammerer89, + author = "B. K. Kammerer and W. A. Kupper", + booktitle = ijcnn, + title = "Design of Hierarchical Perceptron Structures and their + Application to the Task of Isolated Word Recognition", + address = "Washington D.C.", + year = "1989", +} + +@Book{Kandel85, + author = "E. R. Kandel and J. H. Schwartz", + title = "Principles of Neural Science", + publisher = "Elsevier", + address = "New York", + edition = "2", + year = "1985", +} + +@Article{Kanter87, + author = "I. Kanter and H. Sompolinsky", + title = "Associative Recall of Memory Without Errors", + journal = prA, + volume = "35", + pages = "380--392", + year = "1987", +} + +@inproceedings{KarklinY2003, + author = {Yan Karklin and + Michael S. Lewicki}, + title = {A Model for Learning Variance Components of Natural Images}, + year = {2003}, + pages = {1367-1374}, + editor = NIPS15ed, + booktitle = NIPS15, + publisher = "{MIT} Press", +} + +@Article{Karmin90, + author = "E. D. Karmin", + title = "A simple procedure for pruning back-propagation + trained neural networks", + journal = ieeetrnn, + volume = "1", + number = "2", + pages = "239--242", + year = "1990", +} + +@Article{Karplus97, + author = "K. Karplus and K. Sjolander and C. Barrett and M. + Cline and D. Haussler and R. Hughey and L. Holm and C. + Sander", + title = "Predicting protein structure using hidden Markov + models", + journal = "Proteins: Structure, Function and Genetics", + volume = "S 1", + number = "1", + pages = "134--139", + year = "1997", +} + +@PhdThesis{KasselR1995, + author = {Robert Kassel}, + title = {A Comparison of Approaches to On-line Handwritten Character Recognition}, + school = {MIT Spoken Language Systems Group}, + year = {1995}, +} + +@Article{Katz87, + author = "Slava M. Katz", + title = "Estimation of Probabilities from Sparse Data for the + Language Model Component of a Speech Recognizer", + journal = "IEEE Transactions on Acoustics, Speech, and Signal + Processing", + volume = "ASSP-35", + number = "3", + pages = "400--401", + month = mar, + year = "1987", +} + +@InCollection{Kaul, + author = "G. Kaul", + editor = "G. S. Maddala and C. R. Rao", + booktitle = "Handbook of Statistics, Vol. 14", + title = "Predictable Components in Stock Returns", + publisher = "Elsevier Science", + pages = "269--296", + year = "1996", +} + +@InProceedings{kbnn-craven.mlc93, + author = "Mark W. Craven and Jude W. Shavlik", + booktitle = "Proceedings of the Tenth International Conference on + Machine Learning", + title = "Learning Symbolic Rules Using Artificial Neural + Networks", + publisher = "Morgan Kaufmann", + address = "Amherst, MA", + pages = "73--80", + year = "1993", +} + +@InProceedings{kbnn-maclin.aaai92, + author = "R. Maclin and J. Shavlik", + booktitle = "Proceedings of the Tenth National Conference on + Artificial Intelligence", + title = "Using Knowledge-Based Neural Networks to Improve + Algorithms: Refining the Chou-Fasman Algorithm for + Protein Folding", + address = "San Jose, CA", + pages = "165--170", + year = "1992", +} + +@TechReport{kbnn-maclin.mlrgwp91, + author = "R. Maclin and J. W. Shavlik", + title = "Refining Algorithms with Knowledge-Based Neural + Networks: Improving the Chou-Fasman Algorithm for + Protein Folding", + number = "Machine Learning Research Group Working Paper 91-2", + institution = "Department of Computer Sciences, University of + Wisconsin", + year = "1991", + note = "also in Computational Learning Theory and Natural + Learning Systems, volume 1, S. Hanson, G. Drastal, and + R. Rivest, (eds.), MIT Press", +} + +@InProceedings{kbnn-noordewier.nips3, + author = "Michiel O. Noordewier and Geoffrey G. Towell and Jude + W. Shavlik", + editor = NIPS3ed, + booktitle = NIPS3, + title = "Training Knowledge-Based Neural Networks to Recognize + Genes in {DNA} Sequences", + publisher = "Morgan Kaufmann", + address = "Denver, CO", + pages = "530--536", + year = "1991", +} + +@InProceedings{kbnn-opitz.ijcai93, + author = "D. W. Opitz and J. W. Shavlik", + booktitle = "Proceedings of the Thirteenth International Joint + Conference on Artificial Intelligence", + title = "Heuristically Expanding Knowledge-Based Neural + Networks", + address = "Chambery, France", + month = sep, + year = "1993", +} + +@TechReport{kbnn-opitz.mlrgwp92, + author = "D. W. Opitz and J. W. Shavlik", + title = "Using Heuristic Search to Expand Knowledge-Based + Neural Networks", + number = "Machine Learning Research Group Working Paper 92-1", + institution = "Department of Computer Sciences, University of + Wisconsin", + year = "1992", + note = "(also in Computational Learning Theory and Natural + Learning Systems, volume 3, T. Petsche, S. Judd, and S. + Hanson, (eds.), MIT Press)", +} + +@TechReport{kbnn-shavlik.tr92, + author = "J. W. Shavlik", + title = "A Framework for Combining Symbolic and Neural + Learning", + number = "UW TR 1123", + institution = "Department of Computer Sciences, University of + Wisconsin", + year = "1992", + note = "(a shorter version will appear in Machine Learning)", +} + +@InProceedings{kbnn-towell.aaai90, + author = "G. G. Towell and J. W. Shavlik and M. O. Noordewier", + booktitle = "Proceedings of the Eighth National Conference on + Artificial Intelligence", + title = "Refinement of Approximate Domain Theories by + Knowledge-Based Neural Networks", + address = "Boston, MA", + pages = "861--866", + year = "1990", +} + +@InProceedings{kbnn-towell.aaai92, + author = "G. Towell and J. Shavlik", + booktitle = "Proceedings of the Tenth National Conference on + Artificial Intelligence", + title = "Using Symbolic Learning to Improve Knowledge-Based + Neural Networks", + address = "San Jose, CA", + pages = "177--182", + year = "1992", +} + +@Article{kbnn-towell.aij94, + author = "Geoffrey G. Towell and Jude W. Shavlik", + title = "Knowledge-Based Neural Networks", + journal = "Artificial Intelligence", + year = "1994", + note = "undergoing 2nd review", +} + +@InCollection{kbnn-towell.ml493, + author = "Geoffrey G. Towell and Jude W. Shavlik", + editor = "R. S. Michalski and G. Tecuci", + booktitle = "Machine Learning: An Integrated Approach", + title = "Refining Symbolic Knowledge Using Neural Networks", + volume = "4", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + year = "1993", +} + +@InProceedings{kbnn-towell.mlc91, + author = "Geoffrey G. Towell and Mark W. Craven and Jude W. + Shavlik", + booktitle = "Proceedings of the Eighth International Machine + Learning Workshop", + title = "Constructive Induction in Knowledge-Based Neural + Networks", + publisher = "Morgan Kaufmann", + address = "Evanston, IL", + pages = "213--217", + year = "1991", +} + +@Article{kbnn-towell.mlj93, + author = "Geoffrey G. Towell and Jude W. Shavlik", + title = "The Extraction of Refined Rules from Knowledge-Based + Neural Networks", + journal = "Machine Learning", + volume = "13", + number = "1", + pages = "71--101", + year = "1993", +} + +@InProceedings{kbnn-towell.nips4, + author = "Geoffrey G. Towell and Jude W. Shavlik", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Interpretation of Artificial Neural Networks: Mapping + knowledge-based Neural Networks into Rules", + publisher = "Morgan Kaufmann", + address = "Denver, CO", + year = "1992", +} + +@PhdThesis{kbnn-towell.thesis, + author = "Geoffrey G. Towell", + title = "Symbolic Knowledge and Neural Networks: Insertion, + Refinement and Extraction", + school = "University of Wisconsin -- Madison", + year = "1991", + note = "(Also appears as UW Technical Report 1072 [out of + print].)", +} + +@InProceedings{Kearns+Ron97, + author = "Michael Kearns and Dana Ron", + booktitle = "Tenth Annual Conference on Computational Learning + Theory,", + title = "Algorithmic Stability and Sanity-Check Bounds for + Leave-One-Out Cross-Validation", + publisher = "Morgan Kaufmann", + pages = "152--162", + year = "1997", +} + +@InCollection{keeler-rumelhart-91, + author = "J. Keeler and {W.-K.} {Rumelhart, D.and Leow}", + editor = NIPS3ed, + booktitle = NIPS3, + title = "integrated segmentation and recognition of + hand-printed numerals", + publisher = "Morgan Kaufmann Publishers, San Mateo, CA", + pages = "557--563", + year = "1991", +} + +@Article{Keerthi+Lin-2003, + author = "S. Sathiya Keerthi and Chih-Jen Lin", + title = "Asymptotic Behaviors of Support Vector Machines with + {Gaussian} Kernel", + journal = "Neural Computation", + volume = "15", + number = "7", + pages = "1667--1689", + year = "2003", +} + +@InCollection{Kegl-2003, + author = "Bal\'{a}zs K\'{e}gl", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Intrinsic Dimension Estimation Using Packing Numbers", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "681--688", + year = "2003", +} + +@Article{Kegl-Krzyzak-2002, + author = "B. Kegl and A. Krzyzak", + title = "Piecewise linear skeletonization using principal + curves", + journal = "{IEEE} Transactions on Pattern Analysis and Machine + Intelligence", + volume = "24", + number = "1", + pages = "59--74", + year = "2002", +} + +@InProceedings{Kegl2003, + author = "B. Kegl", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Intrinsic dimension estimation using packing numbers", + publisher = "The {MIT} Press", + year = "2003", +} + +@InCollection{kegl2005, + author = "Bal\'{a}zs K\'{e}gl and Ligen Wang", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Boosting on Manifolds: Adaptive Regularization of Base + Classifiers", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2005", +} + +@TechReport{Kehagias89, + author = "A. Kehagias", + title = "Stochastic Recurrent Networks: Prediction and + Classification of Time Series", + institution = "Brown University. Division of Applied Mathematics", + address = "Providence, RI 02912", + year = "1991", +} + +@InProceedings{KellerM2005, + author = "M. Keller and S. Bengio", + booktitle = "Proceedings of the 15th International Conference on + Artificial Neural Networks: Biological Inspirations, + ICANN, Lecture Notes in Computer Science", + title = "A neural network for text representation", + volume = "LNCS 3697", + pages = "667--672", + year = "2005", + teditor = "Springer-Verlag", +} + +@inproceedings{Keller2007, + author = {Katherine A. Heller and Zoubin Ghahramani}, + booktitle = aistats07, + year = 2007, + title = {A Nonparametric Bayesian Approach to Modeling Overlapping Clusters}, + publisher = "Omnipress", + date = "March 21-24, 2007", + address = "San Juan, Porto Rico", + pages = "187-194", +} + +@inproceedings{Keller2008, + author = {Katherine A. Heller and Sinead Williamson and Zoubin Ghahramani}, + year = 2008, + title = {Statistical models for partial membership}, + booktitle = ICML08, + editor = ICML08ed, + publisher = ICML08publ, + location = {Helsinki, Finland}, + pages = "392--399", +} + +@Book{Kelly1975, + author = "Edward Kelly and Philip Stone", + title = "Computer recognition of english word senses", + publisher = "North-Holland Linguistics Series", + year = "1975", +} + +@InProceedings{Kemp+al-2004, + author = "C. Kemp and T. L. Griffiths and S. Stromsten and J. B. + Tenembaum", + editor = NIPS16ed, + booktitle = NIPS16, + title = "Semi-supervised learning with trees", + publisher = "{MIT} Press", + address = "Cambridge, MA", + year = "2004", +} + +@inproceedings{Kerr2007, + author = {Wesley Kerr and Shane Hoversten and Daniel Hewlett and Paul R. Cohen and Yu-Han Chang}, + title = {Learning in Wubble World}, + booktitle = {Proceedings of the IEEE Int. Conference on Development and Learning}, + year = 2007, +} + +@Article{Kerszberg90, + author = "M. Kerszberg and A. Zippelius", + title = "Synchronization in Neural Assemblies", + journal = pscrip, + volume = "T33", + pages = "54--64", + year = "1990", +} + +@InProceedings{Keysers2000, + author = "D. Keysers and J. Dahmen and H. Ney", + booktitle = "22nd Symposium of the German Association for Pattern + Recognition", + title = "A probabilistic view on tangent distance", + address = "Kiel, Germany", + year = "2000", +} + +@Book{Khalil92, + author = "Hassan K. Khalil", + title = "Nonlinear Systems", + publisher = "Macmillan Publishing Company", + address = "New York", + year = "1992", +} + +@Book{Kiang65, + author = "N. Y. S. Kiang and T. Watanabe and E. C. Thomas and L. + F. Clark", + title = "Discharge patterns of single fibers in the cat's + auditory nerve fiber", + publisher = "Cambdrige, MA: MIT Press", + year = "1965", +} + +@Article{Kiefer80, + author = "N. M. Kiefer", + title = "A note on switching regressions and logistic + discrimination", + journal = "Econometrica", + volume = "48", + pages = "1065--1069", + year = "1980", +} + +@Misc{Kilgarriff2000, + author = "Adam Kilgarriff and Joseph Rosenzweig", + title = "English {SENSEVAL}: Report and Results", + year = "2000", + URL = "citeseer.nj.nec.com/335615.html", + text = "A. Kilgarriff and J. Rosenzweig. English SENSEVAL: + Report and Results. In Proceedings of the 2nd + International Conference on Language Resources and + Evaluation, LREC, Athens, Greece.", +} + +@InProceedings{Kilgarriff2002, + author = "Adam Kilgarriff", + booktitle = "Proceedings of Senseval-2", + title = "English lexical sample task description", + organization = "ACL workshop", + year = "2002", +} + +@Article{Kim94, + author = "C. J. Kim", + title = "Dynamical linear models with Markov-switching", + journal = "Journal of Econometrics", + volume = "60", + pages = "1--22", + year = "1994", +} + +@Article{Kimeldorf-Wahba-71, + author = "G. Kimeldorf and G. Wahba", + title = "Some results on {Tchebychean} spline functions", + journal = "Journal of Mathematics Analysis and Applications", + volume = "33", + pages = "82--95", + year = "1971", +} + +@InCollection{Kinzel90, + author = "W. Kinzel and M. Opper", + editor = "E. Domany and J. L. van Hemmen and K. Schulten", + booktitle = "Physics of Neural Networks", + title = "Dynamics of Learning", + volume = "1", + publisher = "Springer-Verlag", + address = "Berlin", + year = "1990", +} + +@inproceedings{Kira+Rendell-1992, + author = {Kenji Kira and Larry A. Rendell}, + title = {The Feature Selection Problem: Traditional Methods and a New Algorithm}, + booktitle = {Proceedings of the Tenth National Conference on Artificial Intelligence}, + year = {1992}, + pages = {129-134}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + +@inproceedings{Kira+Rendell-1992b, + address = {San Francisco, CA, USA}, + author = {Kenji Kira and Larry A. Rendell}, + booktitle = {Proceedings of the Ninth International Conference on Machine learning}, + isbn = {15586247X}, + pages = {249--256}, + posted-at = {2007-02-07 04:40:40}, + publisher = {Morgan Kaufmann}, + title = {A practical approach to feature selection}, + url = {http://portal.acm.org/citation.cfm?id=142034}, + year = {1992} +} + +@Book{Kirk70, + author = "D. E. Kirk", + title = "Optimal Control Theory: an Introduction", + publisher = "Prentice Hall", + address = "Englewood Cliffs NJ", + year = "1970", +} + +@Book{Kirk70a, + author = "D. E. Kirk", + title = "Optimal Control Theory: an Introduction", + publisher = "Prentice Hall", + address = "Englewood Cliffs NJ", + year = "1970", +} + +@Article{Kirkpatrick83, + author = "S. Kirkpatrick and C. D. Gelatt Jr. and and M. P. + Vecchi", + title = "Optimization by Simulated Annealing", + journal = science, + volume = "220", + pages = "671--680", + year = "1983", +} + +@Article{Kirkpatrick85, + author = "S. Kirkpatrick and G. Toulouse", + title = "Configuration Space Analysis of Travelling Salesman + Problems", + journal = jpp, + volume = "46", + pages = "1277--1292", + year = "1985", +} + +@Book{kitagawa+gersch96, + author = "G. Kitagawa and W. Gersch", + title = "Smoothness priors analysis of time series", + publisher = "Eds. P. Bickel and P. Diggle and S. Fienberg and K. + Krickeberg and I. Olkin and W. Wermuth and S. Zeger, + Lecture Notes in Statistics, volume 116", + year = "1996", +} + +@Article{kitagawa87, + author = "G. Kitagawa", + title = "Non-{Gaussian} State-Space Modeling on Nonstationary + Time Series", + journal = "Journal of the American Statistical Association", + volume = "82", + number = "400", + pages = "1032--1063", + year = "1987", +} + +@Article{kitagawa96, + author = "G. Kitagawa", + title = "{Monte} {Carlo} Filter and Smoother for Non-{Gaussian} + Nonlinear State Space Models", + journal = "Journal of Computational Graphics and Statistics", + volume = "5", + number = "1", + pages = "1--25", + year = "1996", +} + +@Article{Kivinen02, + author = "J. Kivinen and A. Smola and R. Williamson", + title = "Online Learning with kernels", + year = "2002", + URL = "citeseer.csail.mit.edu/kivinen02online.html", + text = "J. Kivinen, A. Smola, and R. C. Williamson, (2002) + Online Learning with kernels. Advances in Neural + Information Processing Systems 14, Cambridge, MA: MIT + Press (pp. 785-793).", +} + +@InProceedings{Klatt82, + author = "D. Klatt", + booktitle = icassp, + title = "Prediction of perceived phonetic distance from + critical-band spectra: a first step", + pages = "1278--1281", + year = "1982", +} + +@inproceedings{Kleinberg-2003, + author = "J. Kleinberg", + title = "An impossibility theorem for clustering", + editor = NIPS15ed, + booktitle = NIPS15, + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2003", +} + +@Article{Kleinfeld86, + author = "D. Kleinfeld", + title = "Sequential State Generation by Model Neural Networks", + journal = PNAS, + volume = "83", + pages = "9469--9473", + year = "1986", +} + +@InCollection{Kleinfeld89, + author = "D. Kleinfeld and H. Sompolinsky", + editor = "C. Koch and I. Segev", + booktitle = "Methods in Neuronal Modeling: From Synapses to + Networks", + title = "Associative Network Models for Central Pattern + Generators", + publisher = "MIT Press", + address = "Cambridge", + pages = "195--246", + year = "1989", +} + +@Book{Klopf82, + author = "A. H. Klopf", + title = "The Hedonistic Neuron: {A} Theory of Memory, Learning, + and Intelligence", + publisher = "Hemisphere", + address = "Washington", + year = "1982", +} + +@InProceedings{Kneser95, + author = "Reinhard Kneser and Hermann Ney", + booktitle = icassp, + title = "Improved Backing-Off for {M}-Gram Language Modeling", + pages = "181--184", + year = "1995", +} + +@Article{Koch86, + author = "C. Koch and J. Marroquin and A. Yuille", + title = "Analog ``Neuronal'' Networks in Early Vision", + journal = PNAS, + volume = "83", + pages = "4263--4267", + year = "1986", +} + +@InProceedings{Koch88, + author = "C. Koch and J. Luo and C. Mead and J. Hutchinson", + editor = nips87ed, + booktitle = nips87, + title = "Computing Motion Using Resistive Networks", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "422--431", + year = "1988", +} + +@InProceedings{Kohavi95, + author = "Ron Kohavi", + booktitle = "Proceeding of the Fourteenth International Joint + Conference on Artificial Intelligence", + title = "A Study of Cross-Validation and Bootstrap for Accuracy + Estimation and Model Selection", + publisher = "Morgan Kaufmann", + pages = "1137--1143", + year = "1995", +} + +@article{Kohavi+John-1997, + address = {Essex, UK}, + author = {Kohavi, Ron and John, George H.}, + doi = {10.1016/S0004-3702(97)00043-X}, + issn = {0004-3702}, + journal = {Artificial Intelligence}, + number = {1-2}, + pages = {273--324}, + publisher = {Elsevier Science Publishers Ltd.}, + title = {Wrappers for feature subset selection}, + url = {http://portal.acm.org/citation.cfm?id=270627}, + volume = {97}, + year = {1997} +} + +@Article{Kohonen-ieee90, + author = "T. Kohonen", + title = "The Self-Organizing Map", + journal = ieeeproc, + volume = "78", + number = "9", + pages = "1464--1480", + year = "1990", + OPTnote = "Special Issue on Neural Networks", +} + +@Article{Kohonen74, + author = "T. Kohonen", + title = "An Adaptive Associative Memory Principle", + journal = ieeetc, + volume = "C-23", + pages = "444--445", + year = "1974", +} + +@Article{Kohonen82, + author = "T. Kohonen", + title = "Self-Organized Formation of Topologically Correct + Feature Maps", + journal = biocyb, + volume = "43", + year = "1982", +} + +@InProceedings{Kohonen84, + author = "T. Kohonen and K. M{\"a}kisara and T. Saram{\"a}ki", + booktitle = "Proceedings of the Seventh International Conference on + Pattern Recognition", + title = "Phonotopic Maps --- Insightful Representation of + Phonological Features for Speech Recognition", + publisher = "IEEE, New York", + address = "Montreal 1984", + pages = "182--185", + year = "1984", +} + +@TechReport{Kohonen86lvq, + author = "Teuvo Kohonen", + title = "Learning Vector Quantization for Pattern Recognition", + type = "Report", + number = "TKK-F-A601", + institution = "Helsinki University of Technology", + address = "Espoo, Finland", + year = "1986", +} + +@InProceedings{Kohonen88, + author = "T. Kohonen and G. Barna and R. Chrisley", + booktitle = icnn, + title = "Statistical Pattern Recognition with Neural Networks: + Benchmarking Studies", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "61--68", + year = "1988", +} + +@Book{Kohonen89, + author = "T. Kohonen", + title = "Self-Organization and Associative Memory", + publisher = "Springer-Verlag", + address = "Berlin", + edition = "3", + year = "1989", +} + +@Book{Kohonen-2001, + author = "T. Kohonen", + title = "Self-Organizing Maps", + publisher = "Springer", + edition = "3", + year = "2001", +} + +@Article{Kolchinskii2000, + author = "V. Koltchinskii and E. Giné", + title = "Random matrix approximation of spectra of integral + operators", + journal = "Bernoulli", + volume = "6", + number = "1", + pages = "113--167", + year = "2000", +} + +@TechReport{Kolen+Pollack90, + author = "J. F. Kolen and J. B. Pollack", + key = "kolen", + title = "Back propagation is sensitive to initial conditions", + type = "Technical Report", + number = "TR 90-{JK}-{BPSIC}", + institution = "The Ohio State University", + year = "1990", +} + +@InProceedings{Kolen-nips94, + author = "John F. Kolen", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Fool's Gold: Extracting Finite State Machines From + Recurrent Network Dynamics", + publisher = "Morgan Kaufmann", + year = "1994", +} + +@Article{Kolmogorov33, + author = "A. N. Kolmogorov", + title = "Sulla determinazione empirica di una leggi di + distribuzione", + journal = "G. Inst. Ital. Attuari", + volume = "4", + year = "1933", + note = "translated in English in {\em Breakthroughs in + Statistics}, by Kotz and Johnson (editors), + Springer-Verlag, 1992", +} + +@Article{Kolmogorov57, + author = "A. N. Kolmogorov", + title = "On the representation of continuous functions of many + variables by superposition of continuous functions of + one variable and addition", + journal = "Kokl. Akad. Nauk USSR", + volume = "114", + publisher = "[translated in: American Mathematical Society + Translations 28 (1963) 55--59]", + pages = "953--956", + year = "1957", +} + +@Article{Kolmogorov65, + author = "A. N. Kolmogorov", + title = "Three approaches to the quantitative definition of + information", + journal = "Problems of Information and Transmission", + volume = "1", + number = "1", + pages = "1--7", + year = "1965", +} + +@InProceedings{Koltchinskii-1998, + author = "V. Koltchinskii", + editor = "Eberlein and Hahn and Talagrand", + booktitle = "Progress in Probability", + title = "Asymptotics of Spectral Projections of Some Random + Matrices Approximating Integral Operators", + volume = "43", + publisher = "Birkhauser", + address = "Basel", + pages = "191--227", + year = "1998", +} + +@InProceedings{Kong95, + author = "Eun Bae Kong and Thomas G. Dietterich", + booktitle = "International Conference on Machine Learning", + title = "Error-Correcting Output Coding Corrects Bias and + Variance", + pages = "313--321", + year = "1995", +} + +@InProceedings{Konig96, + author = "Y. Konig and H. Bourlard and N. Morgan", + editor = NIPS8ed, + booktitle = NIPS8, + title = "{REMAP}: Recursive Estimation and Maximization of {A} + Posteriori Probabilities -- Application to + transition-based connectionist speech recognition", + publisher = "MIT Press, Cambridge, MA", + year = "1996", +} + +@inproceedings{Koray-08, + title = "Learning Invariant Features through Topographic Filter Maps", + author = "Kavukcuoglu, Koray and Ranzato, {Marc'Aurelio} and Fergus, Rob and {LeCun}, Yann", + booktitle = cvpr09, + publisher = "IEEE", + year = "2009" +} + +@techreport {koray-psd-08, + original = "orig/koray-psd-08.pdf", + title = "Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition", + author = "Kavukcuoglu, Koray and Ranzato, {Marc'Aurelio} and {LeCun}, Yann", + institution = "Computational and Biological Learning Lab, Courant Institute, NYU", + note = "Tech Report CBLL-TR-2008-12-01", + year = "2008" +} + +@article{Kouh-Poggio-2008, + author = {Minjoon M. Kouh and Tomaso T. Poggio}, + title = {A Canonical Neural Circuit for Cortical Nonlinear Operations}, + journal = {Neural Computation}, + volume = 20, + number={6}, + pages = {1427--1451}, + year = 2008, +} + +@TechReport{Kouropteva+al-2002, + author = {O. Kouropteva and O. Okun and A. Hadid and M. Soriano and S. Marcos and M. Pietik{\"a}inen}, + title = {Beyond locally linear embedding algorithm}, + number = {MVG-01-2002}, + institution = {Department of Electrical and Information Engineering, University of Oulu}, + address = {Oulu, Finland}, + year = 2002, +} + +@inproceedings{Kononenko-1994, + author = {Kononenko, Igor}, + booktitle = ECML94, + pages = {171--182}, + editor = {F. Bergadano and L. D. Raedt}, + title = {Estimating Attributes: Analysis and Extensions of RELIEF}, + url = {http://citeseer.ist.psu.edu/kononenko94estimating.html}, + year = {1994} +} + +@InProceedings{Kozma96, + author = "R. Kozma and M. Kitamura and S. Sato", + booktitle = nipc-hmit96, + title = "Monitoring of {NPP} State using Structural Adaptation + in a Neural Signal Processing System", + volume = "1", + publisher = ans, + pages = "273--278", + year = "1996", +} + +@Article{Kramer1991, + author = "Mark Kramer", + title = "Nonlinear Principal Component Analysis Using + Autoassociative Neural Network", + journal = "AIChE Journal", + volume = "34", + pages = "233--243", + year = "1991", +} + +@InProceedings{Kramer89, + author = "A. H. Kramer and A. Sangiovanni-Vincentelli", + editor = NIPS1ed, + booktitle = NIPS1, + title = "Efficient Parallel Learning Algorithms for Neural + Networks", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "40--48", + year = "1989", +} + +@Article{Krauth89, + author = "W. Krauth and M. M\'ezard", + title = "The Cavity Method and the Travelling-Salesman + Problem", + journal = eul, + volume = "8", + pages = "213--218", + year = "1989", +} + +@Book{Kreyszig90, + author = "E. Kreyszig", + title = "Introductory Functional Analysis with Applications", + publisher = "John Wiley \& Sons, Inc.", + address = "New York, NY", + year = "1990", +} + +@Book{Krishnaiah82, + editor = "P. R. Krishnaiah and L. N. Kanal", + title = "Classification, Pattern Recognition, and Reduction of + Dimensionality", + volume = "2", + publisher = "North Holland", + address = "Amsterdam", + year = "1982", + series = "Handbook of Statistics", +} + +@techreport{KrizhevskyHinton2009, + author={Alex Krizhevsky and Geoffrey Hinton}, + title = {Learning Multiple Layers of Features from Tiny Images}, + year = 2009, + chapter=3, + institution={University of Toronto} +} + +@InProceedings{Krogh-nips8, + author = "A. Krogh and S. K. Riis", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Prediction of beta sheets in proteins", + publisher = "MIT Press, Cambridge, MA", + pages = "917--923", + year = "1996", +} + +@Article{Krogh88, + author = "A. Krogh and J. A. Hertz", + title = "Mean Field Analysis of Hierarchical Associative + Networks with Magnetization", + journal = jpa, + volume = "21", + pages = "2211--2224", + year = "1988", +} + +@InProceedings{Krogh90a, + author = "A. Krogh and G. I. Thorbergsson and J. A. Hertz", + editor = NIPS2ed, + booktitle = NIPS2, + title = "A Cost Function for Internal Representations", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "733--740", + year = "1990", +} + +@InProceedings{Krogh90b, + author = "A. Krogh and J. A. Hertz", + editor = "R. Eckmiller and G. Hartmann and G. Hauske", + booktitle = "Parallel Processing in Neural Systems and Computers", + title = "Hebbian Learning of Principal Components", + publisher = "Elsevier, Amsterdam", + address = "D{\"u}sseldorf 1990", + pages = "183--186", + year = "1990", +} + +@Article{Krogh94, + author = "A. Krogh and M. Brown and I. S. Mian and K. Sjölander + and D. Haussler", + title = "Hidden Markov models in computational biology: + Applications to protein modeling", + journal = "Journal Molecular Biology", + volume = "235", + pages = "1501--1531", + year = "1994", +} + +@InProceedings{Krogh95, + author = "A. Krogh and J. Vedelsby", + editor = NIPS7ed, + booktitle = NIPS7, + title = "Neural network ensembles, cross validation and active + learning", + publisher = "Cambridge MA: MIT Press", + pages = "231--238", + year = "1995", +} + +@Book{Krolzig97, + author = "H.-M. Krolzig", + title = "Markov-Switching Vector Autoregressions", + publisher = "Springer", + year = "1997", +} + +@article{Krueger+Dayan-2009, + author = {Kai A. Krueger and Peter Dayan}, + title = {Flexible shaping: how learning in small steps helps}, + journal = {Cognition}, + volume = 110, + year = 2009, + pages = {380--394}, +} + +@Article{Ku92, + author = "C. C. Ku and K. Y. Lee and R. M. Eawards", + title = "Improved Nuclear Reactor Temperature Control Using + Diagonal Recurrent Neural Networks", + journal = "IEEE Transactions on Nuclear Science", + volume = "39", + pages = "2292--2308", + year = "1992", +} + +@InProceedings{Kubala94, + author = "F. Kubala and A. Anastasakos and J. Makhoul and L. + Nguyen and R. Schwartz and G. Zavaliagkos", + booktitle = icassp, + title = "Comparative experiments on large vocabulary speech + recognition", + address = "Adelaide, Australia", + pages = "561--564", + year = "1994", +} + +@InProceedings{Kuhn+Herzberg90, + author = "G. Kuhn and N. Herzberg", + booktitle = "Proc. 24th Conference on Information Sciences and + Systems", + title = "Variations on training of recurrent networks", + organization = "Princeton University", + address = "NJ", + year = "1990", +} + +@Unpublished{Kuhn87, + author = "G. Kuhn", + title = "A first look at phonetic discrimination using + connectionist models with recurrent links", + year = "1987", + note = "CCRP -- IDA SCIMP working paper No.4/87, Institute for + Defense Analysis, Princeton, NJ", +} + +@Article{Kuhn-et-al-90, + author = "G. Kuhn and R. L. Watrous and B. Ladendorf", + title = "Connected recognition with a recurrent network", + journal = spcomm, + volume = "9", + pages = "41--49", + year = "1990", + OPTnote = "", +} + +@Book{Kullback59, + author = "S. Kullback", + title = "Information Theory and Statistics", + publisher = "Wiley", + address = "New York", + year = "1959", +} + +@Book{Kumar+al-1994, + author = "V. Kumar and A. Grama and A. Gupta and G. Karypis", + title = "Introduction to Parallel Computing: Design and + Analysis of Algorithms", + publisher = "Benjamin Cummings", + address = "Redwood City, CA", + year = "1994", +} + +@Article{Kumar+al-1994b, + author = "Vipin Kumar and Shashi Shekhar and Minesh B. Amin", + title = "A Scalable Parallel Formulation of the Backpropagation + Algorithm for Hypercubes and Related Architectures", + journal = "IEEE Transactions on Parallel and Distributed + Systems", + volume = "5", + number = "10", + pages = "1073--1090", + year = "1994", +} + +@InProceedings{Kundu88, + author = "A. Kundu and L. R. Bahl", + booktitle = icassp, + title = "Recognition of handwritten script: a hidden {Markov} + model based approach", + address = "New York, NY", + pages = "928--931", + year = "1988", +} + +@Article{Kuperstein88, + author = "M. Kuperstein", + title = "Neural model of adaptive hand-eye coordination for + single postures", + journal = "Science", + volume = "239", + pages = "1308--1311", + year = "1988", +} + +@Article{Kurkova95, + author = "V. Kurkov\'a", + title = "Approximation of functions by perceptron networks with + bounded number of hidden units", + journal = "Neural Networks", + volume = "8", + pages = "745--750", + year = "1995", +} + +@Book{Kushner78, + author = "H. J. Kushner and D. S. Clark", + title = "Stochastic Approximation Methods for Constrained and + Unconstrained Systems", + publisher = "Springer-Verlag", + address = "New York", + year = "1978", +} + +@InProceedings{Kwok-Tsang-2003, + author = "J. T. Kwok and I. W. Tsang", + booktitle = ICML03, + editor = ICML03ed, + publisher = ICML03publ, + title = "Learning with idealized kernels", + pages = "400--407", + year = "2003", +} + +@InProceedings{Laaksonen97, + author = "Jorma Laaksonen", + booktitle = "Proceedngs of the International Conference on + Artificial Neural Networks ICANN'97", + title = "Local Subspace Classifier", + pages = "637--642", + year = "1997", + URL = "http://www.cis.hut.fi/jorma/papers/abstracts.html#icann97", +} + +@InProceedings{Lafferty-icml2001, + author = "John Lafferty and Andrew McCallum and Fernando C. N. Pereira", + booktitle = ICML01, + editor = ICML01ed, + publisher = ICML01publ, + title = "Conditional Random Fields: Probabilistic Models for + Segmenting and Labeling Sequence Data", + year = "2001", +} + +@article{Lai+Fyfe-2000, + author = {P. L. Lai and C. Fyfe}, + title = {Kernel and Nonlinear Canonical Correlation Analysis}, + journal = {International Journal of Neural Systems}, + year = {2000}, + pages = {365--377}, + volume = 10, + number = 5, +} + +@InProceedings{Laj92, + author = "E. Laj and A. Paoloni", + editor = "M. Gori", + booktitle = "Proc. of the Second Workshop on Neural Networks for + Speech Processing", + title = "{AIDA}: The Italian Corpora", + publisher = "LINT", + address = "Firenze (Italy)", + pages = "179--183", + year = "1992", +} + +@InProceedings{Lanckriet-2002, + author = "G. Lanckriet and N. Cristianini and P. Bartlett and L. + {El Gahoui} and M. Jordan", + booktitle = ICML02, + editor = ICML02ed, + publisher = ICML02publ, + title = "Learning the kernel matrix with semi-definite + programming", + pages = "323--330", + year = "2002", +} + +@Article{Lanckriet2004, + author = "Gert R. G. Lanckriet and Nello Cristianini and Peter + Bartlett and Laurent El Ghaoui and Michael I. Jordan", + title = "Learning the Kernel Matrix with Semidefinite + Programming", + journal = jmlr, + volume = "5", + pages = "27--72", + year = "2004", +} + +@TechReport{Lang+Hinton88, + author = "K. J. Lang and G. E. Hinton", + title = "The development of the Time-Delay Neural Network + architecture for speech recognition", + number = "CMU-CS-88-152", + institution = "Carnegie-Mellon University", + year = "1988", +} + +@Article{Langdell-00-nips, + author = "S. Langdell and Y. Bengio", + title = "Approximate {SVM} Solutions: a Datamining Tool", + journal = "submitted to NIPS'2000", + year = "2000", +} + +@InProceedings{Langford+Zadrozny-2005, + author = "John Langford and Bianca Zadrozny", + editor = aistats05ed, + booktitle = aistats05, + title = "Estimating Class Membership Probabilities using + Classifier Learners", + publisher = "Society for Artificial Intelligence and Statistics", + pages = "198--205", + year = "2005", +} + +@Article{Lapedes86a, + author = "A. Lapedes and R. Farber", + title = "A Self-Optimizing, Nonsymmetrical Neural Net for + Content Addressable Memory and Pattern Recognition", + journal = physicaD, + volume = "22", + pages = "247--259", + year = "1986", +} + +@InProceedings{Lapedes86b, + author = "A. Lapedes and R. Farber", + editor = "J. S. Denker", + booktitle = snowbird, + title = "Programming a Massively Parallel, Computation + Universal System: Static Behavior", + publisher = "American Institute of Physics, New York", + address = "Snowbird 1986", + pages = "283--298", + year = "1986", +} + +@TechReport{Lapedes87, + author = "A. Lapedes and R. Farber", + title = "Nonlinear Signal Processing Using Neural Networks: + Prediction and System Modelling", + number = "LA--UR--87--2662", + institution = "Los Alamos National Laboratory", + address = "Los Alamos, NM", + year = "1987", +} + +@InProceedings{Lapedes88, + author = "A. Lapedes and R. Farber", + editor = nips87ed, + booktitle = nips87, + title = "How Neural Nets Work", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "442--456", + year = "1988", +} + +@Article{Lari90, + author = "K. Lari and S. J. Young", + title = "The estimation of stochastic context-free grammars + using the Inside-Outside algorithm", + journal = cspla, + volume = "4", + pages = "35--56", + year = "1990", +} + +@inproceedings{Tieleman08, + author = {Tijmen Tieleman}, + title = {Training restricted Boltzmann machines using approximations to the likelihood gradient}, + booktitle = ICML08, + editor = ICML08ed, + publisher = ICML08publ, + location = {Helsinki, Finland}, + year = {2008}, + pages = {1064--1071} +} + +@InProceedings{TielemanT2009, + author = {Tijmen Tieleman and Geoffrey Hinton}, + title = {Using Fast Weights to Improve Persistent Contrastive Divergence}, + booktitle = ICML09, + editor = ICML09ed, + publisher = ICML09publ, + year = "2009", + isbn = {978-1-60558-516-1}, + pages = {1033--1040}, + location = icml09loc, + doi = {http://doi.acm.org/10.1145/1553374.1553506}, +} + +@article{Larochelle-jmlr-toappear-2008, + author = {Hugo Larochelle and Yoshua Bengio and Jerome Louradour and Pascal Lamblin}, + title = {Exploring Strategies for Training Deep Neural Networks}, + journal = jmlr, + year = 2009, + volume = 10, + pages = {1--40}, +} + +@InProceedings{LarochelleH2007-small, + author = "H. Larochelle and D. Erhan and A. Courville and + J. Bergstra and Y. Bengio", + booktitle = "ICML 2007", + title = "An Empirical Evaluation of Deep Architectures on + Problems with Many Factors of Variation", + year = "2007", +} + +@InProceedings{LarochelleH2007-short, + author = "H. Larochelle and D. Erhan and A. Courville and + J. Bergstra and Y. Bengio", + booktitle = "Int. Conf. Mach. Learn.", + title = "An Empirical Evaluation of Deep Architectures on + Problems with Many Factors of Variation", + year = "2007", + pages = "473--480", +} + +%I deprecate the following one as this is a duplicate of LarochelleH2007 +@InProceedings{larochelle-icml-2007, + author = "Hugo Larochelle and Dumitru Erhan and Aaron Courville + and James Bergstra and Yoshua Bengio", + booktitle = ICML07, + editor = ICML07ed, + publisher = ICML07publ, + title = "An Empirical Evaluation of Deep Architectures on + Problems with Many Factors of Variation", + pages = "473--480", + location = "Corvallis, OR", + year = "2007", +} + %url = "http://www.machinelearning.org/proceedings/icml2007/papers/331.pdf", + +%I deprecate the following one as this is a duplicate of LarochelleH2007 +@Article{larochelle:icml07, + author = "Hugo Larochelle and Dumitru Erhan and Aaron Courville and + James Bergstra and Yoshua Bengio", + booktitle = ICML07, + editor = ICML07ed, + publisher = ICML07publ, + title = "An empirical evaluation of deep architectures on + problems with many factors of variation", + pages = "473--480", + year = "2007", + location = "Corvallis, OR", + url = "http://www.machinelearning.org/proceedings/icml2007/papers/331.pdf", +} + +@inproceedings{Larochelle+Bengio-2008-small, + author = "Hugo Larochelle and Yoshua Bengio", + title = {Classification using Discriminative Restricted {Boltzmann} Machines}, + booktitle = {Proceedings of ICML 2008}, + year = {2008}, + pages = {536--543} +} + +@InCollection{Larsen98, + author = "Jan Larsen and Claus Svarer and Lars Nonboe Andersen + and Lars Kai Hansen", + editor = "G. B. Orr and K-R. Muller", + booktitle = "Neural Networks: Tricks of he Trade", + title = "Adaptive Regularization in Neural Networks Modeling", + publisher = "Springer", + pages = "113--132", + year = "1998", +} + + +@InProceedings{LasserreJ2006, + author = "Julia A. Lasserre and Christopher M. Bishop and + Thomas P. Minka", + booktitle = cvpr06, + title = "Principled Hybrids of Generative and Discriminative + Models", + publisher = "IEEE Computer Society", + address = "Washington, DC, USA", + pages = "87--94", + year = "2006", + ISBN = "0-7695-2597-0", + doi = "http://dx.doi.org/10.1109/CVPR.2006.227", +} + + +@TechReport{Laub2003, + author = "J. Laub and K.-R. M{\"u}ller", + title = "Feature discovery: unraveling hidden structure in + non-metric pairwise data", + institution = "Fraunhofer FIRST.IDA", + address = "Germany", + year = "2003", +} + +@Article{Lauritzen95, + author = "Steffen L. Lauritzen", + title = "The {EM} algorithm for graphical association models + with missing data", + journal = "Computational Statistics and Data Analysis", + volume = "19", + pages = "191--201", + year = "1995", +} + +@Book{Lauritzen96, + author = "Steffen L. Lauritzen", + title = "Graphical Models", + publisher = "Clarendon Press", + address = "Oxford", + year = "1996", + ISBN = "0-19-852219-3", +} + +@Book{Lawler76, + author = "E. L. Lawler", + title = "Combinatorial Optimization: Networks and Matroids", + publisher = "Holt-Rinehart-Winston", + address = "New York", + year = "1976", +} + +@Book{Lawler85, + editor = "E. L. Lawler and J. K. Lenstra and A. H. G. Rinnooy + Kan and D. B. Shmoys", + title = "The Travelling Salesman Problem", + publisher = "Wiley", + address = "Chichester", + year = "1985", +} + +@InProceedings{Lawrence-Seeger-Herbrich-2003, + author = "Neil Lawrence and Matthias Seeger and Ralf Herbrich", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Fast Sparse {G}aussian Process Methods: The Informative + Vector Machine", + publisher = "{MIT} Press", + pages = "609--616", + year = "2003", +} + +@InCollection{Lawrence00, + author = "S. Lawrence and S. Fong and C. L. Giles", + title = "Natural Language Grammatical Inference with Recurrent + Neural Networks", + journal = "IEEE Trans. on Knowledge and Data Engineering", + pages = "", + year = "2000", +} + +@InCollection{Lawrence96, + author = "S. Lawrence and S. Fong and C. L. Giles", + editor = "S. Wermter and E. Riloff and G. Scheler", + booktitle = "Lecture Notes on Artificial Intelligence, + Connectionist, Statistical and Symbolic Approaches to + Learning for Natural Language Processing", + title = "Natural Language Grammatical Inference: {A} Comparison + of Recurrent Neural Networks and Machine Learning + Methods", + publisher = "Springer-Verlag, NY", + year = "1996", +} + +@InCollection{LawrenceN2005, + author = "Neil D. {Lawrence} and Michael I. {Jordan}", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Semi-supervised Learning via {G}aussian Processes", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "753--760", + year = "2005", + original = "0753-257.PDF", +} + +@TechReport{LeBaron95, + author = "B. LeBaron and A. S. Weigend", + title = "Evaluating Neural Network Predictors by + Bootstrapping", + number = "CU-CS-725-94", + institution = "University of Colorado, Boulder", + year = "1995", +} + +@Article{LeCun+98, + author = "Yann {LeCun} and Leon Bottou and Yoshua Bengio and + Patrick Haffner", + title = "Gradient-Based Learning Applied to Document + Recognition", + journal = "Proceedings of the {IEEE}", + volume = "86", + number = "11", + pages = "2278--2324", + month = nov, + year = "1998", +} + +@InCollection{LeCun+98backprop, + author = "Yann {LeCun} and L\'{e}on Bottou and Genevieve B. Orr + and Klaus-Robert M{\"{u}}ller", + title = "Efficient Backprop", + booktitle = "Neural Networks, Tricks of the Trade", + series = "Lecture Notes in Computer Science LNCS~1524", + publisher = "Springer Verlag", + year = "1998", +} + %URL = "http://leon.bottou.org/papers/lecun-98x", + + +@InCollection{LeCun+98backprop-small, + author = "Y. {LeCun} and L. Bottou and G. B. Orr + and K. M{\"{u}}ller", + title = "Efficient Backprop", + booktitle = "Neural Networks, Tricks of the Trade", + year = "1998", +} + + +@InProceedings{lecun-04, + author = "Yann {LeCun} and Fu-Jie Huang and L{\'e}on Bottou", + booktitle = cvpr04, + title = "Learning Methods for Generic Object Recognition with + Invariance to Pose and Lighting", + volume = {2}, + year = "2004", + issn = {1063-6919}, + pages = {97-104}, + doi = {http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.144}, + publisher = {IEEE Computer Society}, + address = {Los Alamitos, CA, USA}, +} + +@InProceedings{LeCun-cp89, + author = "Yann {LeCun}", + booktitle = "Connectionism in Perspective", + title = "Generalization and Network Design Strategies", + publisher = "Elsevier Publishers", + year = "1989", +} + +@InCollection{LeCun-dsbo86, + author = "Yann {LeCun}", + editor = "F. Fogelman-Souli\'e and E. Bienenstock and G. + Weisbuch", + booktitle = "Disordered Systems and Biological Organization", + title = "Learning Processes in an Asymmetric Threshold + Network", + publisher = "Springer-Verlag", + address = "Les Houches, France", + pages = "233--240", + year = "1986", +} + +@InProceedings{lecun-huang-05, + author = "Yann {LeCun} and {Fu Jie} Huang", + editor = aistats05ed, + booktitle = aistats05, + title = "Loss Functions for Discriminative Training of + Energy-Based Models", + date = "Jan 6-8, 2005", + location = "Savannah Hotel, Barbados", + year = "2005", +} + +@Misc{LeCun-nips93-tutorial, + author = "Yann {LeCun}", + title = "Efficient learning and second-order methods", + year = "1993", + note = "Tutorial presented at NIPS'93, Denver, CO", +} + +@PhdThesis{Lecun-these87, + author = "Yann {LeCun}", + title = "Mod\`eles connexionistes de l'apprentissage", + school = "Universit\'e de Paris VI", + year = "1987", +} + +@InCollection{lecun2006, + author = "Yann {LeCun} and Sumit Chopra and Raia Hadsell and + Marc-Aurelio Ranzato and Fu-Jie Huang", + editor = "G. Bakir and T. Hofman and B. Scholkopf and A. Smola + and B. Taskar", + booktitle = "Predicting Structured Data", + title = "A Tutorial on Energy-Based Learning", + publisher = "MIT Press", + pages = "191--246", + year = "2006", +} + +@InProceedings{LeCun85, + author = "Yann {LeCun}", + booktitle = "Cognitiva 85: A la Fronti\`ere de l'Intelligence + Artificielle, des Sciences de la Connaissance et des + Neurosciences", + title = "Une Proc\'edure d'Apprentissage pour {R}\'eseau \`a + Seuil Assym\'etrique", + publisher = "CESTA, Paris", + address = "Paris 1985", + pages = "599--604", + year = "1985", +} + +@InCollection{LeCun86, + author = "Yann {LeCun}", + editor = "E. Bienenstock and F. Fogelman-Souli\'e and G. + Weisbuch", + booktitle = "Disordered Systems and Biological Organization", + title = "Learning Processes in an Asymmetric Threshold + Network", + publisher = "Springer-Verlag, Berlin", + address = "Les Houches 1985", + pages = "233--240", + year = "1986", +} + +@Article{LeCun89, + author = "Yann {LeCun} and Bernhard Boser and John S. Denker and Donnie + Henderson and Richard E. Howard and Wayne Hubbard and Lawrence D. + Jackel", + title = "Backpropagation Applied to Handwritten Zip Code + Recognition", + journal = nc, + volume = "1", + number = "4", + pages = "541--551", + year = "1989", +} + +@TechReport{LeCun89a, + author = "Yann {LeCun}", + key = "LeCun", + title = "Generalization and Network Design Strategies", + type = "Technical Report", + number = "CRG-TR-89-4", + institution = "University of Toronto", + year = "1989", +} + +@Article{LeCun89d, + author = "Yann {LeCun} and Lawrence D. Jackel and B. Boser and J. + S. Denker and Hans P. Graf and I. Guyon and D. + Henderson and R. E. Howard and W. Hubbard", + title = "Handwritten Digit recognition: Applications of Neural + Network Chips and Automatic Learning", + journal = "IEEE Communications Magazine", + volume = "27", + number = "11", + pages = "41--46", + month = nov, + year = "1989", +} + +@InProceedings{LeCun90a, + author = "Y. {LeCun} and B. Boser and J. S. Denker and D. + Henderson and R. E. Howard and W. Hubbard and L. D. + Jackel", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Handwritten Digit Recognition with a Back-Propagation + Network", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "396--404", + year = "1990", +} + +@InProceedings{LeCun90b, + author = "Y. {LeCun} and J. S. Denker and S. A. Solla", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Optimal Brain Damage", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "598--605", + year = "1990", +} + +@InProceedings{LeCun90c, + author = "Y. LeCun and Y. Matan and B. Boser and J. S. Denker + and D. Henderson and R. E. Howard and W. Hubbard and L. + D. Jackel and H. S. Baird", + editor = "IAPR", + booktitle = "International Conference on Pattern Recognition", + title = "Handwritten Zip Code Recognition with Multilayer + Networks", + publisher = "IEEE", + address = "Atlantic City", + year = "1990", +} + +@InProceedings{LeCun91, + author = "Y. {LeCun} and I. Kanter and S. Solla", + editor = NIPS3ed, + booktitle = NIPS3, + title = "Second order properties of error surfaces: learning + time, generalization", + publisher = "Morgan Kaufmann", + address = "Denver, CO", + pages = "918--924", + year = "1991", +} + +@InCollection{LeCun93, + author = "Y. {LeCun} and P. Simard and B. Pearlmutter", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Automatic learning rate maximization by on-line + estimation of the {Hessian}'s eigenvectors", + publisher = "Morgan Kaufmann Publishers, San Mateo, CA", + pages = "156--163", + year = "1993", +} + +@InProceedings{LeCun94b, + author = "Yann LeCun and Yoshua Bengio", + editor = "IEEE", + booktitle = ICPR94, + title = "Word-Level Training of a Handritten Word Recognizer + based on Convolutional Neural Networks", + address = "Jerusalem 1994", + year = "1994", +} + +@Article{LeCun98-small, + author = "Y. {LeCun} and L. Bottou and Y. Bengio and + P. Haffner", + title = "Gradient Based Learning Applied to Document + Recognition", + journal = "IEEE", + volume = "86", + number = "11", + pages = "2278--2324", + month = nov, + year = "1998", +} + +@InCollection{LeCun98-tricks, + author = "Y. {LeCun} and L. Bottou and G. B. Orr and K.-R. + M{\"u}ller", + editor = "G. B. Orr and K.-R. M{\"u}ller", + booktitle = "Neural Networks: Tricks of the Trade", + title = "Efficient {BackProp}", + publisher = "Springer", + pages = "9--50", + year = "1998", +} + +@TechReport{LeCun-TR, + author = "Yann {LeCun}", + key = "Lecun", + title = "Generalization and Network Design Strategies", + number = "CRG-TR-89-4", + institution = "Department of Computer Science, University of + Toronto", + year = "1989", +} + +@Article{Lee+Hon89, + author = "Kai-Fu Lee and Hsiao-Wuen Hon", + title = "Speaker-independent phone recognition using hidden + {Markov} models", + journal = "IEEE Trans. on Acoustics, Speech and Signal + Processing", + volume = "37", + number = "11", + pages = "1641--1648", + month = nov, + year = "1989", +} + +@Article{Lee+Lewicki-2002, + author = "T-W. Lee and M. S. Lewicki", + title = "Unsupervised classification segmentation and + enhancement of images using {ICA} mixture models", + journal = "IEEE Trans. Image Proc.", + volume = "11", + number = "3", + pages = "270--279", + year = "2002", +} + +@InCollection{Lee-2008, + author = "Honglak Lee and Chaitanya Ekanadham and Andrew Ng", + editor = NIPS20ed, + booktitle = NIPS20, + title = "Sparse deep belief net model for visual area {V}2", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = {873--880}, + year = "2008", +} + +@Book{Lee91, + author = "Kai-Fu Lee", + title = "Automatic Speech Recognition: the development of the + {SPHINX} system", + publisher = "Kluwer Academic Publ.", + year = "1989", +} + +@article{Lee-1996, + author = "Tai Sing Lee", + title = "Image Representation Using {2D} {Gabor} Wavelets", + journal = "IEEE Transactions on Pattern Analysis and Machine Intelligence", + volume = "18", + number = "10", + pages = "959-971", + year = "1996", +} + +@InProceedings{Lee99a, + author = "Lillian Lee", + booktitle = "ACL99", + title = "Measures of Distributional Similarity", + pages = "25--32", +} + +@InProceedings{Lee99b, + author = "Lillian Lee and Fernando Pereira", + title = "Distributional Similarity Models: Clustering vs. + Nearest Neighbours", + booktitle = "ACL99", + pages = "33--40", +} + +@article{Lee+Mumford-2003, + author = {Tai-Sing Lee and David Mumford}, + title = {Hierarchical Bayesian inference in the visual cortex}, + year = 2003, + journal = {Journal of Optical Society of America, A}, + volume = 20, + number = 7, + pages = {1434--1448}, +} + + +@Article{Leitch91, + author = "G. Leitch and J. E. Tanner", + title = "Economic Forecast Evaluation: Profits Versus The + Conventional Error Measures", + journal = "The American Economic Review", + pages = "580--590", + year = "1991", +} + +@Article{Lengelle+Denoeux96, + author = "R{\'e}gis Lengell{\'e} and Thierry Denoeux", + title = "Training {MLP}s layer by layer using an objective + function for internal representations", + journal = "Neural Networks", + volume = "9", + pages = "83--97", + year = "1996", +} + +@InProceedings{Leprieur95, + author = "H. Leprieur and P. Haffner", + booktitle = "EUROSPEECH'95", + title = "Discriminant learning with minimum memory loss for + improved non-vocabulary rejection", + address = "Madrid, Spain", + year = "1995", +} + +@Book{lerdahl+jackendoff-1983, + author = "F. Lerdahl and R. Jackendoff", + title = "A {Generative} {Theory} of {Tonal} {Music}", + publisher = "MIT Press", + address = "Cambridge, Mass.", + year = "1983", +} + +@InCollection{LeRoux+al-tonga-2008, + author = "Nicolas {Le Roux} and Pierre-Antoine Manzagol and + Yoshua Bengio", + editor = NIPS20ed, + booktitle = NIPS20, + title = "Topmoumoute online natural gradient algorithm", + publisher = "{MIT} Press", + address = "Cambridge, MA", + pages = "849--856", + year = "2008", +} + +@InCollection{LeRoux+al-tonga-2008-small, + author = "Nicolas {Le Roux} and Pierre-Antoine Manzagol and + Yoshua Bengio", + booktitle = "NIPS 20", + title = "Topmoumoute online natural gradient algorithm", + pages = "849--856", + year = "2008", +} + +@TechReport{LeRoux-comb-dens-2005, + author = "Nicolas {Le Roux} and Yoshua Bengio and R\'ejean + Ducharme", + title = "Combining density estimators to improve classification + accuracy", + number = "1261", + institution = "D\'epartement d'informatique et recherche + op\'erationnelle, Universit\'e de Montr\'eal", + year = "2005", +} + +@InProceedings{LeRoux-continuous-short, + author = "Nicolas Le Roux and Yoshua Bengio", + booktitle = aistats07, + title = "Continuous Neural Networks", + year = "2007", + date = "March 21-24, 2007", +} + +@InProceedings{Lesk1986, + author = "Michael E. Lesk", + booktitle = "SIGDOC Conference", + title = "Automatic sense disambiguation using machine readable + dictionaries: How to tell a pine cone from an ice cream + cone.", + address = "Toronto, Canada", + year = "1980", +} + +@InProceedings{Leung92, + author = "H. C. Leung and I. L. Hetherington and V. W. Zue", + booktitle = icassp, + title = "Speech recognition using stochastic segment neural + networks", + volume = "1", + institution = "Lab. for Comput. Sci., MIT, Cambridge, MA, USA", + publisher = "IEEE", + address = "New York, NY, USA", + pages = "613--16", + year = "1992", +} + +@Article{Levenberg44, + author = "K. Levenberg", + title = "A method for the solution of certain non-linear + problems in least squares", + journal = "Quarterly Journal of Applied Mathematics", + volume = "II", + number = "2", + pages = "164--168", + year = "1944", +} + +@InProceedings{Levin90, + author = "E. Levin", + booktitle = icassp, + title = "Word Recognition using Hidden Control Neural + Architecture", + address = "Albuquerque, NM", + pages = "433--436", + year = "1990", +} + +@InProceedings{Levin92, + author = "E. Levin and R. Pieraccini and E. Bocchieri", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Time-Warping Network: a Hybrid Framework for Speech + Recognition", + address = "Denver, CO", + pages = "151--158", + year = "1992", +} + +@Article{Levinson83, + author = "S. E. Levinson and L. R. Rabiner and M. M. Sondhi", + title = "An Introduction to the Application of the Theory of + Probabilistic Functions of a {Markov} Process to + Automatic Speech Recognition", + journal = "Bell System Technical Journal", + volume = "64", + number = "4", + pages = "1035--1074", + year = "1983", +} + +@InCollection{Levinson96, + author = "S. E. Levinson", + editor = "R. A. Cole and J. Mariani and H. Uszkoriet and A. + Zaenen and V. Zue", + booktitle = "Survey of the State of the Art in Human Language + Technology", + title = "Statistical Modeling and Classification", + publisher = "Cambridge University Press", + address = "http://www.cse.ogi.edu/CSLU/HLTsurvey/HLTsurvey.html", + pages = "395--401", + year = "1996", +} + +@phdthesis{Levner2008, + author = {Ilya Levner}, + title = {Data Driven Object Segmentation}, + school = {Department of Computer Science, University of Alberta}, + year = 2008, +} + +@InProceedings{Lewicki+Sejnowski-97, + author = "Michael Lewicki and Terry Sejnowski", + editor = NIPS10ed, + booktitle = NIPS10, + title = "Learning nonlinear overcomplete representations for + efficient coding", + publisher = "MIT Press", + isbn = {0-262-10076-2}, + location = {Denver, Colorado, United States}, + address = {Cambridge, MA, USA}, + pages = "556--562", + year = "1998", +} + +@article{Lewicki+Sejnowski-2000, + author = {Michael S. Lewicki and Terrence J. Sejnowski}, + title = {Learning Overcomplete Representations}, + journal = {Neural Computation}, + volume = {12}, + number = {2}, + year = {2000}, + issn = {0899-7667}, + pages = {337--365}, + doi = {http://dx.doi.org/10.1162/089976600300015826}, + publisher = {MIT Press}, + address = {Cambridge, MA, USA}, +} + +@InProceedings{LewisC62, + author = "P. M. {Lewis II} and C. L. Coates", + title = "A realization procedure for threshold gate networks", + crossref = "FOCS3", + pages = "159--168", + url = "http://theory.lcs.mit.edu/~dmjones/FOCS/focs.bib", +} + +@Article{lheureux-04-small, + author = "P.-J. {L'Heureux} and J. Carreau and Y. Bengio and O. + Delalleau and S. Y. Yue", + title = "Locally Linear Embedding for dimensionality reduction + in {QSAR}", + journal = "J. Computer-Aided Molecular Design", + pages = "18.475", + year = "2004", +} + +@Book{Li93, + author = "Ming Li and Paul Vitanyi", + title = "An Introduction to Kolmogorov Complexity and Its + Applications", + publisher = "Second edition, Springer", + address = "New York, NY", + year = "1997", +} + +@Article{li99face, + author = "S. Z. Li and J. W. Lu", + title = "Face recognition using the nearest feature line + method", + journal = "IEEE Transactions on Neural Networks", + volume = "10", + number = "2", + pages = "439--443", + year = "1999", + URL = "citeseer.nj.nec.com/li99face.html", +} + +@inproceedings{Li+al-2005, + author = {Hongyu Li and Wenbin Chen and I-Fan Shen}, + title = {Supervised Local Tangent Space Alignment for Classification}, + booktitle = {IJCAI}, + year = {2005}, + pages = {1620-1621}, + ee = {http://www.ijcai.org/papers/post-0505.pdf}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + +@article{Li+Guo-2006, + author = {Chun-Guang Li and Jun Guo}, + title = {Supervised Isomap with Explicit Mapping}, + journal = {First International Conference on Innovative Computing, Information and Control}, + volume = {3}, + year = {2006}, + isbn = {0-7695-2616-0}, + pages = {345-348}, + doi = {http://doi.ieeecomputersociety.org/10.1109/ICICIC.2006.530}, + publisher = {IEEE Computer Society}, + address = {Los Alamitos, CA, USA}, +} + +@inproceedings{lischuurmans08a, +author = "Li, Y. and Schuurmans, D.", +title = "Policy iteration for learning an exercise policy for {American} +options", +booktitle = "Proceedings of the European Workshop on Reinforcement +Learning (EWRL)", +year = 2008, +note = "Acceptance rate 33\%; all authors from my research group" +} + +@inproceedings{lischuurmans08b, +author = "Li, Y. and Schuurmans, D.", +title = "Learning an exercise policy for {American} options on real data", +booktitle = "Proceedings of the International Symposium on Financial +Engineering and Risk Management (FERM)", +year = 2008, +note = "All authors from my research group; unrefereed publication" +} + +@inproceedings{Li+al-2007, + author = {Jun-Bao Li and Shu-Chuan Chu and Jeng-Shyang Pan}, + title = {Locally Discriminant Projection with Kernels for Feature Extraction}, + booktitle = {Proceedings of the Third International Conference on Advanced Data Mining and Applications}, + editor = {Reda Alhajj and Hong Gao and Xue Li and Jianzhong Li and Osmar R. Za\"{\i}ane}, + publisher = {Springer}, + year = {2007}, + pages = {586-593}, + ee = {http://dx.doi.org/10.1007/978-3-540-73871-8_56}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + +@InCollection{Liang83, + author = "F. M. Liang", + editor = "D. E. Knuth", + booktitle = "The \TeX Book", + title = "Ph.{D}.\ Thesis", + publisher = "Addison-Wesley", + address = "Reading", + year = "1986", +} + +@inproceedings{LiangP2008, + author = {Percy Liang and Michael I. Jordan}, + title = {An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators}, + booktitle = ICML08, + editor = ICML08ed, + publisher = ICML08publ, + year = {2008}, + isbn = {978-1-60558-205-4}, + pages = {584--591}, + location = {Helsinki, Finland}, + doi = {http://doi.acm.org/10.1145/1390156.1390230}, + address = {New York, NY, USA}, + } + +@Article{Liberman67, + author = "A. M. Liberman and F. S. Cooper and D. P. Shankweiler + and M. Studdert-Kennedy", + title = "Perception of the speech code", + journal = "Psychological Review", + volume = "74", + pages = "431--461", + year = "1967", +} + +@Article{Lin+al-1991, + author = "W.-M. Lin and V. K. Prasanna and K. W. Przytula", + title = "Algorithmic mapping of neural network Models onto + Parallel {SIMD} Machines", + journal = "IEEE Transactions on Computers", + volume = "40", + number = "12", + publisher = "IEEE Computer Society", + address = "Los Alamitos, CA, USA", + pages = "1390--1401", + year = "1991", + ISSN = "0018-9340", + doi = "http://doi.ieeecomputersociety.org/10.1109/12.106224", +} + +@Article{Lin-2000, + author = "Dekang Lin", + title = "Word sense disambigutation with a similarity based + smoothed library", + journal = "Computers and the Humanities: special issue on + {SENSEVAL}", + volume = "34", + pages = "147--152", + year = "2000", +} + +@InProceedings{Lin-99, + author = "Dekang Lin", + booktitle = "Proceedings of the Conference of the Pacific + Association for Computational Linguistics", + title = "A case-based algorithm for word sense disambiguation", + address = "Waterloo, Canada", + year = "1999", +} + +@Article{Lin73, + author = "S. Lin and B. W. Kernighan", + title = "An Effective Heuristic Algorithm for the Travelling + Salesman Problem", + journal = opres, + volume = "21", + pages = "498--516", + year = "1973", +} + +@TechReport{Lin95, + author = "T. Lin and B. G. Horne and P. Tino and C. L. Giles", + title = "Learning long-term dependencies is not as difficult + with {NARX} recurrent neural networks", + number = "UMICAS-TR-95-78", + institution = "Institute for Advanced Computer Studies, University of + Mariland", + year = "1995", +} + +@InProceedings{Lin96, + author = "C. Lin and S-C. Chang and K-J. Lin", + booktitle = nipc-hmit96, + title = "Simulation of the Balance of Plant of a Nuclear Power + Plant by Neural Networks", + volume = "1", + publisher = ans, + pages = "251--255", + year = "1996", +} + +@Article{Linde80, + author = "Y. Linde and A. Buzo and R. M. Gray", + title = "An algorithm for vector quantizer design", + journal = "IEEE Transactions on Communication", + volume = "COM-28", + number = "1", + pages = "84--95", + month = jan, + year = "1980", +} + +@Article{Lindgren78, + author = "G. Lindgren", + title = "{Markov} Regime Models for Mixed Distributions and + Switching Regressions", + journal = "Scan. J. Statist.", + volume = "5", + pages = "81--91", + year = "1978", +} + +@Article{Linial93, + author = "Nathan Linial and Yishay Mansour and Noam Nisan", + title = "Constant depth circuits, {Fourier} transform, and + learnability", + journal = "J. ACM", + volume = "40", + number = "3", + publisher = "ACM Press", + address = "New York, NY, USA", + pages = "607--620", + year = "1993", +} + +@Article{Linsker86, + author = "R. Linsker", + title = "From Basic Network Principles to Neural Architecture", + journal = PNAS, + volume = "83", + pages = "7508--7512, 8390--8394, 8779--8783", + year = "1986", +} + +@Article{Linsker88, + author = "R. Linsker", + title = "Self-Organization in a Perceptual Network", + journal = computer, + pages = "105--117", + month = mar, + year = "1988", +} + +@TechReport{liporace-76, + author = "L. A. Liporace", + title = "{PTAH} on Continuous Multivariate Functions of + {Markov} Chains", + number = "80193", + institution = "Institute for Defense Analysis, Communication Research + Department", + month = feb, + year = "1976", +} + +@Article{Lippmann87, + author = "R. P. Lippmann", + title = "An Introduction to Computing with Neural Nets", + journal = ieeeassp, + pages = "4--22", + month = apr, + year = "1987", +} + +@InProceedings{Lippmann87b, + author = "R. P. Lippmann and B. Gold", + booktitle = "IEEE Proc. First Intl. Conf. on Neural Networks", + title = "Neural Classifiers Useful for Speech Recognition", + volume = "IV", + address = "San Diego, CA", + pages = "417--422", + year = "1987", +} + +@Article{Lippmann89, + author = "R. P. Lippmann", + title = "Review of Neural Networks for Speech Recognition", + journal = nc, + volume = "1", + pages = "1--38", + year = "1989", +} + +@InProceedings{Lister90, + author = "R. Lister", + booktitle = ijcnn, + title = "Segment Reversal and the {TSP}", + volume = "1", + publisher = "Lawrence Erlbaum, Hillsdale", + address = "Washington 1990", + pages = "424--427", + year = "1990", +} + +@Article{Litkowski-2000, + author = "K. Litkowski", + title = "{SENSEVAL}: The {CL}-research experience", + journal = "Computers and the Humanities: special issue on + SENSEVAL", + volume = "34", + pages = "153--158", + year = "2000", +} + +@Book{Little+Rubin-2002, + author = "R. J. A. Little and D. B. Rubin", + title = "Statistical Analysis with Missing Data", + publisher = "Wiley", + address = "New York", + edition = "2nd", + year = "2002", +} + +@Book{Little-Rubin, + author = "R. J. A. Little and D. B. Rubin", + title = "Statistical Analysis with Missing Data", + publisher = "Wiley", + address = "New York", + year = "1987", +} + +@Article{Little74, + author = "W. A. Little", + title = "The Existence of Persistent States in the Brain", + journal = mbio, + volume = "19", + pages = "101--120", + year = "1974", +} + +@Article{Little75, + author = "W. A. Little and G. L. Shaw", + title = "A Statistical Theory of Short and Long Term Memory", + journal = behbio, + volume = "14", + year = "1975", +} + +@Article{Little78, + author = "W. A. Little and G. L. Shaw", + title = "Analytic Study of the Memory Storage Capacity of a + Neural Network", + journal = mbio, + volume = "39", + pages = "281--290", + year = "1978", +} + +@Article{littlestone-warmuth94, + author = "N. Littlestone and M. K. Warmuth", + title = "The weighted majority algorithm", + journal = "Information and Computation", + volume = "108", + number = "2", + pages = "212--261", + year = "1994", +} + +@Misc{Littlestone86, + author = "N. Littlestone and M. Warmuth", + title = "Relating data compression and learnability", + year = "1986", + note = "Unpublished manuscript. University of California Santa + Cruz. An extended version can be found in (Floyd and + Warmuth 95)", +} + +@InCollection{Liu2001, + author = "J. S. Liu & R. Chen & T. Logvinenko", + editor = "N. Gordon {A. Doucet, N. de Freitas}", + booktitle = "Sequential Monte Carlo Methods in Practice", + title = "A theoretical framework for sequential importance + sampling and resampling", + publisher = "Springer-Verlag", + year = "2001", +} + +@Book{Ljung+Soderstrom83, + author = "L. Ljung and T. Soderstrom", + title = "Theory and Practice of recursive identification", + publisher = "MIT Press", + year = "1983", +} + +@Book{Ljung-86, + author = "L. Lyung and T. S{\"o}derstr{\"o}m", + title = "Theory and Practice of Recursive Identification", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "1986", +} + +@article{LloydS1982, + author = {Stuart P. Lloyd }, + booktitle = {Information Theory, IEEE Transactions on}, + journal = {Information Theory, IEEE Transactions on}, + number = {2}, + pages = {129--137}, + title = {Least squares quantization in PCM}, + volume = {28}, + year = {1982} +} + +@Article{Loader96, + author = "C. R. Loader", + title = "Local lieklihood density estimation", + journal = "Annals of Statistics", + volume = "24", + number = "4", + pages = "1602--1618", + year = "1996", +} + +@Article{Loftsgaarden+Quesenberry-65, + author = "D. O. Loftsgaarden and C. P. Quesenberry", + title = "A nonparametric estimate of a multivariate density + function", + journal = "Annals of Mathematical Statistics", + volume = "36", + pages = "1049--1051", + year = "1965", +} + +@InBook{lognormal-A-85, + author = "C. E. Antle", + booktitle = "Encyclopedia of Statistical Sciences", + title = "Lognormal Distribution", + volume = "5", + publisher = "John Wiley \& Sons", + pages = "134--136", + year = "1985", +} + +@Article{Loh-Shih97, + author = "Wei-Yin Loh and Yu-Shan Shih", + title = "Split selection methods for classification trees", + journal = "Statistica Sinica", + volume = "7", + pages = "815--840", + year = "1997", +} + +@incollection{loosli-canu-bottou-2006, + author = {Loosli, Ga\"{e}lle and Canu, St\'{e}phane and Bottou, L\'{e}on}, + title = {Training Invariant Support Vector Machines using Selective Sampling}, + pages = {301-320}, + editor = {Bottou, L\'{e}on and Chapelle, Olivier and {DeCoste}, Dennis and Weston, Jason}, + booktitle = {Large Scale Kernel Machines}, + publisher = {MIT Press}, + address = {Cambridge, MA.}, + year = {2007}, + url = {http://leon.bottou.org/papers/loosli-canu-bottou-2006}, +} + +@Article{Lowe04, + author = "D. G. Lowe", + title = "Distinctive Image Features from Scale-Invariant + Keypoints", + journal = "International Journal of Computer Vision", + volume = "60", + number = "2", + pages = "91--110", + year = "2004", +} + +@Article{Lowe95, + author = "D. G. Lowe", + title = "Similarity metric learning for a variable-kernel + classifier", + journal = "Neural Computation", + volume = "7", + number = "1", + pages = "72--85", + year = "1995", +} + +@InProceedings{lu04, + author = "Wen-Cong Lu and Nian-Yi Chen and Guo-Zheng Li and Jie + Yang", + editor = "Per Svensson and Johan Schubert", + booktitle = "Proceedings of the Seventh International Conference on + Information Fusion", + title = "Multitask learning using partial least square method", + volume = "I", + publisher = "International Society of Information Fusion", + address = "Mountain View, CA", + pages = "79--84", + month = jun, + year = "2004", + location = "Stockholm, Sweden", +} + +@Book{Lue84, + author = "D. G. Luenberger", + title = "Linear and Nonlinear Programming", + publisher = "Addison Wesley", + year = "1984", +} + +@Book{Luenberger86, + author = "D. G. Luenberger", + title = "Linear and Nonlinear Programming", + publisher = "Addison-Wesley", + address = "Reading", + year = "1986", +} + +@InProceedings{Lyu09, + author = "Siwei Lyu", + booktitle = "The proceedings of the 25th Conference on Uncertainty in Artificial Intelligence", + title = "Interpretation and Generalization of Score Matching", + year = "2009", +} + +@Book{Ma85, + author = "S.-K. Ma", + title = "Statistical Mechanics", + publisher = "World Scientific", + address = "Philadelphia", + year = "1985", +} + +@InProceedings{Ma09, + author = {Justin Ma and Lawrence K. Saul and Stefan Savage and Geoffrey M. Voelker}, + title = {Identifying Suspicious URLs: An Application of Large-Scale Online Learning}, + booktitle = {Proceedings of the International Conference on Machine Learning}, + year = {2009}, + pages = {681--688}, + location = {Montreal, Canada}, +} + +@Misc{MacKay+Neal94, + author = "D. MacKay and R. Neal", + title = "Automatic Relevance Determination", + year = "1994", + note = "Unpublished report. See also MacKay D., 1995, Probable + Neworks and Plausible Predictions -- A Review of + Practical {Bayesian} Methods for Supervised Neural + Networks, in {\em Network: Computation in Neural + Systems}, v. 6, pp. 469--505", +} + +@Book{MacKay03, + author = "David MacKay", + title = "Information Theory, Inference and Learning + Algorithms", + publisher = "Cambridge University Press", + year = "2003", +} + +@Misc{MacKay2001, + author = "David MacKay", + title = "Failures of the One-Step Learning Algorithm", + year = "2001", + note = "Unpublished report", +} + +@Article{MacKay90, + author = "D. J. C. MacKay and K. D. Miller", + title = "Analysis of Linsker's Simulation of Hebbian Rules", + journal = nc, + volume = "2", + pages = "173--187", + year = "1990", +} + +@PhdThesis{MacKay91, + author = "D. J. C. MacKay", + title = "Bayesian methods for adaptive models", + school = "California Institute of Technology", + year = "1991", +} + +@Article{MacKay92a, + author = "David {J. C}. MacKay", + title = "Bayesian interpolation", + journal = "Neural Computation", + volume = "4", + number = "3", + pages = "415--447", + year = "1992", +} + +@Article{MacKay92b, + author = "D. J. C. MacKay", + title = "The evidence framework applied to classification + networks", + journal = "Neural Computation", + volume = "4", + number = "5", + pages = "698--714", + year = "1992", +} + +@Article{MacKay92c, + author = "David {J. C}. MacKay", + title = "A practical {Bayesian} framework for backpropagation + networks", + journal = "Neural Computation", + volume = "4", + number = "3", + pages = "448--472", + year = "1992", +} + +@Article{MacKay98, + author = "D. J. C. MacKay and R. J. McEliece and J-F. Cheng (in + press)", + title = "Turbo-decoding as an instance of Pearl's belief + propagation algorithm", + journal = "IEEE Journal on Selected Areas in Communications", + year = "1998", +} + +@TechReport{MacKay98b, + author = "D. J. C. MacKay", + title = "Introduction to {G}aussian Processes", + institution = "Cambridge University", + year = "1998", + URL = "http://wol.ra.phy.cam.ac.uk/mackay/gpB.pdf", +} + +@Article{Mackey77, + author = "M. C. Mackey and L. Glass", + title = "Oscillation and Chaos in Physiological Control + Systems", + journal = science, + volume = "197", + pages = "287", + year = "1977", +} + +@InProceedings{Maclin-iwml91, + author = "R. Maclin and J. W. Shawlik", + editor = "L. Birnbaum and G. Collins", + booktitle = "Machine Learning: Proceedings of the Eighth + International Workshop", + title = "Refining Domain Theories Expressed as Finite-State + Automata", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + year = "1991", +} + +@Article{Maclin-ml, + author = "R. Maclin and J. W. Shawlik", + title = "Using Knowledge-Based Neural Networks to Improve + Algorithms: Refining the Chou-Fasman Algorithm for + Protein Folding", + journal = mlearn, +} + +@InProceedings{MacQueen67, + author = "James B. MacQueen", + booktitle = "Proceedings of the Fifth Berkeley Symposium on + Mathematics, Statistics and Probability, Vol. 1", + title = "Some Methods for Classification and Analysis of + Multivariate Observations", + pages = "281--296", + year = "1967", +} + +@Article{Mahapatra+al-1997, + author = "S. Mahapatra and R. N. Mahapatra and B. N. Chatterji", + title = "A parallel formulation of back-propagation learning on + distributed memory multiprocessors", + journal = "Parallel Computing", + volume = "22", + number = "12", + publisher = "Elsevier Science Publishers", + address = "Amsterdam, The Netherlands", + pages = "1661--1675", + year = "1997", + ISSN = "0167-8191", + doi = "http://dx.doi.org/10.1016/S0167-8191(96)00051-8", +} + +@incollection{Mairal-2009, + title = {Supervised Dictionary Learning}, + author = {Julien Mairal and Francis Bach and Jean Ponce and Guillermo Sapiro and Andrew Zisserman}, + booktitle = NIPS21, + editor = NIPS21ed, + pages = {1033--1040}, + publisher = {NIPS Foundation}, + year = {2009} +} +@book{Maimon+Rokach-2005, + author = {Maimon, O. and Rokach, L. }, + howpublished = {Hardcover}, + isbn = {0387244352}, + month = {September}, + publisher = {Springer}, + title = {Data Mining and Knowledge Discovery Handbook}, + year = {2005} +} + +@InProceedings{Makram-Ebeid89, + author = "S. Makram-Ebeid and J.-A. Sirat and J.-R. Viala", + booktitle = ijcnn, + title = "A Rationalized Back-Propagation Learning Algorithm", + volume = "2", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "373--380", + year = "1989", +} + +@Article{mallat93matching, + author = "S. Mallat and Z. Zhang", + title = "Matching pursuit with time-frequency dictionaries", + journal = "IEEE Trans. Signal Proc.", + volume = "41", + number = "12", + pages = "3397--3415", + month = dec, + year = "1993", +} + +@InProceedings{malouf2002conll, + author = "Robert Malouf", + booktitle = "Proceedings of CoNLL-2002", + title = "A comparison of algorithms for maximum entropy + parameter estimation", + publisher = "Taipei, Taiwan", + pages = "49--55", + year = "2002", + editors = "Dan Roth and Antal van den Bosch", +} + +@Book{Mandelbrot82, + author = "B. B. Mandelbrot", + title = "The Fractal Geometry of Nature", + publisher = "Freeman", + address = "San Francisco", + year = "1982", +} + +@Book{Manning+Schutze99, + author = "Christopher Manning and Hinrich Schutze", + title = "Foundations of Statistical Natural Language + Processing", + publisher = "MIT Press", + year = "1999", +} + +@InProceedings{Mantysalo92firenze, + author = "Jyri M{\"{a}}ntysalo and Kari Torkkola and Teuvo + Kohonen", + booktitle = "Proc. of the Second Workshop on Neural Networks for + Speech Processing", + title = "Experiments on the use of {LVQ} in phoneme-level + segmentation of speech", + publisher = "LINT", + address = "Firenze (Italy)", + year = "1992", +} + +@article{Marcelja-1980, + author = {Marcelja, S.}, + journal = {Journal of the Optical Society of America}, + month = {November}, + number = {11}, + pages = {1297--1300}, + title = {Mathematical description of the responses of simple cortical cells.}, + url = {http://view.ncbi.nlm.nih.gov/pubmed/7463179}, + volume = {70}, + year = {1980} +} + +@Article{Marchand90, + author = "M. Marchand and M. Golea and P. Ruj\'an", + title = "A Convergence Theorem for Sequential Learning in + Two-Layer Perceptrons", + journal = eul, + volume = "11", + pages = "487--492", + year = "1990", +} + +@Article{Marcotte-92, + author = "P. Marcotte and G. Savard", + title = "Novel approaches to the discrimination problem", + journal = "Zeitschrift f{\"u}r Operations Research (Theory)", + volume = "36", + pages = "517--545", + year = "1992", +} + +@Article{Marcus91, + author = "C. M. Marcus and F. R. Waugh and R. M. Westervelt", + title = "Nonlinear Dynamics and Stability of Analog Neural + Networks", + journal = "Physica D", + volume = "51", + pages = "234--247", + year = "1991", + note = "(special issue)", +} + +@Article{Marcus-et-al91, + author = "C. M. Marcus and F. R. Waugh and R. M. Westervelt", + title = "Nonlinear Dynamics and Stability of Analog Neural + Networks", + journal = physicaD, + volume = "51", + pages = "1991", + year = "1991", + note = "(special issue)", +} + +@Article{Markov13, + author = "A. A. Markov", + title = "An example of statistical investigation in the text of + `Eugene Onyegin' illustrating coupling of `tests' in + chains", + journal = "Proceedings of the Academy of Science, St. + Petersburg", + volume = "7", + pages = "153--162", + year = "1913", +} + +@Article{Markovitz-52, + author = "H. M. Markovitz", + title = "Portfolio Selection", + journal = "Journal of Finance", + volume = "7", + number = "1", + pages = "77--91", + year = "1952", +} + +@InProceedings{maron98, + author = "Oded Maron and Tom\'{a}s Lozano-P\'{e}rez", + editor = NIPS10ed, + booktitle = NIPS10, + title = "A Framework for Multiple-Instance Learning", + volume = "10", + publisher = "{MIT} Press", + year = "1998", +} + +@Article{Marquardt63, + author = "D. W. Marquardt", + title = "An algorithm for least-squares estimation of + non-linear parameters", + journal = "Journal of the Society of Industrial and Applied + Mathematics", + volume = "11", + number = "2", + pages = "431--441", + year = "1963", +} + +@Article{Marr69, + author = "D. Marr", + title = "A Theory of Cerebellar Cortex", + journal = jphysiol, + volume = "202", + pages = "437--470", + year = "1969", +} + +@Article{Marr70, + author = "D. Marr", + title = "A Theory for Cerebral Neocortex", + journal = PRSLB, + volume = "176", + pages = "161--234", + year = "1970", +} + +@Article{Marr71, + author = "D. Marr", + title = "Simple Memory: {A} Theory for Archicortex", + journal = PTRSL, + volume = "262", + pages = "23--81", + year = "1971", +} + +@Article{Marr76, + author = "D. Marr and T. Poggio", + title = "Cooperative Computation of Stereo Disparity", + journal = science, + volume = "194", + year = "1976", +} + +@Book{Marr82, + author = "D. Marr", + title = "Vision", + publisher = "Freeman", + address = "San Francisco", + year = "1982", +} + +@Article{Martin91, + author = "G. L. Martin and J. A. Pittman", + title = "Recognizing hand-printed letters and digits using + backpropagation learning", + journal = nc, + volume = "3", + number = "2", + pages = "258--267", + year = "1991", +} + +@Article{Mashouk+Reed91, + author = "K. A. Al-Mashouq and I. S. Reed", + title = "Including Hints in Training Neural Nets", + journal = nc, + volume = "3", + number = "4", + pages = "418", + year = "1991", +} + +@InProceedings{Mason98, + author = "L. Mason and Bartlett and J. P. Baxter", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Direct Optimization of Margins Improves Generalization + in Combined Classifiers", + year = "1999", +} + +@InProceedings{Mason99, + author = "L. Mason and J. Baxter and P. Bartlett and M. Frean", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Boosting Algorithms as Gradient Descent", + publisher = "MIT Press", + pages = "512--518", + year = "2000", +} + +@InProceedings{Matan92, + author = "O. Matan and C. J. C. Burges and Y. {LeCun} and J. S. + Denker", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Multi-Digit Recognition Using a Space Displacement + Neural Network", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + pages = "488--495", + year = "1992", +} + +@InProceedings{matic-92a, + author = "N. Mati\'{c} and I. Guyon and L. Bottou and J. Denker + and V. Vapnik", + booktitle = "11th International Conference on Pattern Recognition", + title = "Computer Aided Cleaning of Large Databases for + Character Recogn ition", + volume = "II", + pages = "330--333", + year = "1992", +} + +@Misc{matrix-cookbook, + author = "K. B. Petersen and M. S. Pedersen", + title = "The Matrix Cookbook", + publisher = "Technical University of Denmark", + address = "", + month = feb, + year = "2006", + note = "Version 20051003", + abstract = "Matrix identities, relations and approximations. A + desktop reference for quick overview of mathematics of + matrices.", + keywords = "Matrix identity, matrix relations, inverse, matrix + derivative", +} + +@Article{Mattis76, + author = "D. Mattis", + title = "Solvable Spin Systems with Random Interactions", + journal = plettA, + volume = "56", + pages = "421--422", + year = "1976", +} + +@Article{MaxEnt96, + author = "Adam L. Berger and Vincent J. {Della Pietra} and Stephen A. {Della + Pietra}", + title = "A maximum entropy approach to natural language + processing", + journal = "Computational Linguistics", + volume = "22", + pages = "39--71", + year = "1996", +} + +@Article{Mayraz+Hinton-2002, + author = "G. Mayraz and G. E. Hinton", + title = "Recognizing handwritten digits using hierarchical + products of experts", + journal = "IEEE Transactions on Pattern Analysis and Machine + Intelligence", + volume = "24", + pages = "189--197", + year = "2002", +} + +@InProceedings{Mazaika87, + author = "P. K. Mazaika", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "A Mathematical Model of the {Boltzmann} Machine", + volume = "3", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "157--163", + year = "1987", +} + +@InProceedings{mbbf-bagd-00, + author = "L. Mason and J. Baxter and P. L. Bartlett and M. + Frean", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Boosting algorithms as gradient descent", + pages = "512--518", + year = "2000", +} + +@InProceedings{McCallum+Nigam-1998, + author = "A. {McCallum} and K. Nigam", + booktitle = ICML08, + editor = ICML08ed, + publisher = ICML08publ, + title = "Employing {EM} and pool-based active learning for text + classification", + year = "1998", +} + +@InProceedings{McCallumA2006, + author = "Andrew McCallum and Chris Pal and Gregory Druck and + Xuerui Wang", + booktitle = "Twenty-first National Conference on Artificial + Intelligence (AAAI-06)", + title = "Multi-Conditional Learning: Generative/Discriminative + Training for Clustering and Classification", + publisher = "AAAI Press", + year = "2006", + OPTbibsource = "DBLP, http://dblp.uni-trier.de", + OPTcrossref = "DBLP:conf/aaai/2006", +} + +@article{McClelland+Rumelhart-81, + author = {James L. {McClelland} and David E. Rumelhart}, + title = {An interactive activation model of context effects in letter perception}, + journal = {Psychological Review}, + volume = 88, + pages = {375--407}, + year = 1981, +} + +@Book{McClelland86a, + author = "James L. McClelland and David E. Rumelhart and the PDP + Research Group", + title = "Parallel Distributed Processing: Explorations in the + Microstructure of Cognition", + volume = "2", + publisher = "MIT Press", + address = "Cambridge", + year = "1986", +} + +@InCollection{McClelland86b, + author = "J. L. McClelland and J. L. Elman", + editor = "J. L. McClelland and D. E. Rumelhart", + booktitle = pdp, + title = "Interactive Processes in Speech Perception: The + {TRACE} Model", + chapter = "15", + volume = "2", + publisher = "MIT Press", + address = "Cambridge", + pages = "58--121", + year = "1986", +} + +@Book{McClelland88, + author = "J. L. McClelland and D. E. Rumelhart", + title = "Explorations in Parallel Distributed Processing", + publisher = "MIT Press", + address = "Cambridge", + year = "1988", +} + +@Article{McCulloch43, + author = "W. S. McCulloch and W. Pitts", + title = "A Logical Calculus of Ideas Immanent in Nervous + Activity", + journal = bmbiophys, + volume = "5", + pages = "115--133", + year = "1943", +} + +@InProceedings{Mcdermott89, + author = "E. McDermott and S. Katagiri", + booktitle = icassp, + title = "Shift-Invariant, Multi-Category Phoneme Recognition + using {Kohonen's} {LVQ2}", + volume = "1", + organization = "IEEE", + address = "Glasgow, Scotland", + pages = "81--84", + year = "1989", +} + +@Article{Mcdermott91, + author = "E. McDermott and S. Katagiri", + title = "{LVQ}-based shift-tolerant phoneme recognition", + journal = "IEEE Transactions on Signal Processing", + volume = "39", + number = "6", + pages = "1398--1411", + year = "1991", + OPTmonth = "June", +} + +@Article{McEliece87, + author = "R. J. McEliece and E. C. Posner and E. R. Rodemich and + S. S. Venkatesh", + title = "The Capacity of the Hopfield Associative Memory", + journal = ieeeit, + volume = "33", + pages = "461--482", + year = "1987", +} + +@InProceedings{McInerny89, + author = "J. M. McInerny and K. G. Haines and S. Biafore and R. + Hecht-Nielsen", + booktitle = ijcnn, + title = "Back Propagation Error Surfaces Can Have Local + Minima", + volume = "2", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "627", + year = "1989", +} + +@Book{McLachlan2000, + author = "G. J. McLachlan and D. Peel", + title = "Finite Mixture Models", + publisher = "Wiley", + address = "New York", + year = "2000", +} + +@Book{McLachlan88, + author = "G. J. McLachlan and K. E. Basford", + title = "Mixture models: Inference and applications to + clustering.", + publisher = "Marcel Dekker", + year = "1988", +} + +@book{Mclachlan-2004, + author = {Geoffrey J. Mclachlan}, + howpublished = {Paperback}, + isbn = {0471691151}, + month = {August}, + publisher = {Wiley-Interscience}, + title = {Discriminant Analysis and Statistical Pattern Recognition}, + year = {2004} +} + +@Article{McLoone+Irwin-1997, + author = "S. McLoone and G. W. Irwin", + title = "Fast Parallel Off-Line Training of Multilayer + Perceptrons", + journal = "IEEE Transactions on Neural Networks", + volume = "8", + number = "3", + pages = "646--653", + year = "1997", +} + +@Book{Mead89, + author = "C. Mead", + title = "Analog {VLSI} and Neural Systems", + publisher = "Addison Wesley", + address = "Reading", + year = "1989", +} + +@InProceedings{Meila96, + author = "M. Meila and M. I. Jordan", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Learning fine motion by Markov mixtures of experts", + publisher = "MIT Press, Cambridge, MA", + year = "1996", +} + +@InProceedings{Mel+Koch90, + author = "Bartlett W. Mel and Christof Koch", + editor = NIPS2ed, + booktitle = NIPS2, + title = "{Sigma}-{Pi} Learning: On Radial Basis Functions and + Cortical Associative Learning", + publisher = "Morgan Kaufmann", + pages = "474--481", + year = "1990", +} + +@InProceedings{Melvilleetal, + author = "P. Melville and R. J. Mooney and R. Nagarajan", + booktitle = "Proceedings of the ACM SIGIR Workshop on Recommender + Systems", + title = "Content-boosted collaborative filtering", + month = sep, + year = "2001", + keywords = "boosted collaborative filtering content", + location = "New Orleans, LA", +} + +@InProceedings{Memisevic+Hinton-2007, + author = "Roland Memisevic and Geoffrey E. Hinton", + booktitle = cvpr07, + title = "Unsupervised learning of image transformations", + year = "2007", +} + +@PhdThesis{Memisevic-thesis, + author = "Roland Memisevic", + title = "Non-linear latent factor models for revealing + structure in high-dimensional data", + school = "Departement of Computer Science, University of + Toronto", + address = "Toronto, Ontario, Canada", + year = "2007", +} + +@Book{Mendelson97, + author = "E. Mendelson", + title = "Introduction to Mathematical Logic, 4th ed.", + publisher = "Chapman \& Hall", + year = "1997", +} + +@InProceedings{Merkel-1994, + author = "Magnus Merkel and Bernt Nilsson and Lars Ahrenberg", + booktitle = "Proceedings of the 4th Workshop on Very Large + Corpora", + title = "A Phrase-Retrieval System Based on Recurrence", + address = "Tokyo, Japan", + year = "1994", +} + +@InProceedings{Merkel-2000, + author = "Magnus Merkel and Mikael Andersson", + booktitle = "Proceedings of RIAO'2000", + title = "Knowledge-lite extraction of multi-word units with + language filters and entropy thresholds", + volume = "1", + pages = "737--746", + year = "2000", +} + +@InProceedings{Merlo86, + author = "E. Merlo and R. De Mori and G. Mercier and M. + Palakal", + booktitle = icassp, + title = "A continuous parameter and frequency domain based + {Markov} model", + pages = "1597--1600", + year = "1986", +} + +@article{Merzenich-2000, + title = {Seeing in the Sound Zone}, + author = {M. Merzenich}, + journal = {Nature}, + pages = {820--821}, + volume = {404}, + year = {2000}, +} + +@Article{Metropolis53, + author = "N. Metropolis and A. W. Rosenbluth and M. N. + Rosenbluth and A. H. Teller and E. Teller", + title = "Equation of State Calculations for Fast Computing + Machines", + journal = jcp, + volume = "21", + pages = "1087--1092", + year = "1953", +} + +@Article{Mezard85, + author = "M. M\'ezard and G. Parisi", + title = "Replicas and Optimization", + journal = jppl, + volume = "46", + pages = "771--778", + year = "1985", +} + +@Article{Mezard86, + author = "M. M\'ezard and G. Parisi", + title = "A Replica Analysis of the Travelling Salesman + Problem", + journal = jpp, + volume = "47", + pages = "1285--1296", + year = "1986", +} + +@Book{Mezard87, + author = "M. M\'ezard and G. Parisi and M. A. Virasoro", + title = "Spin Glass Theory and Beyond", + publisher = "World Scientific", + address = "Singapore", + year = "1987", +} + +@Article{Mezard88, + author = "M. M\'ezard and G. Parisi", + title = "The Euclidean Matching Problem", + journal = jpp, + volume = "49", + pages = "2019--2025", + year = "1988", +} + +@Article{Mezard89, + author = "M. M\'ezard and J.-P. Nadal", + title = "Learning in Feedforward Layered Networks: The Tiling + Algorithm", + journal = jpa, + volume = "22", + pages = "2191--2204", + year = "1989", +} + +@Article{Micchelli-1986, + author = "C. A. Micchelli", + title = "Interpolation of scattered data: distance matrices and + conditionally positive definite functions", + journal = "Constructive Approximation", + volume = "2", + pages = "11--22", + year = "1986", +} + +@InProceedings{micchelli05, + author = "Charles A. {Micchelli} and Massimiliano {Pontil}", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Kernels for Multi--task Learning", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "921--928", + year = "2005", +} + +@InProceedings{Mihalcea2002, + author = "Rada Mihalcea", + booktitle = "Proceedings of the 6th Conference on Natural Language + Learning", + title = "Instance Based Learning with Automatic Feature + Selection Applied to Word", + year = "2002", + URL = "citeseer.nj.nec.com/587173.html", +} + +@Article{Miikkulainen91, + author = "R. Miikkulainen and M. G. Dyer", + title = "Natural language processing with modular {PDP} + networks and distributed lexicon", + journal = "Cognitive Science", + volume = "15", + pages = "343--399", + year = "1991", +} + +@Article{Miller+Sachs83, + author = "M. M. Miller and M. B. Sachs", + title = "Representation of stop consonants in the discharge + patterns of auditory nerve fibers", + journal = jasa, + volume = "74", + number = "2", + pages = "502--517", + year = "1983", +} + +@PhdThesis{miller02, + author = "Erik G. Miller", + title = "Learning from one example in machine vision by sharing + probability densities", + school = "Massachusetts Institute of Technology", + year = "2002", +} + +@PhdThesis{miller02one, + author = "Erik Miller", + title = "Learning from one example in machine vision by sharing + probability densities", + school = "Massachusetts Institute of Technology, Department of + Electrical Engineering and Computer Science", + year = "2002", +} + +@InProceedings{Miller89, + author = "G. F. Miller and P. M. Todd and S. U. Hegde", + editor = "J. D. Schaffer", + booktitle = "Proceedings of the Third International Conference on + Genetic Algorithms", + title = "Designing Neural Networks Using Genetic Algorithms", + publisher = "Morgan Kaufmann, San Mateo", + address = "Arlington 1989", + pages = "379--384", + year = "1989", +} + +@Article{MillerD1996, + author = "David Miller and Kenneth Rose", + title = "Hierarchical, unsupervised learning with growing via + phase transitions", + journal = "Neural Computation", + volume = "8", + number = "2", + publisher = "MIT Press", + address = "Cambridge, MA, USA", + pages = "425--450", + year = "1996", + ISSN = "0899-7667", +} + +@Article{Miller-ijprai93, + author = "C. B. Miller and C. L. Giles", + title = "Experimental Comparison of the Effect of Order in + Recurrent Neural Networks", + journal = "Int. Journal of Pattern Recognition and Artificial + Intelligence", + pages = "205--228", + year = "1993", + note = "Special Issue on Applications of Neural Networks to + Pattern Recognition (I. Guyon Ed.)", +} + +@Book{Minc-88, + author = "H. Minc", + title = "Nonnegative Matrices", + publisher = "John Wiley \& Sons", + address = "New York", + year = "1988", +} + +@Book{Minsky67, + author = "M. L. Minsky", + title = "Computation: Finite and Infinite Machines", + publisher = "Prentice-Hall", + address = "Englewood Cliffs", + year = "1967", +} + +@Book{Minsky69, + author = "M. L. Minsky and S. A. Papert", + title = "Perceptrons", + publisher = "MIT Press", + address = "Cambridge", + year = "1969", +} + +@Article{Misra-1997, + author = "Manavendra Misra", + title = "Parallel Environments for Implementing Neural + Networks", + journal = "Neural Computing Surveys", + volume = "1", + pages = "48--60", + year = "1997", +} + +@Article{Mitchison89, + author = "G. J. Mitchison and R. M. Durbin", + title = "Bounds on the Learning Capacity of Some Multi-Layer + Networks", + journal = biocyb, + volume = "60", + pages = "345--356", + year = "1989", +} + +@Article{ML:Bauer:boost, + author = "Eric Bauer and Ron Kohavi", + title = "An empirical comparison of voting classification + algorithms: Bagging, Boosting, and variants", + journal = "Machine Learning", + year = "1998", +} + +@Article{ML:Breiman:bagging, + author = "Leo Breiman", + title = "Bagging Predictors", + journal = "Machine Learning", + volume = "24", + number = "2", + pages = "123--140", + year = "1994", +} + +@Article{ML:Dietterich:adaboost+noise, + author = "Thomas G. Dietterich", + title = "An experimental comparison of three methods for + constructing ensembles of decision trees: Bagging, + Boosting, and randomization", + journal = "submitted to Machine Learning", + year = "1998", + note = "\\available at {\tt + ftp://ftp.cs.orst.edu/pub/tgd/papers/tr-randomized-c4.ps.gz}", +} + +@Article{ML:Schapire:weaklearn, + author = "Robert E. Schapire", + title = "The strength of weak learnability", + journal = "Machine Learning", + volume = "5", + number = "2", + pages = "197--227", + year = "1990", +} + +@Misc{MLJ-model-selection-combination-2001, + author = "Y. Bengio and D. Schuurmans", + title = "Special Issue on New methods for model selection and + model combination", + year = "2002", + note = "{\em Machine Learning}, 48(1)", +} + +@InProceedings{Mnih+Hinton-2007, + author = "Andriy Mnih and Geoffrey E. Hinton", + booktitle = ICML07, + editor = ICML07ed, + publisher = ICML07publ, + title = "Three New Graphical Models for Statistical Language + Modelling", + pages = "641--648", + year = "2007", +} + +@InProceedings{Mnih+Hinton-2007-small, + author = "Andriy Mnih and Geoffrey E. Hinton", + booktitle = "ICML 2007", + title = "Three New Graphical Models for Statistical Language + Modelling", + year = "2007", +} + +@InProceedings{Mnih+Hinton-2009, + author = "Andriy Mnih and Geoffrey E. Hinton", + booktitle = NIPS21, + editor = NIPS21ed, + title = {A Scalable Hierarchical Distributed Language Model}, + pages = {1081--1088}, + year = "2009", +} + +@InProceedings{mohri-pereira-riley96, + author = "M. Mohri and F. C. N. Pereira and M. D. Riley", + booktitle = "ECAI 96, 12th European Conference on Artificial + Intelligence", + title = "Weighted automata in text and speech processing", + pages = "", + year = "1996", +} + +@Article{Mohri96, + author = "M. Mohri", + title = "Finite-State Transducers in Language and Speech + Processing", + journal = "Computational Linguistics", + volume = "20", + number = "1", + pages = "1--33", + year = "1996", +} + +@InProceedings{Molina02, + author = "A. Molina and F. Pla and E. Segarra and L. Moreno", + booktitle = "{Proceedings of 3rd International Conference on + Language Resources and Evaluation, LREC2002}", + title = "{Word Sense Disambiguation using Statistical Models + and {WordNet}}", + address = "{Las Palmas de Gran Canaria, Spain}", + year = "2002", +} + +@PhdThesis{moller, + author = "M. {Moller}", + title = "Efficient Training of Feed-Forward Neural Networks", + school = "Aarhus University", + address = "Aarhus, Denmark", + year = "1993", +} + +@InProceedings{moller-92, + author = "M. Moller", + booktitle = "Neural Networks for Signal Processing 2", + title = "supervised learning on large redundant training sets", + publisher = "IEEE press", + year = "1992", +} + +@InProceedings{Momma2003, + author = "M. Momma and K. P. Bennett", + booktitle = colt03, + title = "Sparse Kernel Partial Least Squares Regression", + year = "2003", +} + +@InProceedings{Montana89, + author = "D. J. Montana and L. Davis", + editor = "N. S. Sridharan", + booktitle = "Eleventh International Joint Conference on Artificial + Intelligence", + title = "Training Feedforward Networks Using Genetic + Algorithms", + publisher = "Morgan Kaufmann, San Mateo", + address = "Detroit 1989", + pages = "762--767", + year = "1989", +} + +@InProceedings{Moody88, + author = "J. Moody and C. Darken", + editor = "D. Touretzky and G. Hinton and T. Sejnowski", + booktitle = cmss88, + title = "Learning with Localized Receptive Fields", + publisher = "Morgan Kaufmann, San Mateo", + address = "Pittsburg 1988", + pages = "133--143", + year = "1988", +} + +@Article{Moody89, + author = "J. Moody and C. Darken", + title = "Fast Learning in Networks of Locally-Tuned Processing + Units", + journal = nc, + volume = "1", + pages = "281--294", + year = "1989", +} + +@InProceedings{Moody92, + author = "J. E. Moody", + editor = NIPS4ed, + booktitle = NIPS4, + title = "The Effective Number of Parameters: An Analysis of + Generalization and Regularization in Nonlinear Learning + Systems", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "847--854", + year = "1992", +} + +@InProceedings{Moody92b, + author = "J. Moody and J. Utans", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Principled architecture selection for neural networks: + application to corporate bond rating prediction", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "683--690", + year = "1992", +} + +@Article{moody93, + author = "J. Moody and U. Levin and S. Rehfuss", + title = "Predicting the {U.S.} Index of Industrial Production", + journal = "Neural Network World", + volume = "3", + number = "6", + pages = "791--794", + year = "1993", +} + +@InCollection{Moody94, + author = "J. Moody", + booktitle = "From Statistics to Neural Networks: Theory and Pattern + Recognition Applications", + title = "Prediction Risk and Architecture Selection for Neural + Networks", + publisher = "Springer", + year = "1994", +} + +@InCollection{Moody98, + author = "J. Moody", + editor = "G. B. Orr and K-R. Muller", + booktitle = "Neural Networks: Tricks of he Trade", + title = "Forecasting the economy with neural nets: a survey of + challenges", + publisher = "Springer", + pages = "347--372", + year = "1998", +} + +@InProceedings{Moore88, + author = "B. Moore", + editor = "D. Touretzky and G. Hinton and T. Sejnowski", + booktitle = cmss88, + title = "{ART}1 and Pattern Clustering", + publisher = "Morgan Kaufmann, San Mateo", + address = "Pittsburg 1988", + pages = "174--185", + year = "1988", +} + +@InProceedings{MoosmannF2007, + author = "Frank Moosmann and Bill Triggs and Frederic Jurie", + editor = NIPS19ed, + booktitle = NIPS19ed, + title = "Fast Discriminative Visual Codebooks using Randomized + Clustering Forests", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "985--992", + year = "2007", +} + +@InCollection{More+Wu-1996, + author = "Jorge More and Zhijun Wu", + editor = "G. Di Pillo and F. Giannessi", + booktitle = "Nonlinear Optimization and Applications", + title = "Smoothing techniques for macromolecular global + optimization", + publisher = "Plenum Press", + year = "1996", +} + +@InProceedings{Morgan+Bourlard90b, + author = "N. Morgan and H. Bourlard", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Generalization and parameter estimation in feedforward + nets: some experiments", + publisher = "Morgan Kaufmann", + address = "Denver, CO", + pages = "413--416", + year = "1990", +} + +@InProceedings{Morgan90, + author = "N. Morgan and H. Bourlard", + booktitle = icassp, + title = "Continuous Speech Recognition Using Multilayer + Perceptrons with Hidden {Markov} Models", + address = "Albuquerque, NM", + pages = "413--416", + year = "1990", +} + +@InProceedings{Morgan93, + author = "M. Cohen and H. Franco and N. Morgan and D. Rumelhart + and V. Abrash", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Context-Dependent Multiple Distribution Phonetic + Modeling with {MLP}s", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + pages = "649--657", + year = "1993", +} + +@InProceedings{Morgan95, + author = "N. Morgan and Y. Konig and S. L. Wu and H. Bourlard", + booktitle = "Proceedings of IEEE Automatic Speech Recognition + Workshop (Snowbird)", + title = "Transition-based Statistical Training for {ASR}", + pages = "133--134", + year = "1995", +} + +@InProceedings{Morin+Bengio-2005, + author = "Fr\'ed\'eric Morin and Yoshua Bengio", + editor = aistats05ed, + booktitle = aistats05, + title = "Hierarchical Probabilistic Neural Network Language + Model", + publisher = "", + date = "Jan 6-8, 2005", + location = "Savannah Hotel, Barbados", + pages = "246--252", + year = "2005", +} + +@Article{Mosesova-2006, + author = "S. A. Mosesova and H. A. Chipman and R. J. MacKay and + S. H. Steiner", + title = "Profile monitoring using mixed effects models", + journal = "Submitted to Technometrics", + year = "2006", +} + +@Article{MosesY1996, + author = "Y. Moses and S. Ullman and S. Edelman", + title = "Generalization to novel images in upright and inverted + faces", + journal = "Perception", + volume = "25", + number = "4", + pages = "443--461", + year = "1996", + OPTannote = "", + OPTkey = "", + OPTmonth = "", + OPTnote = "", +} + +@Article{Movellan-2002, + author = "Javier R. Movellan and Paul Mineiro and R. J. Williams", + title = "A Monte-Carlo {EM} approach for partially observable + diffusion processes: theory and applications to neural + networks", + journal = "Neural Computation", + volume = "14", + pages = "1501--1544", + year = "2002", +} + +@TechReport{Movelland+McClelland91, + author = "Javier R. Movellan and James L. McClelland", + title = "Learning Continuous Probability Distributions with the + Contrastive {Hebbian} Algorithm", + number = "PDP.CNS.91.2", + institution = "Carnegie Mellon University, Dept. of Psychology", + address = "Pittsburgh, PA", + year = "1991", +} + +@InCollection{Mozer+Smolensky89, + author = "M. C. Mozer and P. Smolensky", + editor = NIPS1ed, + booktitle = NIPS1, + title = "Skeletonization: {A} technique for trimming the fat + from a network via relabance assessment", + publisher = "Morgan Kaufmann", + pages = "107--115", + year = "1989", +} + +@InProceedings{Mozer-nips92, + author = "M. C. Mozer", + editor = NIPS4ed, + booktitle = NIPS4, + title = "The induction of Multiscale Temporal Structure", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "275--282", + year = "1992", +} + +@Article{mozer-smolensky-89, + author = "M. C. Mozer and P. Smolensky", + key = "Mozer", + title = "Using relevance to reduce network size automatically", + journal = "Connection Science", + volume = "1", + number = "1", + pages = "3--16", + year = "1989", +} + +@Article{Mozer-trnn2000, + author = "M. C. Mozer and R. Wolniewicz and D. B. Grimes and E. + Johnson and H. Kaushansky", + title = "Predicting Subscriber Dissatisfaction and Improving + Retention in the Wireless Telecommunications Industry", + journal = "IEEE Transactions on Neural Networks, special issue on + Data Mining and Knowledge Discovery", + volume = "11", + number = "3", + year = "2000", +} + +@Article{Mozer89, + author = "M. C. Mozer", + title = "A Focused Back-Propagation Algorithm for Temporal + Pattern Recognition", + journal = cs, + volume = "3", + pages = "349--381", + year = "1989", +} + +@InCollection{Mozer93, + author = "M. C. Mozer", + editor = "A. Weigend and N. Gershenfeld", + booktitle = "Predicting the Future and Understanding the Past", + title = "Neural net architectures for temporal sequence + processing", + publisher = "Addison-Wesley", + address = "Redwood City, CA", + pages = "243--264", + year = "1993", +} + +@TechReport{MPIforum, + author = "Jack Dongarra and David Walker and {The Message + Passing Interface Forum}", + title = "{MPI}: {A} Message Passing Interface Standard", + number = "http://www-unix.mcs.anl.gov/mpi", + institution = "University of Tenessee", + year = "1995", +} + +@Article{multidimensional-FGS-83, + author = "J. H. Friedman and E. Grosse and W. Suetzle", + title = "Multidimensional additive spline approximation", + journal = "SIAM Journal of Scientific and Statistical Computing", + volume = "4", + number = "2", + pages = "291--301", + year = "1983", +} + +@InProceedings{Munro87, + author = "P. Munro", + booktitle = "The Ninth Annual Conference of the Cognitive Science + Society", + title = "A Dual Back-Propagation Scheme for Scalar Reward + Learning", + publisher = "Lawrence Erlbaum, Hillsdale", + address = "Seattle 1987", + pages = "165--176", + year = "1987", +} + +@InProceedings{MurraySal09, +author= "Iain Murray and Ruslan Salakhutdinov", +title= "Evaluating probabilities under high-dimensional latent variable models", +editor = NIPS21ed, +booktitle= NIPS21, +volume= "21", +pages = "1137--1144", +year= "2009" +} + +@InProceedings{Murveit93, + author = "H. Murveit and J. Butzberger and V. Digilakis and M. + Weintraub", + booktitle = icassp, + title = "Large-vocabulary dictation using {SRI}'s {DECIPHER} + speech recognition system: Progressive search + techniques knowledge for continuous speech + recognition", + address = "Minneapolis, Minnesota", + pages = "319--322", + year = "1993", +} + +@Article{Muselli97, + author = "M. Muselli", + title = "On convergence properties of pocket algorithm", + journal = "IEEE Transactions on Neural Networks", + volume = "8", + pages = "623--629", + year = "1997", +} + +@article{Mutch-Lowe-2008, + author = {Jim Mutch and David G. Lowe}, + title = {Object class recognition and localization using sparse features with limited receptive fields}, + journal = {International Journal of Computer Vision}, + volume = 80, + number = 1, + year = 2008, + pages = {45--57}, +} + +@Article{myles90multiclass, + author = "J. Myles and D. Hand", + title = "The Multi-Class Measure Problem in Nearest Neighbour + Discrimination Rules", + journal = "Pattern Recognition", + volume = "23", + pages = "1291--1297", + year = "1990", +} + +@Article{Nadal86, + author = "J.-P. Nadal and J.-P. Changeux G. Toulouse and S. + Dehaene", + title = "Networks of Formal Neurons and Memory Palimpsests", + journal = eul, + volume = "1", + pages = "535--542", + year = "1986", +} + +@Article{Nadaraya64, + author = "E. A. Nadaraya", + title = "On estimating regression", + journal = "Theory of Probability and its Applications", + volume = "9", + pages = "141--142", + year = "1964", +} + +@Article{Nadaraya65, + author = "E. A. Nadaraya", + title = "On nonparametric estimates of density functions and + regression curves", + journal = "Theory of Applied Probability", + volume = "10", + pages = "186--190", + year = "1965", +} + +@Article{Nadas85, + author = "Arthur Nádas", + title = "On {Turing's} Formula for Word Probabilities", + journal = "IEEE Transactions on Acoustics, Speech, and Signal + Processing", + volume = "33", + number = "6", + pages = "1415--1417", + month = dec, + year = "1985", + copy = yes, +} + +@Article{Nadas85-small, + author = "Arthur Nádas", + title = "On {Turing's} Formula for Word Probabilities", + journal = "ASSP", + volume = "33", + number = "6", + pages = "1415--1417", + month = dec, + year = "1985", + copy = yes, +} + +@Article{Nadas88, + author = "A. Nadas and D. Nahamoo and M. A. Picheny", + title = "On a model-robust training method for speech + recognition", + journal = "IEEE Transactions on Acoustics, Speech and Signal + Processing", + volume = "ASSP-36", + number = "9", + pages = "1432--1436", + year = "1988", +} + +@Article{Nadeau-Bengio-2003, + author = "Claude Nadeau and Yoshua Bengio", + title = "Inference for the Generalization Error", + journal = "Machine Learning", + volume = "52", + number = "3", + pages = "239--281", + year = "2003", +} + +@Article{Nadeau-Bengio-2003-small, + author = "Claude Nadeau and Yoshua Bengio", + title = "Inference for the Generalization Error", + journal = "Machine Learning", + volume = "52(3)", + pages = "239--281", + year = "2003", +} + +@InProceedings{Nadeau00-nips, + author = "Claude Nadeau and Yoshua Bengio", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Inference for the Generalization Error", + publisher = "MIT Press", + pages = "307--313", + year = "2000", +} + +@InProceedings{Bonneville+al-1998, + author = "M. Bonneville and J. Meunier and Y. Bengio and J.P. Soucy", + booktitle = "SPIE Medical Imaging 1998", + title = "Support Vector Machines for Improving the classification of Brain Pet Images", + address = "San Diego", + year = "1998", +} + +@TechReport{Nadeau99-TR, + author = "Claude Nadeau and Yoshua Bengio", + title = "Inference for the Generalization Error", + institution = "CIRANO", + address = "Montreal, Quebec, Canada", + year = "1999", +} + +@InProceedings{nag86, + author = "R. Nag and K. H. Wong and F. Fallside", + booktitle = icassp, + title = "Script recognition using hidden {Markov} models", + address = "Tokyo", + pages = "2071--2074", + year = "1986", +} + +@MastersThesis{Nahm-2005, + author = {E. Nahm}, + title = {Classification models for transactional graph data}, + school = {Department of Mathematics and Statistics, Acadia University}, + year = 2005, +} + +@article{Naka-Rushton-1966a, + author = {K.I. Naka and W.A.H. Rushton}, + year = 1966, + title = {{S}-potentials from colour units in the retina of fish (Cyprinidae)}, + journal = {J. Physiol.}, + volume = 185, + pages = {536-â555}, +} + +@article{Naka-Rushton-1966b, + author = {K.I. Naka and W.A.H. Rushton}, + year = 1966, + title = {An attempt to analyse colour perception by electrophysiology}, + journal = {J. Physiol.}, + volume = 185, + pages = {556â586}, +} + + +@InProceedings{NakagawaT04, + author = "Tetsuji Nakagawa and Taku Kudoh and Yuji Matsumoto", + booktitle = "Proceedings of the Sixth Natural Language Processing + Pacific Rim Symposium", + title = "Unknown Word Guessing and Part-of-Speech Tagging Using + Support Vector Machines", + address = "Tokyo, Japan", + pages = "325--331", + year = "2001", +} + +@Article{Naradraya70, + author = "E. A. Nadaraya", + title = "Remarks on nonparametric estimates for density + functions and regression curves", + journal = "Theory of Probability and its Applications", + volume = "15", + pages = "134--137", + year = "1970", +} + +@Book{Narendra89, + author = "K. Narendra and M. A. L. Thathachar", + title = "Learning Automata: An Introduction", + publisher = "Prentice-Hall", + address = "Englewood Cliffs", + year = "1989", +} + +@Book{narendra:1989, + author = "K. S. Narendra and M. A. L. Thathachar", + title = "Learning Automata: an introduction", + publisher = "Prentice Hall", + year = "1989", +} + +@Article{Nasrabadi88a, + author = "N. M. Nasrabadi and R. A. King", + title = "Image Coding Using Vector Quantization: {A} Review", + journal = ieeetcomm, + volume = "36", + pages = "957--971", + year = "1988", +} + +@InProceedings{Nasrabadi88b, + author = "N. M. Nasrabadi and Y. Feng", + booktitle = icnn, + title = "Vector Quantization of Images Based upon the Kohonen + Self-Organizing Feature Maps", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "101--108", + year = "1988", +} + +@Article{Nass75, + author = "M. M. Nass and L. N. Cooper", + title = "A Theory for the Development of Feature Detecting + Cells in Visual Cortex", + journal = biocyb, + volume = "19", + pages = "1--18", + year = "1975", +} + +@Article{Naylor88, + author = "J. Naylor and K. P. Li", + title = "Analysis of a Neural Network Algorithm for Vector + Quantization of Speech Parameters", + journal = nnsupp, + volume = "1", + pages = "310", + year = "1988", +} + +@Article{NC:Baldi93, + author = "P. Baldi and Y. Chauvin", + title = "Neural Networks for Fingerprint Recognition", + journal = "Neural Computation", + volume = "5", + type = "Letter", + number = "3", + pages = "402--418", + year = "1993", +} + +@Article{nc:Geman+Bienenstock+Doursat:1992, + author = "S. Geman and E. Bienenstock and R. Doursat", + title = "Neural Networks and the Bias/Variance Dilemma", + journal = "Neural Computation", + volume = "4", + type = "View", + number = "1", + pages = "1--58", + year = "1992", +} + +@Article{nc:Poggio+Girosi:1998, + author = "Tomaso Poggio and Frederico Girosi", + title = "A Sparse Representation for Function Approximation", + journal = "Neural Computation", + volume = "10", + number = "6", + pages = "1445--1454", + year = "1998", +} + +@TechReport{Neal-GP97, + author = "Radford M. Neal", + title = "Monte Carlo implementation of {G}aussian process models + for {Bayesian} regression and classification", + number = "9702", + institution = "University of Toronto, Department of Statistics", + year = "1997", +} + +@Article{Neal92, + author = "Radford M. Neal", + title = "Connectionist learning of belief networks", + journal = "Artificial Intelligence", + volume = "56", + pages = "71--113", + year = "1992", +} + +@InProceedings{Neal93a, + author = "Radford M. Neal", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Bayesian learning via stochastic dynamics", + address = "Denver, CO", + pages = "475--482", + year = "1993", +} + +@TechReport{Neal93b, + author = "Radford M. Neal", + title = "Probabilistic inference using {Markov} chain + {Monte-Carlo} methods", + number = "{CRG-TR}-93-1", + institution = "Dept. of Computer Science, University of Toronto", + year = "1993", +} + +@PhdThesis{Neal94, + author = "Radford M. Neal", + title = "Bayesian Learning for Neural Networks", + school = "Dept. of Computer Science, University of Toronto", + year = "1994", +} + +@TechReport{Neal94b, + author = "Radford M. Neal", + title = "Sampling from Multimodal Distributions Using Tempered Transitions", + number = "9421", + institution = "Dept. of Statistics, University of Toronto", + year = "1994", +} + +@InCollection{Neal98, + author = "Radford M. Neal", + editor = "C. M. Bishop", + booktitle = "Neural Networks and Machine Learning", + title = "Assessing relevance determination methods using + {DELVE}", + publisher = "Springer-Verlag", + pages = "97--129", + year = 1998, +} + +@Misc{neal98assessing, + author = "Radford M. Neal", + title = "Assessing Relevance Determination Methods Using + {DELVE} Generalization in Neural Networks and Machine + Learning", + year = "1998", + text = "Neal, R. N. (1998). Assessing Relevance Determination + Methods Using DELVE Generalization in Neural Networks + and Machine Learning, C. M. Bishop (editor), + SpringerVerlag.", +} + +@article{Neal-2001, + author = "Radford M. Neal", + journal = "Statistics and Computing", + month = "April", + number = "2", + pages = "125--139", + title = "Annealed importance sampling", + url = "http://dx.doi.org/10.1023/A:1008923215028", + volume = "11", + year = "2001" +} + +@Article{Needleman+Wunsch70, + author = "S. B. Needleman and C. D. Wunsch", + title = "A general method applicable to the search of + similarities in the amino acid sequence of two + proteins", + journal = "Journal of Molecular Biology", + volume = "48", + pages = "443--453", + year = "1970", +} + +@Article{NeweyWest1987, + author = "W. Newey and K. West", + title = "A Simple, Positive Semi-Definite, Heteroscedasticity + and Autocorrelation Consistent Covariance Matrix", + journal = "Econometrica", + volume = "55", + pages = "703--708", + year = "1987", +} + +@InProceedings{Ney+Kneser93, + author = "Hermann Ney and Reinhard Kneser", + booktitle = "European Conference on Speech Communication and + Technology (Eurospeech)", + title = "Improved clustering techniques for class-based + statistical language modelling", + address = "Berlin", + pages = "973--976", + year = "1993", +} + +@Article{Ney92, + author = "H. Ney and D. Mergel and A. Noll and A. Paesler", + title = "Data driven search organization for continuous speech + recognition", + journal = "IEEE Transactions on Signal Processing", + volume = "40", + number = "2", + pages = "272--281", + month = feb, + year = "1992", +} + +@InProceedings{Ng1996, + author = "Hwee Tou Ng and Hian Beng Lee", + editor = "Arivind Joshi and Martha Palmer", + booktitle = "Proceedings of the Thirty-Fourth Annual Meeting of the + Association for Computational Linguistics", + title = "Integrating Multiple Knowledge Sources to Disambiguate + Word Sense: An Exemplar-Based Approach", + publisher = "Morgan Kaufmann Publishers", + address = "San Francisco", + pages = "40--47", + year = "1996", + URL = "citeseer.nj.nec.com/ng96integrating.html", +} + +@InProceedings{Ng1997, + author = "Hwee Tou Ng", + booktitle = SIGLEX97, + title = "Getting Serious about Word Sense Disambiguation", + address = "Washington", + pages = "1--7", + year = "1997", +} + +@InProceedings{Ng2002, + author = "Andrew Y. Ng and Michael I. Jordan and Yair Weiss", + editor = NIPS14ed, + booktitle = NIPS14, + title = "On Spectral Clustering: analysis and an algorithm", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2002", + original = "orig/AA35.ps", +} + +@InProceedings{Ng2008, + author = "Honglak Lee and Ekanadham Chaitanya and Andrew Y. Ng", + editor = NIPS20ed, + booktitle = NIPS20, + title = "Sparse deep belief net model for visual area {V2}", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2008", +} + +@InProceedings{NgJ02, + author = "Andrew Y. Ng and Michael I. Jordan", + booktitle = NIPS14, + editor = NIPS14ed, + title = {On Discriminative vs. Generative Classifiers: A + comparison of logistic regression and naive Bayes}, + pages = "841--848", + year = "2002", +} + +%%Fred I deprecate the following as the tag name have the year of the conf and not of the papers! +@InProceedings{NgJ01, + author = "Andrew Y. Ng and Michael I. Jordan", + booktitle = NIPS14, + editor = NIPS14ed, + title = {On Discriminative vs. Generative Classifiers: A + comparison of logistic regression and naive Bayes}, + pages = "841--848", + year = "2002", +} + +@InProceedings{Nie99, + author = "J. Y. Nie and M. Simard and P. Isabelle and R. + Durand", + booktitle = "22nd ACM-SIGIR", + title = "Cross-Language Information Retrieval based on Parallel + Texts and Automatic Mining of Parallel Texts in the + Web", + address = "Berkeley", + pages = "74--81", + year = "1999", +} + +@INPROCEEDINGS{Niebles+Fei-Fei-2007, + AUTHOR = "Niebles, J.C. and Fei-Fei, L.", + TITLE = "A hierarchical model of shape and appearance for human action classification. ", + BOOKTITLE = cvpr07, + YEAR = "2007", +} + +@Article{Nielsen96, + author = "H. Nielsen and J. Engelbrecht and G. {von Heijne} and + S. Brunak", + title = "Defining a similarity threshold for a functional + protein sequence pattern: the signal peptide cleavage + site", + journal = "Proteins", + pages = "316--320", + year = "1996", + volme = "24", +} + +@Article{Nielsen97, + author = "H. Nielsen and J. Engelbrecht and S. Brunak and G. + {von Heijne}", + title = "Identification of prokaryotic and eukaryotic signal + peptides and prediction of their cleavage sites", + journal = "Prot. Eng.", + pages = "1--6", + year = "1997", + volme = "10", +} + +@InProceedings{Niesler98, + author = "T. R. Niesler and E. W. D. Whittaker and P. C. + Woodland", + booktitle = icassp, + title = "Comparison of part-of-speech and automatically derived + category-based language models for speech recognition", + pages = "177--180", + year = "1998", +} + +@InProceedings{Niles90, + author = "L. T. Niles and H. F. Silverman", + booktitle = icassp, + title = "Combining Hidden {Markov} Models and Neural Network + Classifiers", + address = "Albuquerque, NM", + pages = "417--420", + year = "1990", +} + +@Book{Nilsson-65, + author = "N. J. Nilsson", + title = "Learning Machines", + publisher = "McGraw-Hill", + address = "New York", + year = "1965", +} + +@Book{Nilsson-71, + author = "N. J. Nilsson", + title = "Problem-Solving Methods in Artificial Intelligence", + publisher = "McGraw-Hill", + address = "New York", + year = "1971", +} + +@InProceedings{nips-10:Baxter+Bartlett:1998, + author = "Jonathan Baxter and Peter Bartlett", + editor = NIPS10ed, + booktitle = NIPS10, + title = "The Canonical Distortion Measure in Feature Space and + 1-{NN} Classification", + publisher = "MIT Press", + year = "1998", +} + +@InProceedings{nips-10:Holger+Yoshua:1998, + author = "Holger Schwenk and Yoshua Bengio", + editor = NIPS10ed, + booktitle = NIPS10, + title = "Training Methods for Adaptive Boosting of Neural + Networks", + publisher = "MIT Press", + pages = "647--653", + year = "1998", +} + +@InProceedings{nips-6:Perrone:1994, + author = "Michael P. Perrone", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Putting It All Together: Methods for Combining Neural + Networks", + publisher = "Morgan Kaufmann Publishers, Inc.", + pages = "1188--1189", + year = "1994", +} + +@InProceedings{nips-9:Burges+Schoelkopf:1997, + author = "Chris J. C. Burges and B. Sch{\"o}lkopf", + editor = NIPS9ed, + booktitle = NIPS9, + title = "Improving the Accuracy and Speed of Support Vector + Machines", + publisher = "MIT Press", + pages = "375", + year = "1997", +} + +@InProceedings{nips02-LT09, + author = "G. Lebanon and J. Lafferty", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Boosting and Maximum Likelihood for Exponential + Models", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2002", + original = "orig/LT09.ps", +} + +@InCollection{NIPS2005-207, + author = "Jian Zhang and Zoubin Ghahramani and Yiming Yang", + editor = NIPS18ed, + booktitle = NIPS18, + title = "Learning Multiple Related Tasks using Latent + Independent Component Analysis", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "1587--1594", + year = "2006", +} + +@InCollection{NIPS2007-812-small, + author = "Nicolas Chapados and Yoshua Bengio", + booktitle = "NIPS 20", + title = "Augmented Functional Time Series Representation and + Forecasting with {G}aussian Processes", + pages = "265--272", + year = "2008", +} + +@InCollection{NIPS2007-925-small, + author = "Nicolas {Le Roux} and Yoshua Bengio and Pascal Lamblin + and Marc Joliveau and Balazs Kegl", + booktitle = "NIPS 20", + title = "Learning the 2-{D} Topology of Images", + pages = "841--848", + year = "2008", +} + +@InProceedings{NIPS8:Drucker:AdaBoost-Trees, + author = "Harris Drucker and Corinna Cortes", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Boosting decision trees", + publisher = "MIT Press", + pages = "479--485", + year = "1996", +} + +@InProceedings{NIPS8:Hofmann-Tresp, + author = "Reimar Hofmann and Volker Tresp", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Discovering structure in continuous variables using + {Bayesian} networks", + publisher = "MIT Press", + pages = "500--506", + year = "1996", +} + +@InProceedings{NIPS9:Monti-Cooper, + author = "Stefano Monti and Gregory F. Cooper", + editor = NIPS9ed, + booktitle = NIPS9, + title = "Learning {Bayesian} belief networks with neural + network estimators", + publisher = "MIT Press", + pages = "578--584", + year = "1997", +} + +@Article{Niranjan90, + author = "M. Niranjan and F. Fallside", + title = "Neural Networks and Radial Basis Functions in + Classifying Static Speech Patterns", + journal = cspla, + volume = "4", + pages = "275--289", + year = "1990", +} + +@Article{Nishimori90, + author = "H. Nishimori and T. Nakamura and M. Shiino", + title = "Retrieval of Spatio-Temporal Sequence in Asynchronous + Neural Network", + journal = prA, + volume = "41", + pages = "3346--3354", + year = "1990", +} + +@book{Nixon+Aguado+2007, + author = {Nixon, M. S. and Aguado, A. S. }, + publisher = {Academic Press}, + edition = 2, + title = {Feature Extraction and Image Processing}, + year = {2007} +} + +@Article{nonparametric-LZ-95, + author = "G. Lugosi and K. Xeger", + title = "Nonparametric Estimation via Empirical Risk + Minimization", + journal = "IEEE Trans. on Information Theory", + volume = "41", + number = "3", + pages = "677--687", + year = "1995", +} + +@Article{nonparametric-SK-96, + author = "M. Smith and R. Kohn", + title = "Nonparametric regression using {Bayesian} variable + selection", + journal = "J.Econometrics", + volume = "75", + pages = "317--344", + year = "1996", +} + +@InProceedings{nonparametric-W-91, + author = "H. White", + booktitle = "Proceedings of 23rd Symposium on the Interface, + Computer Science and Statistics", + title = "Nonparametric Estimation of Conditional Quantiles + Using Neural Networks", + publisher = "New-York: Springer-Verlag", + pages = "190--199", + year = "1992", +} + +@Article{NordStrom, + author = "T. Nordstrom and B. Svensson", + title = "Using and Designing Massively Parallel Computers for + Artificial Neural Networks", + journal = "Journal of Parallel and Distributed Computing", + volume = "3", + number = "14", + pages = "260--285", + year = "1992", + OPTnote = "", +} + +@Article{Normandin94, + author = "Y. Normandin and R. Cardin and R. {DeMori}", + title = "High-performance connected digit recognition using + maximum mutual information estimation", + journal = "Transactions on Speech and Audio Processing", + volume = "2", + number = "2", + pages = "299--311", + year = "1994", +} + +@InProceedings{Nowlan-nips90, + author = "S. J. Nowlan", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Maximum Likelihood Competitive Learning", + publisher = "Morgan Kaufman Publishers", + address = "San Mateo, CA", + pages = "574--582", + year = "1990", +} + +@InProceedings{Nowlan-nips92, + author = "S. J. Nowlan and G. E. Hinton", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Adaptive Soft Weight Tying using {G}aussian Mixtures", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "993--1000", + year = "1992", +} + +@PhdThesis{Nowlan-PhD, + author = "S. J. Nowlan", + title = "Soft Competitive Adaptation: Neural Network Learning + Algorithms based on Fitting Statistical Mixtures", + type = "{C}{M}{U}-{C}{S}-91-126", + school = "School of Computer Science, Carnegie Mellon + University", + address = "Pittsburgh, PA", + month = apr # " 14", + year = "1991", +} + +@Article{Nowlan88, + author = "S. J. Nowlan", + title = "Gain Variation in Recurrent Error Propagation + Networks", + journal = cs, + volume = "2", + pages = "305--320", + year = "1988", +} + +@TechReport{Nowlan90, + author = "S. J. Nowlan", + key = "Nowlan", + title = "Competing Experts: {An} experimental investigation of + associative mixture models", + type = "Technical Report", + number = "CRG-TR-90-5", + institution = "University of Toronto", + year = "1990", + annote = "In CRG Library", +} + +@Article{Nowlan92, + author = "S. J. Nowlan and G. E. Hinton", + title = "Simplifying Neural Networks by Soft Weight-Sharing", + journal = "Neural Computation", + volume = "4", + type = "Letter", + number = "4", + pages = "473--493", + year = "1992", +} + +@InProceedings{nsvnijcnn, + author = "Pascal Vincent and Yoshua Bengio", + booktitle = ijcnn, + title = "A Neural Support Vector Network Architecture with + Adaptive Kernels", + volume = "5", + pages = "5187--5192", + year = "2000", +} + +@Book{NumOptBook, + author = "J. Nocedal and S. Wright", + title = "Numerical Optimization", + publisher = "Springer", + year = "2006", +} + +@Article{Nystrom-1928, + author = "E. J. Nystr{\"o}m", + title = "{\"{U}}ber die praktische aufl{\"o}sung von linearen + integralgleichungen mit anwendungen auf + randwertaufgaben der potentialtheorie", + journal = "Commentationes Physico-Mathematicae", + volume = "4", + number = "15", + pages = "1--52", + year = "1928", +} + +@Book{O'Shaughnessy87, + author = "D. O'Shaughnessy", + title = "Speech Communication --- Human and Machine", + publisher = "Addison-Wesley", + year = "1987", +} + +@Article{Oja82, + author = "E. Oja", + title = "A Simplified Neuron Model As a Principal Component + Analyzer", + journal = jmathb, + volume = "15", + pages = "267--273", + year = "1982", +} + +@Article{Oja85, + author = "E. Oja and J. Karhunen", + title = "On Stochastic Approximation of the Eigenvectors and + Eigenvalues of the Expectation of a Random Matrix", + journal = jama, + volume = "106", + pages = "69--84", + year = "1985", +} + +@Article{Oja89, + author = "E. Oja", + title = "Neural Networks, Principal Components, and Subspaces", + journal = "International Journal of Neural Systems", + volume = "1", + pages = "61--68", + year = "1989", +} + +@Article{Olshausen+Field-1996, + author = "Bruno A. Olshausen and David J. Field", + title = {Emergence of simple-cell receptive field properties by learning a sparse code for natural images}, + journal = "Nature", + volume = 381, + pages = {607--609}, + year = "1996", +} + +@Article{Olshausen-97, + author = "B. A. Olshausen and D. J. Field", + title = "Sparse coding with an overcomplete basis set: a + strategy employed by {V}1?", + journal = "Vision Research", + volume = "37", + pages = "3311--3325", + year = "1997", + url = {http://view.ncbi.nlm.nih.gov/pubmed/9425546}, + keywords = {sparse-coding, v1, vision}, + month = {December}, +} + +@article{olshausen:2005, + author = {Bruno Olshausen and David J. Field}, + title = {How Close are We to Understanding {V1}?}, + journal = {Neural Computation}, + volume = {17}, + pages = {1665-1699}, + year = {2005}, +} + + +@InProceedings{Omlin-ml92, + author = "C. W. Omlin and C. L. Giles", + editor = "D. Sleeman and P. Edwards", + booktitle = "Machine Learning: Proc. of the Ninth Int. Conference", + title = "Training Second-Order Recurrent Neural Networks using + Hints", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + year = "1992", +} + +@InProceedings{Omohundro96, + author = "S. Omohundro", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Family Discovery", + publisher = "MIT Press, Cambridge, MA", + year = "1996", +} + +@InProceedings{Ong-Smola-2003, + author = "C. S. Ong and A. J. Smola", + booktitle = ICML03, + editor = ICML03ed, + publisher = ICML03publ, + title = "Machine learning using hyperkernels", + year = "2003", +} + +@Article{Opper90, + author = "M. Opper and W. Kinzel and J. Kleinz and R. Nehl", + title = "On the Ability of the Optimal Perceptron to + Generalize", + journal = jpa, + volume = "23", + pages = "L581--L586", + year = "1990", +} + +@Article{Orland85, + author = "H. Orland", + title = "Mean-Field Theory for Optimization Problems", + journal = jppl, + volume = "46", + pages = "763--770", + year = "1985", +} + +@InProceedings{ormo-nips99, + author = "D. Ormoneit and T. Hastie", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Optimal Kernel Shapes for Local Linear Regression", + publisher = "MIT Press", + year = "2000", +} + +@Article{Orponen94, + author = "Pekka Orponen", + title = "Computational complexity of neural networks: a + survey", + journal = "Nordic Journal of Computing", + volume = "1", + number = "1", + pages = "94--110", + month = "Spring", + year = "1994", + URL = "citeseer.ist.psu.edu/article/orponen95computational.html", +} + +@Book{Ortega70, + author = "J. M. Ortega and W. C. Rheinboldt", + title = "Iterative Solution of Non-linear Equations in Several + Variables and Systems", + publisher = "Academic Press", + address = "New York", + year = "1970", + OPTnote = "", +} + +@Book{Ortega70a, + author = "J. M. Ortega and W. C. Rheinboldt", + title = "Iterative Solution of Non-linear Equations in Several + Variables and Systems", + publisher = "Academic Press", + address = "New York", + year = "1970", +} + +@InProceedings{Osindero+Hinton-2008, + author = "Simon Osindero and Geoffrey E. Hinton", + editor = NIPS20ed, + booktitle = NIPS20, + title = {Modeling image patches with a directed hierarchy of + Markov random field}, + publisher = {MIT Press}, + address = {Cambridge, MA}, + pages = {1121--1128}, + year = "2008", +} + +@InProceedings{Osindero+Hinton-2008-small, + author = "S. Osindero and G. Hinton", + booktitle = "NIPS 20", + title = {Modeling image patches with a directed hierarchy of + Markov random field}, + year = "2008", +} + +@Article{Osindero+Welling+Hinton-05, + author = "Simon Osindero and Max Welling and Geoffrey E. Hinton", + title = "Topographic Product Models Applied To Natural Scene + Statistics", + journal = "Neural Computation", + volume = "18", + pages = "381--344", + year = "2005", +} + +@Article{OsinderoS2006, + author = "Simon Osindero and Max Welling and Geoffrey E. + Hinton", + title = "Topographic Product Models Applied to Natural Scene + Statistics", + journal = "Neural Computation", + volume = "18", + number = "2", + publisher = "MIT Press", + address = "Cambridge, MA, USA", + pages = "381--414", + year = "2006", + ISSN = "0899-7667", +} + +@Article{OsinderoS2006-small, + author = "Simon Osindero and Max Welling and Geoffrey E. Hinton", + title = "Topographic Product Models Applied to Natural Scene + Statistics", + journal = "Neural Computation", + volume = "18", + number = "2", + pages = "381--414", + year = "2006", +} + +@InProceedings{Ott76, + author = "R. Ott", + booktitle = "Third International Joint Conference on Pattern + Recognition", + title = "Construction of quadratic polynomial classifiers", + publisher = "IEEE, CA", + address = "Coronado, CA", + pages = "161--165", + year = "1976", +} + +@article{OttJ1976b, + title = {Some Classification Procedures for Multivariate Binary Data Using Orthogonal Functions}, + author = {Ott, Jurg and Kronmal, Richard A.}, + journal = {Journal of the American Statistical Association}, + volume = {71}, + number = {354}, + pages = {391--399}, + year = {1976}, + publisher = {American Statistical Association}, + copyright = {Copyright © 1976 American Statistical Association}, + } + + +@InProceedings{Ouimet+Bengio-2005, + author = "Marie Ouimet and Yoshua Bengio", + editor = aistats05ed, + booktitle = aistats05, + title = "Greedy Spectral Embedding", + publisher = "", + date = "Jan 6-8, 2005", + location = "Savannah Hotel, Barbados", + pages = "253--260", + year = "2005", +} + +@InProceedings{Owens89, + author = "A. J. Owens and D. L. Filkin", + booktitle = ijcnn, + title = "Efficient Training of the Back Propagation Network by + Solving a System of Stiff Ordinary Differential + Equations", + volume = "2", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "381--386", + year = "1989", +} + +@InProceedings{Paccanaro2000, + author = "A. Paccanaro and G. E. Hinton", + booktitle = ijcnn, + title = "Extracting Distributed Representations of Concepts and + Relations from Positive and Negative Propositions", + publisher = "IEEE, New York", + address = "Como, Italy", + year = "2000", +} + +@Article{Packard80, + author = "N. H. Packard and J. P Crutchfield and J. D. Farmer + and R. S. Shaw", + title = "Geometry from a Time Series", + journal = prl, + volume = "45", + pages = "712--716", + year = "1980", +} + +@misc{Pal+al-2006, + author = {Chris Pal and Michael Kelm and Xuerui Wang and Greg Druck and Andrew McCallum}, + title = {On Discriminative and Semi-Supervised Dimensionality Reduction}, + year = {2006}, + note = {Workshop on Novel Applications of Dimensionality Reduction, NIPS'06}, +} + +@InCollection{Palmer88, + author = "R. G. Palmer", + editor = "P. W. Anderson and K. J. Arrow and D. Pines", + booktitle = "The Economy As an Evolving Complex System", + title = "Statistical Mechanics Approaches to Complex + Optimization Problems", + volume = "5", + publisher = "Addison-Wesley", + address = "Redwood City", + pages = "177--193", + year = "1988", + series = "SFI Studies in the Sciences of Complexity: + Proceedings", +} + +@InCollection{Palmer89, + author = "R. G. Palmer", + editor = "D. L. Stein", + booktitle = "Lectures in the Sciences of Complexity", + title = "Neural Nets", + volume = "1", + publisher = "Addison-Wesley", + address = "Redwood City", + pages = "439--461", + year = "1989", + series = "SFI Studies in the Sciences of Complexity: Lectures", +} + +@Book{Papadimitriou, + author = "C. H. Papadimitriou", + title = "Combinatorial Optimization: Algorithms and + Complexity", + publisher = "Prentice-Hall", + address = "Englewood Cliffs, NJ", + year = "1982", +} + +@Book{Papadimitriou82, + author = "C. H. Papadimitriou and K. Steiglitz", + title = "Combinatorial Optimization: Algorithms and + Complexity", + publisher = "Prentice-Hall", + address = "Englewood Cliffs", + year = "1982", +} + +@Article{Parga86, + author = "N. Parga and M. A. Virasoro", + title = "The Ultrametric Organization of Memories in a Neural + Network", + journal = jpp, + volume = "47", + pages = "1857--1864", + year = "1986", +} + +@Article{Parisi86, + author = "G. Parisi", + title = "Asymmetric Neural Networks and the Process of + Learning", + journal = jpa, + volume = "19", + pages = "L675--L680", + year = "1986", +} + +@Book{Parisi88, + author = "G. Parisi", + title = "Statistical Field Theory", + publisher = "Addison-Wesley", + address = "Redwood City, CA", + year = "1988", +} + +@Article{Park-nc91, + author = "J. Park and I. W. Sandberg", + title = "Universal Approximation Using Radial-Basis-Function + Networks", + journal = nc, + volume = "3", + number = "2", + pages = "246--257", + year = "1991", +} + +@TechReport{Parker85, + author = "D. B. Parker", + title = "Learning Logic", + number = "TR--47", + institution = "Center for Computational Research in Economics and + Management Science, Massachusetts Institute of + Technology", + address = "Cambridge, MA", + year = "1985", +} + +@InProceedings{Parker87, + author = "D. B. Parker", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Optimal Algorithms for Adaptive Networks: Second Order + Back Propagation, Second Order Direct Propagation, and + Second Order Hebbian Learning", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "593--600", + year = "1987", +} + +@InProceedings{Parks87, + author = "M. Parks", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Characterization of the {Boltzmann} Machine Learning + Rate", + volume = "3", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "715--719", + year = "1987", +} + +@Article{Parlos94, + author = "A. G. Parlos and J. Muthusami and A. F. Atiya", + title = "Incipient Fault Detection and Identification in + Process Systems using Accelerated Neural Network + Learning", + journal = "Nuclear Technology", + volume = "105", + pages = "145", + year = "1994", +} + +@Article{Parzen62, + author = "Emanuel Parzen", + title = "On the estimation of a probability density function + and mode", + journal = "Annals of Mathematical Statistics", + volume = "33", + pages = "1064--1076", + year = "1962", +} + +@InProceedings{pati93orthogonal, + author = "Y. Pati and R. Rezaiifar and P. Krishnaprasad", + booktitle = "Proceedings of the 27 th Annual Asilomar Conference on + Signals, Systems, and Computers", + title = "Orthogonal Matching Pursuit: Recursive Function + Approximation with Applications to Wavelet + Decomposition", + pages = "40--44", + month = nov, + year = "1993", +} + +@InProceedings{Paugam-Moisy-1992, + author = "H\'el\`ene {Paugam-Moisy}", + booktitle = ijcnn, + title = "On the Convergence of a Block-Gradient Algorithm for + Back-Propagation Learning", + volume = "3", + publisher = "IEEE", + address = "New York", + pages = "919--924", + year = "1992", +} + +@InProceedings{Paugam-Moisy-1992b, + author = "H\'{e}l\`{e}ne {Paugam-Moisy}", + booktitle = "CONPAR '92/ VAPP V: Proceedings of the Second Joint + International Conference on Vector and Parallel + Processing", + title = "Optimal Speedup Conditions for a Parallel + Back-Propagation Algorithm", + publisher = "Springer-Verlag", + address = "London, UK", + pages = "719--724", + year = "1992", + ISBN = "3-540-55895-0", +} + +@InCollection{Paugam-Moisy-1993, + author = "H\'el\`ene {Paugam-Moisy}", + editor = "I. Pitas", + booktitle = "Parallel Algorithms for Digital Image Processing, + Computer Vision and Neural Networks", + title = "Parallel Neural Computing Based on Network + Duplicating", + publisher = "John Wiley", + pages = "305--340", + year = "1993", +} + +@inproceedings{Pavlovic-2001, + author = {Vladimir Pavlovic and James M. Rehg and John MacCormick}, + title = {Learning Switching Linear Models of Human Motion}, + editor = NIPS13ed, + booktitle = NIPS13, + publisher = "{MIT} Press", + pages = "981--987", + year = "2001", +} + + +@Book{PdpManual, + author = "D. E. Rumelhart and J. L. McClelland", + title = "Exploration in Parallel Distributed Processing", + volume = "3", + publisher = "MIT Press", + year = "1988", +} + +@InProceedings{Pearl-Verma91, + author = "J. Pearl and T. S. Verma", + editor = "J. A. Allen and R. Fikes and and E. Sandewall", + booktitle = "Principles of Knowledge Representation and Reasoning: + Proceedings of the Second International Conference", + title = "A theory of inferred causation", + publisher = "Morgan Kaufmann, San Mateo, CA", + pages = "441--452", + year = "1991", +} + +@Book{Pearl88, + author = "Judea Pearl", + title = "Probabilistic Reasoning in Intelligent Systems: + Networks of Plausible Inference", + publisher = "Morgan Kaufmann", + year = "1988", +} + +@InProceedings{Pearlmutter+Parra-96, + author = "Barak Pearlmutter and L. C. Parra", + editor = "L. Xu", + booktitle = "International Conference On Neural Information + Processing", + title = "A context-sensitive generalization of {ICA}", + address = "Hong-Kong", + pages = {151--157}, + year = "1996", +} + +@InProceedings{Pearlmutter86, + author = "B. A. Pearlmutter and G. E. Hinton", + editor = "J. S. Denker", + booktitle = snowbird, + title = "{G}-Maximization: An Unsupervised Learning Procedure + for Discovering Regularities", + publisher = "American Institute of Physics, New York", + address = "Snowbird 1986", + pages = "333--338", + year = "1986", +} + +@InProceedings{Pearlmutter89a, + author = "B. A. Pearlmutter", + booktitle = ijcnn, + title = "Learning State Space Trajectories in Recurrent Neural + Networks", + volume = "2", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "365--372", + year = "1989", +} + +@Article{Pearlmutter89b, + author = "B. A. Pearlmutter", + title = "Learning State Space Trajectories in Recurrent Neural + Networks", + journal = nc, + volume = "1", + pages = "263--269", + year = "1989", +} + +@article{Pearson-1901, + author = {Pearson, K. }, + citeulike-article-id = {2013414}, + journal = {Philosophical Magazine}, + keywords = {pca}, + number = {6}, + pages = {559--572}, + posted-at = {2007-11-29 10:41:36}, + priority = {2}, + title = {On lines and planes of closest fit to systems of points in space}, + volume = {2}, + year = {1901} +} + +@InProceedings{Pedersen2001, + author = "Ted Pedersen", + booktitle = "Proceedings of the Second Annual Meeting of the North + American Chapter of the Association for Computational + Linguistics", + title = "A decision tree of bigrams is an accurate predictor of + word sense", + pages = "79--86", + year = "2001", + URL = "citeseer.nj.nec.com/pedersen01decision.html", +} + +@InProceedings{Peeling86, + author = "S. M. Peeling and R. K. Moore and M. J. Tomlinson", + booktitle = "Proceedings of the 10th Autumn Conference on Speech + and Hearing", + title = "The Multi-Layer Perceptron as a Tool for Speech + Pattern Processing Research", + year = "1986", +} + +@InProceedings{peng04accurate, + author = "F. Peng and A. McCallum", + booktitle = "Proceedings of Human Language Technology Conference / + North American Chapter of the Association for + Computational Linguistics annual meeting", + title = "Accurate information extraction from research papers + using conditional random fields", + pages = "329--336", + year = "2004", +} + +@InProceedings{Pennacchiotti+Pantel-2006, + author = "Marco Pennacchiotti and Patrick Pantel", + booktitle = "Proceedings of the 21st International Conference on + Computational Linguistics and 44th Annual Meeting of + the ACL", + title = "Ontologizing Semantic Relations", + address = "Sydney", + pages = "793--800", + year = "2006", +} + +@Article{Penrose55, + author = "R. Penrose", + title = "A generalized inverse for matrices", + journal = "Proc. Cambridge Philos. Soc.", + volume = "51", + pages = "406--513", + year = "1955", +} + +@InProceedings{Pereira93, + author = "F. Pereira and N. Tishby and L. Lee", + booktitle = "30th Annual Meeting of the Association for + Computational Linguistics", + title = "Distributional Clustering of English Words", + address = "Columbus, Ohio", + pages = "183--190", + year = "1993", +} + +@InProceedings{Pereira94, + author = "F. Pereira and M. Riley and R. Sproat", + booktitle = "ARPA Natural Language Processing Workshop", + title = "Weighted rational transductions and their application + to human language processing", + year = "1994", +} + +@InCollection{Pereira97, + author = "F. C. N. Pereira and M. D. Riley", + editor = "Emmanuel Roche and Yves Schabes", + booktitle = "Finite-State Language Processing", + title = "Speech recognition by composition of weighted finite + automata", + publisher = "MIT Press, Cambridge, Massachussetts", + pages = "431--453", + year = "1997", +} + +@Article{Peretto84, + author = "P. Peretto", + title = "Collective Properties of Neural Networks: {A} + Statistical Physics Approach", + journal = biocyb, + volume = "50", + pages = "51--62", + year = "1984", +} + +@InProceedings{Peretto86, + author = "P. Peretto and J. J. Niez", + editor = "E. Bienenstock and F. Fogelman-Souli\'e and G. + Weisbuch", + booktitle = "Disordered Systems and Biological Organization", + title = "Collective Properties of Neural Networks", + publisher = "Springer-Verlag, Berlin", + address = "Les Houches 1985", + pages = "171--185", + year = "1986", +} + +@Article{Peretto88, + author = "P. Peretto", + title = "On Learning Rules and Memory Storage Abilities of + Asymmetrical Neural Networks", + journal = jpp, + volume = "49", + pages = "711--726", + year = "1988", +} + +@InProceedings{Perez+Rendell-1996, + author = "Eduardo P\'erez and Larry A. Rendell", + booktitle = ICML96, + editor = ICML96ed, + publisher = ICML96publ, + title = "Learning Despite Concept Variation by Finding + Structure in Attribute-based Data", + pages = "391--399", + year = "1996", +} + +@Article{Perez75, + author = "R. P\'erez and L. Glass and R. Shlaer", + title = "Development of Specificity in the Cat Visual Cortex", + journal = jmathb, + volume = "1", + pages = "275--288", + year = "1975", +} + +@MISC{Perez98markovrandom, + author = {Patrick Perez}, + title = {Markov Random Fields and Images}, + year = {1998} +} + +@article{PerpinanM2000, + author = {Miguel \'{A}. Carreira-Perpi{\~{n}}\'{a}n and Steve \'{A}. Renals}, + title = {Practical Identifiability of Finite Mixtures of Multivariate Bernoulli Distributions}, + journal = {Neural Computation}, + volume = {12}, + number = {1}, + year = {2000}, + pages = {141--152}, + publisher = {MIT Press}, + address = {Cambridge, MA, USA}, + } + +@InProceedings{Perpinan+Hinton-2005, + author = "Miguel A. Carreira-Perpi{\~{n}}an and Geoffrey E. Hinton", + editor = aistats05ed, + booktitle = aistats05, + title = "On Contrastive Divergence Learning", + publisher = "Society for Artificial Intelligence and Statistics", + date = "Jan 6-8, 2005", + location = "Savannah Hotel, Barbados", + pages = "33--40", + year = "2005", +} + +@Article{Personnaz85, + author = "L. Personnaz and I. Guyon and G. Dreyfus", + title = "Information Storage and Retrieval in Spin-Glass-Like + Neural Networks", + journal = jppl, + volume = "46", + pages = "359--365", + year = "1985", +} + +@Article{Personnaz86, + author = "L. Personnaz and I. Guyon and G. Dreyfus", + title = "Collective Computational Properties of Neural + Networks: New Learning Mechanisms", + journal = prA, + volume = "34", + pages = "4217--4228", + year = "1986", +} + +@Article{Peterson2004, + author = "Gail B. Peterson", + title = "A day of great illumination: {B. F.} {Skinner}'s + discovery of shaping", + journal = "Journal of the Experimental Analysis of Behavior", + volume = "82", + number = "3", + pages = "317--328", + year = "2004", +} + +@Article{Peterson87, + author = "C. Peterson and J. R. Anderson", + title = "A Mean Field Theory Learning Algorithm for Neural + Networks", + journal = cs, + volume = "1", + pages = "995--1019", + year = "1987", +} + +@Article{Peterson89, + author = "C. Peterson and B. S{\"o}derberg", + title = "A New Method for Mapping Optimization Problems onto + Neural Networks", + journal = ijns, + volume = "1", + pages = "3--22", + year = "1989", +} + +@Article{Peterson90, + author = "C. Peterson and S. Redfield and J. D. Keeler and E. + Hartman", + title = "An Optoelectronic Architecture for Multilayer Learning + in a Single Photorefractive Crystal", + journal = nc, + volume = "2", + pages = "25--34", + year = "1990", +} + +@PhdThesis{PhD:Perrone, + author = "Michael P. Perrone", + title = "Improving Regression Estimation: Averaging Methods for + Variance Reduction with Extensions to General Conve + Measure Optimization", + school = "Brown University, Institute for Brain and Neural + Systems", + month = may, + year = "1993", +} + +@Book{Piaget1952, + author = "J.-P. Piaget", + title = "The origins of intelligence in children", + publisher = "International Universities Press", + address = "New York", + year = "1952", +} + +@Article{Pineda87, + author = "F. J. Pineda", + title = "Generalization of Back-Propagation to Recurrent Neural + Networks", + journal = prl, + volume = "59", + pages = "2229--2232", + year = "1987", +} + +@Article{Pineda88, + author = "F. J. Pineda", + title = "Dynamics and Architecture for Neural Computation", + journal = jcomp, + volume = "4", + pages = "216--245", + year = "1988", +} + +@InProceedings{Pineda88-nips, + author = "F. Pineda", + editor = nips87ed, + booktitle = nips87, + title = "Generalization of Backpropagation to Recurrent and + Higher Order Neural Networks", + organization = "American Institute of Physics", + address = "New York, NY", + pages = "602--611", + year = "1988", +} + +@Article{Pineda89, + author = "F. J. Pineda", + title = "Recurrent Back-Propagation and the Dynamical Approach + to Adaptive Neural Computation", + journal = nc, + volume = "1", + pages = "161--172", + year = "1989", +} + +@InCollection{PINN, + author = "P. Frasconi and M. Gori and A. Tesi", + editor = "O. Omidvar", + booktitle = "Progress in Neural Networks", + title = "Successes and Failures of Backpropagation: {A} + Theoretical Investigation", + volume = "5", + publisher = "Ablex Publishing", + year = "1993", +} + +@article{Pinto08, + author = {Pinto, Nicolas AND Cox, David D AND DiCarlo, James J}, + journal = {PLoS Comput Biol}, + publisher = {Public Library of Science}, + title = {Why is Real-World Visual Object Recognition Hard?}, + year = {2008}, + month = {01}, + volume = {4}, +} + +@inproceedings{Pinto-DiCarlo-2008, + author = {Nicolas Pinto and James {DiCarlo} and David Cox}, + title = {Establishing Good Benchmarks and Baselines for Face Recognition}, + booktitle = {ECCV 2008 Faces in 'Real-Life' Images Workshop}, + year = 2008, +address={{M}arseille {F}rance }, +organization={{E}rik {L}earned-{M}iller and {A}ndras {F}erencz and {F}r{\'e}d{\'e}ric {J}urie }, +audience={internationale }, +URL={http://hal.inria.fr/inria-00326732/en/}, +} + +@article{Pinto-2009, + author = {Pinto, Nicolas AND Doukhan, David AND DiCarlo, James J. AND Cox, David D.}, + journal = {PLoS Comput Biol}, + publisher = {Public Library of Science}, + title = {A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation}, + year = {2009}, + month = {11}, + volume = {5}, + pages = {e1000579}, + number = {11}, +} + +@InCollection{Platt2000, + author = "J. Platt", + editor = "A. Smola and P. Bartlett and B. Scholkopf and D. + Schuurmans", + booktitle = "Advances in Large Margin Classifiers", + title = "Probabilities for support vector machines", + publisher = "MIT press", + year = "2000", +} + +@Article{Platt91, + author = "J. Platt", + title = "A Resource-Allocating Network for Function + Interpolation", + journal = "Neural Computation", + volume = "3", + type = "Letter", + number = "2", + pages = "213--225", + year = "1991", +} + +@InProceedings{Platt94, + author = "R. Wolf and J. Platt", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Postal address block location using a convolutional + locator network", + pages = "745--752", + year = "1994", +} + +@Article{Plaut-csl87, + author = "D. C. Plaut and G. E. Hinton", + title = "Learning Set of Filters Using Back-propagation", + journal = cspla, + volume = "2", + pages = "35--61", + year = "1987", +} + +@TechReport{Plaut86, + author = "D. Plaut and S. Nowlan and G. Hinton", + title = "Experiments on Learning by Back-Propagation", + number = "CMU--CS--86--126", + institution = "Department of Computer Science, Carnegie Mellon + University", + address = "Pittsburgh, PA", + year = "1986", +} + +@Article{PLS-Frank-Friedman, + author = "Ildiko E. Frank and Jerome H. Friedman", + title = "A statistical view of some chemometrics regression + tools", + journal = "Technometrics", + volume = "35", + number = "2", + pages = "109--148", + year = "1993", +} + +@Article{Podder-2006, + author = "M. Podder and W. J. Welch and R. H. Zamar and S. J. S. + J. Tebbutt", + title = "Dynamic Variable Selection in {SNP} Genotype + Autocalling from {APEX} Microarray Data", + journal = "In revision for BMC Bioinformatics", + year = "2006", +} + +@Article{Poggio-ieee90, + author = "T. Poggio and F. Girosi", + title = "Networks for Approximation and Learning", + journal = ieeeproc, + volume = "78", + number = "9", + pages = "1481--1497", + year = "1990", +} + +@Article{Poggio75, + author = "T. Poggio", + title = "On Optimal NonLinear Associative Recall", + journal = biocyb, + volume = "19", + pages = "201", + year = "1975", +} + +@Article{Poggio85, + author = "T. Poggio and V. Torre and C. Koch", + title = "Computational Vision and Regularization Theory", + journal = "Nature", + volume = "317", + number = "26", + pages = "314--319", + year = "1985", +} + +@TechReport{Poggio89, + author = "T. Poggio and F. Girosi", + title = "A theory of networks for approximation and learning", + number = "1140", + institution = "MIT AI Laboratory", + address = "Cambridge, MA", + year = "1989", +} + +@Article{Poggio90, + author = "T. Poggio and F. Girosi", + title = "Regularization Algorithms for Learning That Are + Equivalent to Multilayer Networks", + journal = science, + volume = "247", + pages = "978--982", + year = "1990", +} + +@Article{Pollack90, + author = "Jordan B. Pollack", + title = "Recursive Distributed Representations", + journal = "Artificial Intelligence", + volume = "46", + number = "1", + pages = "77--105", + year = "1990", +} + +@Article{Pollack91, + author = "Jordan B. Pollack", + title = "The Induction of Dynamical Recognizers", + journal = mlearn, + volume = "7", + number = "2", + pages = "196--227", + year = "1991", +} + +@Book{Pollard84, + author = "D. Pollard", + title = "Convergence of stochastic processes", + publisher = "Springer-Verlag", + address = "New York, NY", + year = "1984", +} + +@InProceedings{Pollit91, + author = "M. D. Pollit and J. Peck", + booktitle = "Proc. 2nd Canadian Conf. on Computer Applications in + the Mineral Industry", + title = "Recent advances in lithological recognition based on + rotary blasthole drill responses", + address = "Vancouver, Canada", + year = "1991", +} + +@InProceedings{Pomerleau89, + author = "D. A. Pomerleau", + editor = NIPS1ed, + booktitle = NIPS1, + title = "{ALVINN}: An Autonomous Land Vehicle in a Neural + Network", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "305--313", + year = "1989", +} + +@TechReport{Pontil98, + author = "M. Pontil and A. Verri", + title = "Properties of Support Vector Machines", + number = "AI Memo 1612", + institution = "MIT", + year = "1998", +} + +@InProceedings{Poritz88, + author = "A. B. Poritz", + booktitle = "Proc. Int. Conf. Acoustics, Speech, and Signal + Processing", + title = "Hidden {Markov} models: a guided tour", + pages = "7--13", + year = "1988", +} + +@InProceedings{Poston, + author = "T. Poston and C. Lee and Y. Choie and Y. Kwon", + booktitle = "Proc. of the IEEE-IJCNN91", + title = "Local minima and Backpropagation", + address = "Seattle, WA", + pages = "173--176", + year = "1991", +} + +@InProceedings{Poston-ijcnn91, + author = "T. Poston and C. Lee and Y. Choie and Y. Kwon", + booktitle = ijcnn, + title = "Local Minima and Backpropagation", + publisher = "IEEE Press", + address = "Seattle WA", + pages = "173--176", + year = "1991", +} + +@Article{Poterba+Summers, + author = "J. M. Poterba and L. H. Summers", + title = "Mean Reversion in Stock Prices", + journal = "Journal of Financial Economics", + volume = "22", + pages = "27--59", + year = "1988", +} + +@Article{potvin:1995:orsajc, + author = "J.-Y. Potvin and S. Bengio", + title = "The Vehicle Routing Problem with Time Windows - Part + {II}: Genetic Search", + journal = "{ORSA} Journal on Computing", + year = "1995", +} + +@Misc{powell87radial, + author = "M. Powell", + title = "Radial basis functions for multivariable + interpolation: {A} review", + year = "1987", + text = "M. J. D. Powell. Radial basis functions for + multivariable interpolation: A review. In J. C. Mason + and M. G. Cox, editors, Algorithms for Approximation of + Functions and Data, pages 143--167. Oxford University + Press, 1987.", +} + +@InProceedings{Pratt+Kamm91, + author = "L. Y. Pratt and C. A. Kamm", + booktitle = ijcnn, + title = "Improving a phoneme classification neural network + through problem decomposition", + volume = "2", + publisher = "IEEE Press", + address = "Seattle WA", + pages = "821--826", + year = "1991", +} + +@InProceedings{pratt93, + author = "Lorien Y. Pratt", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Discriminability-Based Transfer between Neural + Networks", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "204--211", + year = "1993", +} + +@Article{Presnell93, + author = "S. R. Presnell and F. E. Cohen", + title = "Artificial neural networks for pattern recognition in + biochemical sequences", + journal = "Ann. Rev. Biophys. Biomol. Struct.", + volume = "22", + pages = "283--298", + year = "1993", +} + +@Book{Press86, + author = "W. H. Press and B. P. Flannery and S. A. Teukolsky and + W. T. Vetterling", + title = "Numerical Recipes", + publisher = "Cambridge University Press", + address = "Cambridge", + year = "1986", +} + +@Book{Press92, + author = "W. H. Press and S. A. Teukolsky and W. T. Vetterling + and B. P. Flannery", + title = "Numerical Recipes in {C}: The art of scientific + computing (2nd ed.)", + publisher = "Cambridge University Press", + address = "Cambridge", + year = "1992", +} + +@article{Priebe2005, + author = {C.E. Priebe and J.M. Conroy and D.J. Marchette and Y. park}, + title = {Scan Statistics on Enron Graphs}, + journal = {Computational and Mathematical Organization Theory}, + volume = 11, + number = 3, + pages = {229--247}, + month = {October}, + year = 2005, + publisher = {Springer}, +} + +@Book{Priestley81, + author = "M. B. Priestley", + title = "Spectral Analysis and Time Series, Vol.1: Univariate + Series", + publisher = "Academic Press", + year = "1981", +} + +@Article{Principe92, + author = "B. {de Vries} and J. C. Principe", + title = "The gamma model -- {A} new neural net model for + temporal processing", + journal = nn, + volume = "5", + pages = "565--576", + year = "1992", + OPTnote = "", +} + +@Article{Psa88a, + author = "D. Psaltis and C. H. Park and J. Hong", + title = "Higher Order Associative Memories and Their Optical + Implementations", + journal = "Neural Networks", + volume = "1", + number = "2", + pages = "149--163", + year = "1988", +} + +@InProceedings{Psaltis89, + author = "D. Psaltis and D. Brady and K. Hsu", + booktitle = ijcnn, + title = "Learning in optical neural computers", + volume = "2", + address = "Washington D.C.", + pages = "72--75", + year = "1989", +} + +@TechReport{publication-an, + author = "Tomaso Poggio and Frederico Girosi", + title = "An Equivalence Between Sparse Approximation and + Support Vector Machines", +} + +@TechReport{publication-notes, + author = "Tomaso Poggio and Frederico Girosi", + title = "Notes on {PCA}, Regularization, Sparsity and Support + Vector Machines", +} + +@Article{Qian+Sejnowski88, + author = "N. Qian and T. J. Sejnowski", + title = "Predicting the secondary structure of globular + proteins using neural network models", + journal = "Journal of Molecular Biology", + volume = "202", + pages = "865--884", + year = "1988", +} + +@Article{Qian88a, + author = "N. Qian and T. J. Sejnowski", + title = "Predicting the Secondary Structure of Globular + Proteins Using Neural Network Models", + journal = jmolecb, + volume = "202", + pages = "865--884", + year = "1988", +} + +@InProceedings{Qian88b, + author = "N. Qian and T. J. Sejnowski", + editor = "D. Touretzky and G. Hinton and T. Sejnowski", + booktitle = cmss88, + title = "Learning to Solve Random-Dot Stereograms of Dense + Transparent Surfaces with Recurrent Back-Propagation", + publisher = "Morgan Kaufmann, San Mateo", + address = "Pittsburg 1988", + pages = "435--443", + year = "1988", +} + +@Article{quantiles-nc-2002, + author = "Ichiro Takeuchi and Yoshua Bengio and Takafumi + Kanamori", + title = "Robust Regression with Asymmetric Heavy-Tail Noise Distributions", + journal = "Neural Computation", + volume = "14", + number = "10", + pages = "2469--2496", + year = "2002", +} + +@TechReport{quantiles-TR, + author = "Ichiro Takeuchi and Yoshua Bengio and Takafumi + Kanamori", + title = "Robust Regression with Asymmetric Heavy-Tail Noise", + number = "1198", + institution = "Dept. IRO, Universit\'e de Montr\'eal", + year = "2001", +} + +@Article{Quinlan+Rivest89, + author = "J. Ross Quinlan and Ronald L. Rivest", + title = "Inferring Decision Trees Using the Minimum Description + Length Principle", + journal = "Information and Computation", + volume = "80", + pages = "227--248", + year = "1989", +} + +@Article{Quinlan86, + author = "J. Ross Quinlan", + title = "Induction of Decision Trees", + journal = "Machine Learning", + volume = "1", + number = "1", + pages = "81--106", + year = "1986", +} + +@Book{Quinlan93, + author = "J. Ross Quinlan", + title = "{C4}.5: Programs for Machine Learning", + publisher = "Morgan Kaufmann", + year = "1993", +} + +@Book{Rabiner+Gold75, + author = "L. R. Rabiner and B. Gold", + title = "Theory and application of digital signal processing", + publisher = "Prentice-Hall", + year = "1975", +} + +@Article{Rabiner85, + author = "L. R. Rabiner and S. E. Levinson", + title = "A speaker-independent, syntax-directed, connected word + recognition system based on hidden {Markov} models and + level building", + journal = ieeetassp, + volume = "33", + number = "3", + pages = "561--573", + year = "1985", +} + +@Article{Rabiner86, + author = "L. R. Rabiner and B. H. Juang", + title = "An Introduction to Hidden {Markov} Models", + journal = ieeeassp, + pages = "257--285", + month = "jan", + year = "1986", +} + +@Article{Rabiner89, + author = "La. R. Rabiner", + title = "A Tutorial on Hidden {Markov} Models and Selected + Applications in Speech Recognition", + journal = "Proceedings of the IEEE", + volume = "77", + number = "2", + pages = "257--286", + year = "1989", + OPTannote = "", +} + +@Article{Raetsch-2002, + author = "Gunnar R{\"a}tsch and Ayhan Demiriz and Kristin P. Bennett", + title = "Sparse Regression Ensembles in Infinite and Finite + Hypothesis Spaces", + journal = "Machine Learning", + publisher = "Kluwer Academic Publishers", + year = "2002", +} + +@InCollection{Raftery1996, + author = "A. Raftery", + editor = "Gilks and al.", + booktitle = "MCMC in Practice", + title = "Hypothesis Testing and Model Selection", + publisher = "Chapman and Hall", + pages = "163--188", + year = "1996", +} + + +@inproceedings{RaginskyM2008, + author = {Maxim Raginsky and + Svetlana Lazebnik and + Rebecca Willett and + Jorge Silva}, + title = {Near-minimax recursive density estimation on the binary + hypercube}, + editor = NIPS20ed, + booktitle = NIPS20, + year = {2008}, + pages = {1305-1312}, +} + +@INPROCEEDINGS{RainaR2003, + author = {Rajat Raina and Yirong Shen and Andrew Y. Ng and Andrew McCallum}, + title = {Classification with hybrid generative/discriminative models}, + editor = NIPS16ed, + booktitle = NIPS16, + year = {2003}, + publisher = {MIT Press} +} + +@Misc{raina+ng+koller-workshop-2005, + author = "Rajat Raina and Andrew Y. Ng and Daphne Koller", + title = "Transfer Learning by Constructing Informative Priors", + howpublished = "'Inductive Transfer: 10 Years Later' NIPS Workshop", + year = "2005", + OPTkey = "", +} + +@InProceedings{RainaR2007, + author = "Rajat Raina and Alexis Battle and Honglak Lee and + Benjamin Packer and Andrew Y. Ng", + booktitle = ICML07, + editor = ICML07ed, + publisher = ICML07publ, + title = "Self-taught learning: transfer learning from unlabeled + data", + pages = "759--766", + year = "2007", + bibsource = "DBLP, http://dblp.uni-trier.de", + ee = "http://doi.acm.org/10.1145/1273496.1273592", +} + +@InProceedings{RainaR2007-small, + author = "R. Raina and A. Battle and H. Lee and B. Packer and A. + Y. Ng", + booktitle = "ICML 2007", + title = "Self-taught learning: transfer learning from unlabeled + data", + year = "2007", +} + +@inproceedings{RainaICML09, + author = {Raina, Rajat and Madhavan, Anand and Ng, Andrew Y.}, + title = {Large-scale deep unsupervised learning using graphics processors}, + booktitle = ICML09, + editor = ICML09ed, + publisher = ICML09publ, + year = {2009}, + isbn = {978-1-60558-516-1}, + pages = {873--880}, + location = {Montreal, Quebec, Canada}, + doi = {http://doi.acm.org/10.1145/1553374.1553486}, + address = {New York, NY, USA}, +} + +@InProceedings{Ramanujam88, + author = "J. Ramanujam and P. Sadayappan", + booktitle = icnn, + title = "Optimization by Neural Networks", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "325--332", + year = "1988", +} + +@InProceedings{ranzato-07, + author = "{Marc'Aurelio} Ranzato and Christopher Poultney and + Sumit Chopra and Yann {LeCun}", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Efficient Learning of Sparse Representations with an + Energy-Based Model", + publisher = "MIT Press", + pages = {1137--1144}, + year = "2007", +} + +@InProceedings{ranzato-07-small, + author = "M. Ranzato and C. Poultney and + S. Chopra and Y. {LeCun}", + booktitle = "NIPS'06", + title = "Efficient Learning of Sparse Representations with an + Energy-Based Model", + year = "2007", +} + +@InProceedings{ranzato-07-short, + author = "M. Ranzato and C. Poultney and + S. Chopra and Y. {LeCun}", + booktitle = "Adv. Neural Inf. Proc. Sys. 19", + title = "Efficient Learning of Sparse Representations with an + Energy-Based Model", + pages = {1137--1144}, + year = "2007", +} + +# Please do NOT use this citation as it is a duplicate of ranzato-07 +@InCollection{ranzato-06, + author = "{Marc'Aurelio} Ranzato and Christopher Poultney and + Sumit Chopra and Yann {LeCun}", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Efficient Learning of Sparse Representations with an + Energy-Based Model", + publisher = "{MIT} Press", + pages = "", + year = "2007", +} + +# Please do NOT use this citation as it is a duplicate of ranzato-07-small +@InCollection{ranzato-06-small, + author = "M. Ranzato and C. Poultney and + S. Chopra and Y. {LeCun}", + booktitle = "NIPS 19", + title = "Efficient Learning of Sparse Representations with an + Energy-Based Model", + year = "2007", +} + + +@InProceedings{ranzato-08, + author = "{Marc'Aurelio} Ranzato and Y-Lan Boureau and Yann + {LeCun}", + editor = NIPS20ed, + booktitle = NIPS20, + title = "Sparse feature learning for deep belief networks", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "1185--1192", + year = "2008", +} + %url = "http://www.cs.nyu.edu/~ranzato/publications/ranzato-nips07.pdf", + +@InProceedings{ranzato-08-small, + author = "M. Ranzato and Y. Boureau and Y. {LeCun}", + booktitle = "NIPS 20", + title = "Sparse feature learning for deep belief networks", + year = "2008", +} + +@InProceedings{ranzato-08-short, + author = "M. Ranzato and Y. Boureau and Y. {LeCun}", + booktitle = "Adv. Neural Inf. Proc. Sys. 20", + title = "Sparse feature learning for deep belief networks", + year = "2008", + pages = {1185--1192}, +} + +@InProceedings{ranzato-cvpr-07, + author = "{Marc'Aurelio} Ranzato and {Fu-Jie} Huang and {Y-Lan} + Boureau and Yann {LeCun}", + booktitle = cvpr07, + title = "Unsupervised Learning of Invariant Feature Hierarchies + with Applications to Object Recognition", + publisher = "IEEE Press", + year = "2007", + original = "orig/ranzato-cvpr-07.pdf", +} + +@InProceedings{ranzato-cvpr-07-small, + author = "{Marc'Aurelio} Ranzato and {Fu-Jie} Huang and {Y-Lan} + Boureau and Yann {LeCun}", + booktitle = "CVPR'07", + title = "Unsupervised Learning of Invariant Feature Hierarchies + with Applications to Object Recognition", + year = "2007", + original = "orig/ranzato-cvpr-07.pdf", +} + +@InProceedings{Ranzato-icdar07, + author = "{Marc'Aurelio} Ranzato and Yann {LeCun}", + booktitle = ICDAR07, + title = "A Sparse and Locally Shift Invariant Feature Extractor + Applied to Document Images", + year = "2007", + isbn = {0-7695-2822-8}, + pages = {1213--1217}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, + +} + +@InProceedings{ranzato-unsup-07, + author = "{Marc'Aurelio} Ranzato and {Y-Lan} Boureau and Sumit + Chopra and Yann {LeCun}", + booktitle = aistats07, + title = "A Unified Energy-Based Framework for Unsupervised + Learning", + publisher = "Omnipress", + date = "March 21-24, 2007", + address = "San Juan, Porto Rico", + year = "2007", +} + +@InProceedings{Rao+Ruderman-99, + author = "R. P. N. Rao and D. L. Ruderman", + editor = NIPS11ed, + booktitle = NIPS11, + title = "Learning {Lie} Groups for Invariant Visual + Perception", + publisher = "MIT Press, Cambridge, MA", + pages = "810--816", + year = "1999", +} + +@Book{Rao71, + author = "C. R. Rao and S. K. Mitra", + title = "Generalized Inverse of Matrices and Its Applications", + publisher = "Wiley", + address = "New York", + year = "1971", +} + +@Book{Rashevsky38, + author = "N. Rashevsky", + title = "Mathematical Biophysics", + publisher = "University of Chicago Press", + address = "Chicago", + year = "1938", +} + +@InProceedings{RasmussenC2000, + author = "Carl Rasmussen", + editor = NIPS12ed, + booktitle = NIPS12, + title = "The Infinite {G}aussian Mixture Model", + year = "2000", +} + +@Misc{Rasmussen2001, + author = "Carl Edward Rasmussen", + title = "Conjugate gradient for Matlab", + year = "2001", + note = "http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/", +} + +@Article{Ratnaparkhi99, + author = "A. Ratnaparkhi", + title = "Learning to parse natural language with maximum + entropy models", + journal = "Machine Learning", + volume = "341", + number = "2", + pages = "151--176", + year = "1999", +} + +@Article{Rauch63, + author = "H. E. Rauch", + title = "Solutions to the linear smoothing problem", + journal = "IEEE Transactions on Automatic Control", + volume = "8", + pages = "371--372", + year = "1963", +} + +@Article{Refenes-94, + author = "A. N. Refenes", + title = "Stock Performance Modeling Using Neural Networks: a + Comparative Study with Regression Models", + journal = "Neural Networks", + volume = "7", + number = "2", + pages = "375--388", + year = "1994", +} + +@Article{regression-KB-78, + author = "R. Koenker and G. Bassett Jr.", + title = "Regression Quantiles", + journal = "Econometrica", + volume = "46", + number = "1", + pages = "33--50", + year = "1978", +} +@inproceedings{reid:1989, + title = {Rapid Training of Higher-Order Neural Networks for Invariant Pattern + Recognition}, + author = {Reid, M. B. and Spirkovska, L. and Ochoa, E }, + booktitle = ijcnn, + month = {June}, + year = {1989}, + address = {Washington, DC, USA}, +} + +@InCollection{Rescorla72, + author = "R. A. Rescorla and A. R. Wagner", + editor = "A. H. Black and W. F. Prokasy", + booktitle = "Classical Conditioning II: Current Research and + Theory", + title = "A Theory of Pavlovian Conditioning: The Effectiveness + of Reinforcement and Nonreinforcement", + publisher = "Appleton-Century-Crofts", + address = "New York", + pages = "64--69", + year = "1972", +} + +@InProceedings{Resnik-2002, + author = "Mona Diab and Philip Resnik", + booktitle = "40th Annual Meeting of the {ACL}", + title = "An unsupervised method for word sense tagging using + parallel corpora", + year = "2002", +} + +@Article{Resnik-99, + author = "Philip Resnik", + title = "Semantic similarity in a taxonomy: an + information-based measure and its application to + problems of ambiguity in natural language", + journal = "Journal of Artificial Intelligence Research", + volume = "11", + pages = "95--130", + year = "1999", +} + +@InProceedings{Resnik-99-web, + author = "P. Resnik", + booktitle = "37th Annual Meeting of the Association for + Computational Linguistics (ACL'99)", + title = "Mining the Web for Bilingual Text", + address = "College Park, Maryland", + month = jun, + year = "1999", +} + +@article{Rhodes-2008, + author = {Paul Rhodes}, + title = {Recoding Patterns of Sensory Input: Higher-Order Features and the Function of Nonlinear Dendritic Trees}, + journal = {Neural Computation}, + volume = 20, + number=8, + pages = {2000--2036}, + year = 2008, +} + +@Article{RicLip91, + author = "Michael D. Richard and Richard P. Lippmann", + title = "Neural Network Classifiers Estimate {Bayesian} + a-posteriori Probabilities", + journal = "Neural Computation", + volume = "3", + pages = "461--483", + year = "1991", + abstract = "Theoretical argumentation under which circumstances + nets can estimate correctly and what this means for + network engineering methodology. Experimental + evaluations with different cost functions (mean squared + error, cross entropy, normalized likelihood) and + network types (multi layer perceptron, radial basis + function, high order polynomial) show how accuracy + degrades with insufficient data or inadequate network + size. Dicusses practical consequences. Contains + references to work on other cost functions (e.g. + information measures)", + class = "nn, learning, theory", +} + +@InProceedings{Ricotti88, + author = "L. P. Ricotti and S. Ragazzini and G. Martinelli", + booktitle = icnn, + title = "Learning of Word Stress in a Sub-Optimal Second Order + Back-Propagation Neural Network", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "355--361", + year = "1988", +} + +@Article{Riedel88, + author = "U. Riedel and R. K{\"u}hn and J. L. van Hemmen", + title = "Temporal Sequences and Chaos in Neural Nets", + journal = prA, + volume = "38", + pages = "1105--1108", + year = "1988", +} + +@Article{Riis96, + author = "S. K. Riis and A. Krogh", + title = "Improving prediction of protein secondary structure + using structured neural networks and multiple sequence + alignments", + journal = "J. Comput. Biol.", + volume = "3", + pages = "163--183", + year = "1996", +} + +@Article{RiisKrogh1996, + author = "S. Riis and A. Krogh", + title = "Improving protein secondary structure prediction using + structured neural networks and multiple sequence + profiles", + journal = "Journal of Computational Biology", + pages = "163--183", + year = "1996", +} + +@TechReport{Riley94, + author = "M. D. Riley and F. C. N. Pereira", + title = "Weighted-finite-automata tools with applications to + speech and language processing", + number = "Technical Memorandum 11222-931130-28TM", + institution = "AT\&T Bell Laboratories", + year = "1994", +} + +@article{Rissanen79, + author = {J.J. Rissanen and G.G. Langdon Jr.}, + title = {Arithmetic coding}, + journal = {IBM Journal of Research and Development}, + volume = 23, + number = 2, + pages = {149--162}, + year = 1979, +} + +@Article{rissanen83, + author = "J.J. Rissanen", + title = "A universal data compression system", + journal = "IEEE Transactions on Information Theory", + volume = "29", + pages = "656--664", + year = "1983", +} + +@Article{Rissanen86, + author = "J. Rissanen", + title = "Stochastic complexity and modeling", + journal = "Annals of Statistics", + volume = "14", + pages = "1080--1100", + year = "1986", +} + +@Book{RissanenBook, + author = "J. Rissanen", + title = "Stochastic Complexity in Statistical Inquiry", + publisher = "World Scientific", + address = "Singapore", + year = "1990", +} + +@Article{Ritter86, + author = "H. Ritter and K. Schulten", + title = "On the Stationary State of Kohonen's Self-Organizing + Sensory Mapping", + journal = biocyb, + volume = "54", + pages = "99--106", + year = "1986", +} + +@InProceedings{Ritter88a, + author = "H. Ritter and K. Schulten", + editor = "R. Eckmiller and Ch. von der Malsburg", + booktitle = "Neural Computers", + title = "Extending Kohonen's Self-Organizing Mapping Algorithm + to Learn Ballistic Movements", + publisher = "Springer-Verlag, Berlin", + address = "Neuss 1987", + pages = "393--406", + year = "1988", +} + +@Article{Ritter88b, + author = "H. Ritter and K. Schulten", + title = "Convergence Properties of Kohonen's Topology + Conserving Maps: Fluctuations, Stability, and Dimension + Selection", + journal = biocyb, + volume = "60", + pages = "59--71", + year = "1988", +} + +@InProceedings{Ritter88c, + author = "H. Ritter and K. Schulten", + booktitle = icnn, + title = "Kohonen's Self-Organizing Maps: Exploring Their + Computational Capabilities", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "109--116", + year = "1988", +} + +@Book{Robert-1999, + author = "Christian P. Robert and George Casella", + title = "Monte Carlo Statistical Methods", + publisher = "Springer", + year = "1999", +} + +@TechReport{Robinson+Fallside90, + author = "A. J. Robinson and F. Fallside", + key = "Robinson", + title = "Phoneme recognition from the {TIMIT} database using + recurrent error propagation networks", + type = "Technical Report", + number = "{CUED/F-INFENG/TR.42}", + institution = "Cambridge University Engineering Department", + year = "1990", +} + +@Article{Robinson+Fallside91, + author = "A. J. Robinson and F. Fallside", + title = "A recurrent error propagation network speech + recognition system", + journal = "Computer Speech and Language", + volume = "5", + number = "3", + pages = "259--274", + month = jul, + year = "1991", +} + +@InProceedings{Robinson88, + author = "A. J. Robinson and F. Fallside", + editor = nips87ed, + booktitle = nips87, + title = "Static and Dynamic Error Propagation Networks with + Application to Speech Coding", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "632--641", + year = "1988", +} + +@Article{Robinson91, + author = "T. Robinson and F. Fallside", + title = "Recurrent Error Propagation Network Speech Recognition + System", + journal = cspla, + volume = "5", + number = "3", + pages = "259--274", + month = jul, + year = "1991", +} + +@InProceedings{Robinson92-icassp, + author = "T. Robinson", + booktitle = icassp, + title = "A Real-Time Recurrent Error Propagation Network Word + Recognition System", + volume = "I", + pages = "617--620", + year = "1992", +} + +@Article{robust-H-73, + author = "P. J. Huber", + title = "Robust regression: Asymptotics, Conjectures and + {Monte} {Carlo}", + journal = "Ann. Stat.", + volume = "1", + pages = "799--821", + year = "1973", +} + +@Book{robust-H-82, + author = "P. J. Huber", + title = "Robust Statistics", + publisher = "John Wiley \& Sons Inc.", + year = "1982", +} + +@Book{robust-HRRS-86, + author = "F. R. Hampel and E. M. Ronchetti and P. J. Rousseeuw + and W. A. Stahel", + title = "Robust Statistics, The Approach based on Influence + Functions", + publisher = "John Wiley \& Sons", + year = "1986", +} + +@TechReport{robust-RAD-00, + author = "P. J. Rousseeuw and S. V. Aelst and K. V. Driessen", + title = "Robust Multivariate Regression", + institution = "University of Antwerp", + year = "2000", +} + +@Book{robust-RL-87, + author = "P. J. Rousseeuw and A. M. Leroy", + title = "Robust Regression and Outlier Detection", + publisher = "John Wiley \& Sons Inc.", + year = "1987", +} + +@InProceedings{Rohwer-nips90, + author = "R. Rohwer", + editor = NIPS2ed, + booktitle = NIPS2, + title = "The `Moving Targets' Training Algorithm", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "558--565", + year = "1990", +} + +@InProceedings{Rohwer87, + author = "R. Rohwer and B. Forrest", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Training Time-Dependence in Neural Networks", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "701--708", + year = "1987", +} + +@InProceedings{Rohwer90, + author = "R. Rohwer", + editor = NIPS2ed, + booktitle = NIPS2, + title = "The ``Moving Targets'' Training Algorithm", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "558--565", + year = "1990", +} + +@article{Rohde+Plaut-99, + author = {D.L.T. Rohde and D.C. Plaut}, + title = {Language acquisition in the absence of explicit negative evidence: {H}ow important is starting small?}, + journal = {Cognition}, + volume = 72, + pages = {67--109}, + year = 1999 +} + +@PhdThesis{Romeo89, + author = "F. I. Romeo", + title = "Simulated Annealing: Theory and Applications to Layout + Problems", + school = "University of California at Berkeley", + year = "1989", + note = "Memorandum UCB/ERL--M89/29", +} + +@InProceedings{Romer+Frey2003, + author = "R. Rosales and B. Frey", + booktitle = UAI03, + title = "Learning Generative Models of Affinity Matrices", + publisher = "Morgan Kaufmann Publishers", + address = "San Francisco, CA", + pages = "485--492", + year = "2003", +} + +@InProceedings{Ron94, + author = "D. Ron and Y. Singer and N. Tishby", + editor = NIPS6ed, + booktitle = NIPS6, + title = "The power of amnesia", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "176--183", + year = "1994", +} + +@Article{Ron96, + author = "D. Ron and Y. Singer and N. Tishby", + title = "The power of amnesia: Learning Probabilistic Automata + with Variable Memory Length", + journal = "Machine Learning", + volume = "25", + year = "1996", +} + +@Article{Ron98, + author = "Naftali Tishby {Dana Ron, Yoram Singer}", + title = "On the Learnability and Usage of Acyclic Probabilistic + Finite Automata", + journal = "Journal of Computer and System Sciences", + volume = "56", + number = "2", + pages = "133--152", + year = "1998", +} + +@InProceedings{Roscheisen-nips92, + author = "M. Rvscheisen and R. Hofman and V. Tresp", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Neural Control for Rolling Mills: Incorporating Domain + Theories to Overcome Data Deficiency", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "659--666", + year = "1992", +} + +@Book{Rose85, + editor = "D. Rose and V. G. Dobson", + title = "Models of the Visual Cortex", + publisher = "Wiley", + address = "Chichester", + year = "1985", +} + +@Book{Rosenberg-1997, + author = "S. Rosenberg", + title = "The Laplacian on a Riemannian Manifold", + publisher = "Cambridge University Press", + address = "Cambridge, UK", + year = "1997", +} + +@InCollection{Rosenberg88, + author = "C. R. Rosenberg and G. Blelloch", + editor = "D. Waltz and J. Feldman", + booktitle = "Connectionist Models and their Implications", + title = "An Implementation of Network Learning on the + Connection Machine", + publisher = "Ablex Pub. Corp", + address = "Norwood, NJ", + year = "1988", +} + +@TechReport{Rosenblatt57, + author = "Frank Rosenblatt", + title = "The Perceptron --- a perceiving and recognizing + automaton", + number = "85-460-1", + institution = "Cornell Aeronautical Laboratory", + address = "Ithaca, N.Y.", + year = "1957", +} + +@article{Rosenblatt-1958, + author = {Frank Rosenblatt}, + title = {The perceptron: A probabilistic model for information storage and organization in the brain}, + journal = {Psychological Review}, + year = {1958}, + volume = {65}, + pages = {386â408}, +} + +@Book{Rosenblatt62, + author = "Frank Rosenblatt", + title = "Principles of Neurodynamics", + publisher = "Spartan", + address = "New York", + year = "1962", +} + +@Article{rosenfeld02whole, + author = "Ronald Rosenfeld and Stanley F. Chen and Xiaojin Zhu", + title = "Whole-Sentence Exponential Language Models: {A} + Vehicle For Linguistic-Statistical Integration", + journal = CSL, + volume = "15", + number = "1", + year = "2001", + URL = "citeseer.nj.nec.com/448532.html", +} + +@Article{Rosenfeld2000, + author = "Ronald Rosenfeld", + title = "Two decades of Statistical Language Modeling: Where Do + We Go From Here?", + journal = "Proceedings of the {IEEE}", + volume = "88", + number = "8", + pages = "1270--1278", + year = "2000", +} + +@InProceedings{Rosipal2003, + author = "R. Rosipal and L. J. Trejo and B. Matthews", + booktitle = ICML03, + editor = ICML03ed, + publisher = ICML03publ, + title = "Kernel {PLS}-{SVC} for Linear and Nonlinear + Classification", + year = "2003", +} + +@PhdThesis{Rossen89, + author = "M. L. Rossen", + title = "Speech Syllable Recognition with a Neural Network", + school = "Brown University", + year = "1989", +} + +@Article{Rost93, + author = "B. Rost and C. Sander", + title = "Improved prediction of protein secondary structure by + use of sequence profiles and neural networks", + journal = "Proc. Nat. Ac. Sci. USA", + volume = "90", + pages = "7558--7562", + year = "1993", +} + +@Article{Rost94, + author = "B. Rost and C. Sander", + title = "Combining evolutionary information and neural networks + to predict protein secondary structure", + journal = "Proteins", + volume = "19", + pages = "55--72", + year = "1994", +} + +@InProceedings{RothBlack2005, + author = "Stefan Roth and Michael J. Black", + booktitle = cvpr05, + title = "Fields of Experts: a framework for learning image + priors", + volume = "2", + number = "", + pages = "860--867", + year = "2005", +} + +@InProceedings{Roweis+Saul+Hinton-2002, + author = "S. Roweis and L. Saul and G. Hinton", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Global coordination of local linear models", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2002", +} + +% DEPRECATED, USE THE ONE BELOW +@Article{roweis00lle, + author = "Sam Roweis and Lawrence K. Saul", + title = "Nonlinear dimensionality reduction by locally linear + embedding", + journal = "Science", + volume = "290", + number = "5500", + pages = "2323--2326", + month = dec, + year = "2000", +} + +@Article{Roweis2000-lle, + author = "Sam Roweis and Lawrence K. Saul", + title = "Nonlinear dimensionality reduction by locally linear + embedding", + journal = "Science", + volume = "290", + number = "5500", + pages = "2323--2326", + month = dec, + year = "2000", +} + +@TechReport{roweis97unifying, + author = "Sam Roweis and Zoubin Ghahramani", + title = "A Unifying Review of Linear {G}aussian Models", + address = "6 King's College Road, Toronto M5S 3H5, Canada", + year = "1997", + URL = "citeseer.nj.nec.com/article/roweis97unifying.html", +} + +@InProceedings{roweis98em, + author = "Sam Roweis", + editor = NIPS10ed, + booktitle = NIPS10, + title = "{EM} Algorithms for {PCA} and {SPCA}", + volume = "10", + publisher = "{MIT} Press", + year = "1998", + URL = "citeseer.nj.nec.com/roweis98em.html", +} + +@InProceedings{RoweisNCA2005, + author = "Jacob Goldberger and Sam Roweis and Geoffrey E. Hinton and Ruslan + Salakhutdinov", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Neighbourhood Components Analysis", + publisher = "{MIT} Press", + year = "2005", +} + +@Book{Rubinstein1981, + author = "Reuven Y. Rubinstein", + title = "Simulation and the Monte Carlo Method", + publisher = "John Wiley \& Sons", + year = "1981", +} + +@Article{Rubner89, + author = "J. Rubner and P. Tavan", + title = "A Self-Organizing Network for Principal-Component + Analysis", + journal = eul, + volume = "10", + pages = "693--698", + year = "1989", +} + + +@Article{Rubner90, + author = "J. Rubner and K. Schulten", + title = "Development of Feature Detectors by + Self-Organization", + journal = biocyb, + volume = "62", + pages = "193--199", + year = "1990", +} + +@Article{Rumelhart85, + author = "D. E. Rumelhart and D. Zipser", + title = "Feature Discovery by Competitive Learning", + journal = cogsci, + volume = "9", + pages = "75--112", + year = "1985", + note = "Reprinted in \cite[chapter 5]{Rumelhart86a}", +} + +@Book{Rumelhart86a, + author = "D. E. Rumelhart and J. L. McClelland and the PDP + Research Group", + title = "Parallel Distributed Processing: Explorations in the + Microstructure of Cognition", + volume = "1", + publisher = "MIT Press", + address = "Cambridge", + year = "1986", +} + +@Article{Rumelhart86b, + author = "David E. Rumelhart and Geoffrey E. Hinton and Ronald J. Williams", + title = "Learning Representations by Back-Propagating Errors", + journal = "Nature", + volume = "323", + pages = "533--536", + year = "1986", +} + +@InCollection{Rumelhart86c, + author = "D. E. Rumelhart and G. E. Hinton and R. J. Williams", + editor = "D. E. Rumelhart and J. L. McClelland", + booktitle = pdp, + title = "Learning Internal Representations by Error + Propagation", + chapter = "8", + volume = "1", + publisher = "MIT Press", + address = "Cambridge", + pages = "318--362", + year = "1986", +} + +@InProceedings{Russ+Geoff-nips-2007, + author = "Ruslan Salakhutdinov and Geoffrey E. Hinton", + editor = NIPS20ed, + booktitle = NIPS20, + title = "Using Deep Belief Nets to Learn Covariance Kernels for + {Gaussian} Processes", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "1249--1256", + year = "2008", +} + %url = "http://www.csri.utoronto.ca/~hinton/absps/dbngp.pdf", + +@InProceedings{Russ+Geoff-nips-2007-small, + author = "Ruslan Salakhutdinov and Geoffrey E. Hinton", + booktitle = "NIPS 20", + title = "Using {D}eep {B}elief {N}ets to Learn Covariance Kernels for + {G}aussian Processes", + year = "2008", +} + +@InProceedings{Russ+Geoff-nips-2007-short, + author = "R. Salakhutdinov and G.E. Hinton", + booktitle = "Adv. Neural Inf. Proc. Sys. 20", + title = "Using {D}eep {B}elief {N}ets to Learn Covariance Kernels for + {G}aussian Processes", + pages = {1249--1256}, + year = "2008", +} + +@article{rust:2005, + author = {Nicole Rust and Odelia Schwartz and J. Anthony Movshon and Eero Simoncelli}, + title = {Spatiotemporal Elements of Macaque {V1} Receptive Fields}, + journal = {Neuron}, + volume = {46}, + number = {6}, + pages = {945-956}, + year = {2005} +} +@article{rust:2006, + author = {Nicole C. Rust and Valerio Mante and Eero P. Simoncelli and J. + Anthony Movshon}, + year = {2006}, + title = {How MT Cells Analyze the Motion of Visual Patterns}, + journal = {Nature Neuroscience}, + volume = {9}, + number = {11}, + pages = {1421-1431}, +} + +@Article{RYsed98, + author = "Eric Sven Ristad and Peter N. Yianilos", + title = "Learning String Edit Distance", + journal = "IEEE Transactions on Pattern Recognition and Machine + Intelligence", + month = may, + year = "1998", +} + +@Book{Saad-1996, + author = "Y. Saad", + title = "Iterative Methods for Sparse Linear Systems", + publisher = "{PWS} Publishing Company", + address = "Boston, MA", + year = "1996", +} + +@TechReport{Saad90a, + author = "D. Saad and E. Marom", + title = "Learning by Choice of Internal Representations --- An + Energy Minimization Approach", + type = "Preprint", + institution = "Faculty of Engineering, Tel Aviv University", + address = "Ramat-Aviv, Israel", + year = "1990", +} + +@TechReport{Saad90b, + author = "D. Saad and E. Marom", + title = "Training Feed Forward Nets with Binary Weights via a + Modified {CHIR} Algorithm", + type = "Preprint", + institution = "Faculty of Engineering, Tel Aviv University", + address = "Ramat-Aviv, Israel", + year = "1990", +} + +@Book{SaadOnlineLearning1999, + editor = "David Saad", + title = "On-Line Learning in Neural Networks", + publisher = "Cambridge University Press", + year = "1999", +} + +@Article{Sachs+Young80, + author = "M. B. Sachs and E. D. Young", + title = "Effects of nonlinearities on speech encoding in the + auditory nerve", + journal = jasa, + volume = "68", + number = "3", + pages = "858--875", + year = "1980", +} + +@Article{Sakoe78, + author = "H. Sakoe and C. Chiba", + title = "Dynamic Programming Algorithm Optimization for Spoken + Word Recognition", + journal = ieeetassp, + volume = "26", + number = "1", + pages = "43--49", + month = feb, + year = "1978", +} + +@InProceedings{Salakhutdinov-2010, + author = {Ruslan Salakhutdinov}, + title = {Learning in {M}arkov Random Fields using Tempered Transitions}, + year = {2010}, + crossref = {NIPS22} +} + +@InProceedings{Salakhutdinov+Hinton2007, + author = "Ruslan Salakhutdinov and Geoffrey E. Hinton", + booktitle = "Proceedings of the 2007 Workshop on Information + Retrieval and applications of Graphical Models (SIGIR + 2007)", + title = "Semantic Hashing", + year = "2007", + publisher = "Elsevier", + address = {Amsterdam}, +} + +@InProceedings{Salakhutdinov+Hinton2007-small, + author = "Ruslan Salakhutdinov and Geoffrey E. Hinton", + booktitle = "SIGIR", + title = "Semantic Hashing", + year = "2007", +} + +@InProceedings{SalakhutdinovR2007, + author = "Ruslan Salakhutdinov and Geoffrey E. Hinton", + booktitle = aistats07, + title = "Learning a Nonlinear Embedding by Preserving Class + Neighbourhood Structure", + publisher = "Omnipress", + date = "March 21-24, 2007", + address = "San Juan, Porto Rico", + year = "2007", +} + +@InProceedings{SalakhutdinovR2007-small, + author = "Ruslan Salakhutdinov and Geoffrey E. Hinton", + booktitle = aistats07-small, + title = "Learning a Nonlinear Embedding by Preserving Class + Neighbourhood Structure", + year = "2007", +} + +@InProceedings{SalakhutdinovR2007-short, + author = "R. Salakhutdinov and G.E. Hinton", + booktitle = {AI \& Stat.'2007}, + title = "Learning a Nonlinear Embedding by Preserving Class + Neighbourhood Structure", + year = "2007", +} + +@InProceedings{SalakhutdinovR2007b, + author = "Ruslan Salakhutdinov and Andriy Mnih and Geoffrey E. + Hinton", + booktitle = ICML07, + editor = ICML07ed, + publisher = ICML07publ, + title = "Restricted {Boltzmann} machines for collaborative + filtering", + address = "New York, NY, USA", + pages = "791--798", + year = "2007", + location = "Corvalis, Oregon", +} + +@InProceedings{SalakhutdinovR2007b-small, + author = "Ruslan Salakhutdinov and Andriy Mnih and Geoffrey E. Hinton", + booktitle = "ICML 2007", + title = "Restricted {Boltzmann} machines for collaborative + filtering", + year = "2007", +} + +@InProceedings{SalakhutdinovR2007b-short, + author = "R. Salakhutdinov and A. Mnih and G.E. Hinton", + booktitle = "Int. Conf. Mach. Learn. 2007", + title = "Restricted {Boltzmann} machines for collaborative + filtering", + pages = "791--798", + year = "2007", +} + + +@InProceedings{Salakhutdinov+Murray-2008, + title = "On the Quantitative Analysis of Deep Belief Networks", + author = "Ruslan Salakhutdinov and Iain Murray", + booktitle = ICML08, + editor = ICML08ed, + publisher = ICML08publ, + pages = "872--879", + year = "2008", + volume = "25", +} + +@InProceedings{Salakhutdinov+Hinton-2009, + author = "Ruslan Salakhutdinov and Geoffrey E. Hinton", + booktitle = aistats09, + title = "Deep {Boltzmann} Machines", + year = "2009", + volume = 5, + location = "Clearwater (Florida), USA", + date = "April 16-18, 2009", + pages = "448--455", +} + +@Article{Salamon88, + author = "P. Salamon and J. D. Nulton and J. Robinson and J. + Petersen and G. Ruppeiner and L. Liao", + title = "Simulated Annealing with Constant Thermodynamic + Speed", + journal = cpc, + volume = "49", + pages = "423--428", + year = "1988", +} + +@Article{Salton+Buckley88, + author = "G. Salton and C. Buckley", + title = "Term weighting approaches in automatic text + retrieval", + journal = "Information Processing and Management", + volume = "24", + number = "5", + pages = "513--523", + year = "1988", +} + +@Article{Sanger89a, + author = "T. D. Sanger", + title = "Optimal Unsupervised Learning in a Single-Layer Linear + Feedforward Neural Network", + journal = nn, + volume = "2", + pages = "459--473", + year = "1989", +} + +@InProceedings{Sanger89b, + author = "T. D. Sanger", + editor = NIPS1ed, + booktitle = NIPS1, + title = "An Optimality Principle for Unsupervised Learning", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "11--19", + year = "1989", +} + +@article{Sanger-1994, + author = {Terence D. Sanger}, + title = {Neural network learning control of robot manipulators + using gradually increasing task difficulty}, + journal = {{IEEE} Transactions on Robotics and Automation}, + volume = 10, + number = 3, + year = 1994, +} + +@article{Sanger-1994-small, + author = {Terence D. Sanger}, + title = {Neural network learning control of robot manipulators + using gradually increasing task difficulty}, + journal = {{IEEE} Trans. on Robotics and Automation}, + volume = 10, + number = 3, + year = 1994, +} + +@InProceedings{sarawagi03, + author = "Sunita Sarawagi and Soumen Chakrabarti and Shantanu + Godbole", + booktitle = "KDD '03: Proceedings of the ninth ACM SIGKDD + international conference on Knowledge discovery and + data mining", + title = "Cross-training: learning probabilistic mappings + between topics", + publisher = "ACM Press", + address = "New York, NY, USA", + pages = "177--186", + year = "2003", + location = "Washington, D.C.", +} + +@article{Sarkar-Moore-2005, + author = {P. Sarkar and A. Moore}, + title = {Dynamic social network analysis using latent space models}, + journal = {{SIGKDD} Explorations}, + volume = 7, + number = 2, + pages = {31--40}, + year = 2005, +} + +@Article{Sato90, + author = "M. Sato", + title = "A Real Time Learning Algorithm for Recurrent Analog + Neural Networks", + journal = biocyb, + volume = "62", + pages = "237--241", + year = "1990", +} + +@Article{Saul+96, + author = "Lawrence K. Saul and Tommi Jaakkola and Michael I. Jordan", + title = "Mean field theory for sigmoid belief networks", + journal = "Journal of Artificial Intelligence Research", + volume = "4", + pages = "61--76", + year = "1996", +} + +@Article{Saul+Roweis-2002, + author = "L. Saul and S. Roweis", + title = "Think globally, fit locally: unsupervised learning of + low dimensional manifolds", + journal = jmlr, + volume = "4", + number = "", + pages = "119--155", + month = "", + year = "2002", +} + +@InProceedings{Saul95, + author = "Lawrence K. Saul and Michael I. Jordan", + editor = NIPS7ed, + booktitle = NIPS7, + title = {Boltzmann Chains and Hidden Markov Models}, + publisher = "MIT Press, Cambridge, MA", + pages = "435--442", + year = "1995", +} + +@InProceedings{Saul96, + author = "Lawrence K. Saul and Michael I. Jordan", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Exploiting tractable substructures in intractable + networks", + publisher = "MIT Press, Cambridge, MA", + year = "1996", +} + +@InProceedings{SaulJordan97, + author = "Lawrence K. Saul and Michael I. Jordan", + editor = NIPS9ed, + booktitle = NIPS9, + title = "A variational model for model-based interpolation", + publisher = "MIT Press", + pages = "375", + year = "1997", +} + +@Article{Saund-1989, + author = "Eric Saund", + title = "Dimensionality-reduction using connectionist + networks", + journal = "{IEEE} Transactions on Pattern Analysis and Machine + Intelligence", + volume = "11", + number = "3", + pages = "304--314", + year = "1989", +} + +@InCollection{Scalettar88, + author = "R. Scalettar and A. Zee", + editor = "D. Waltz and J. A. Feldman", + booktitle = "Connectionist Models and Their Implications: Readings + from Cognitive Science", + title = "Emergence of Grandmother Memory in Feed Forward + Networks: Learning with Noise and Forgetfulness", + publisher = "Ablex", + address = "Norwood", + pages = "309--332", + year = "1988", +} + +@Article{schapire-90, + author = "Robert E. Schapire", + title = "The strength of weak learnability", + journal = "Machine Learning", + volume = "5", + number = "2", + pages = "197--227", + year = "1990", +} + +@Article{Schapire-margin98, + author = "Robert E. Schapire and Yoav Freund and Peter Bartlett + and Wee Sun Lee", + title = "Boosting the margin: {A} new explanation for the + effectiveness of voting methods", + journal = "The Annals of Statistics", + volume = "26", + number = "5", + pages = "1651--1686", + year = "1998", +} + +@InProceedings{schapire99theoretical, + author = "Robert E. Schapire", + booktitle = "Algorithmic Learning Theory, 10th International + Conference, {ALT} '99, Tokyo, Japan, December 1999, + Proceedings", + title = "Theoretical Views of Boosting and Applications", + volume = "1720", + publisher = "Springer", + pages = "13--25", + year = "1999", + URL = "http:citeseer.ist.psu.edu/article/schapire99theoretical.html", +} + +@InProceedings{SchapireSinger98, + author = "R. E. Schapire and Y. Singer", + booktitle = "Proceedings of the 11th Annual Conference on + Computational Learning Theory", + title = "Improved Boosting Algorithms Using Confidence Rated + Predictions", + year = "1998", +} + +@Book{SchBurSmo99, + author = "B. {Sch\"olkopf} and C. J. C. Burges and A. J. Smola", + title = "Advances in Kernel Methods --- Support Vector + Learning", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "1999", +} + +@InProceedings{ScheinA2001, + author = "Andrew I. Schein and Alexandrin Popescul and Lyle H. + Ungar and David M. Pennock", + booktitle = "Workshop on Recommender Systems at SIGIR", + title = "Generative Models for Cold-Start Recommendations", + year = "2001", +} + +@InProceedings{ScheinA2002, + author = "Andrew I. Schein and Alexandrin Popescul and Lyle H. + Ungar and David M. Pennock", + booktitle = "SIGIR '02", + title = "Methods and metrics for cold-start recommendations", + publisher = "ACM Press", + address = "New York, NY, USA", + pages = "253--260", + year = "2002", +} + +@InCollection{Scheines94, + author = "R. Scheines", + editor = "P. Cheeseman and R. W. Oldford", + booktitle = "Selecting Models from Data: Artificial Intelligence + and Statistics {IV}", + title = "Inferring causal structure among unmeasured + variables", + publisher = "Springer-Verlag", + pages = "197--204", + year = "1994", +} + +@InProceedings{Schenkel93, + author = "M. Schenkel and H. Weissman and I. Guyon and C. Nohl + and D. Henderson", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Recognition-Based Segmentation of On-Line Hand-Printed + Words", + address = "Denver, CO", + pages = "723--730", + year = "1993", +} + +@Article{schenkel95, + author = "M. Schenkel and I. Guyon and D. Henderson", + title = "On-line Cursive Script Recognition using Time Delay + Neural Networks and Hidden {Markov} Models", + journal = "{Machine} {Vision} and {Applications}", + publisher = "Springer Verlag", + pages = "215--223", + year = "1995", +} + +@InProceedings{SchGra03, + author = "Nicol N. Schraudolph and Thore Graepel", + editor = "Christopher M. Bishop and Brendan J. Frey", + booktitle = "Proc.\ 9th Intl.\ Workshop Artificial Intelligence and + Statistics (AIstats)", + title = "Combining Conjugate Direction Methods with Stochastic + Approximation of Gradients", + publisher = "Society for Artificial Intelligence and Statistics", + address = "Key West, Florida", + pages = "7--13", + year = "2003", + ISBN = "0-9727358-0-1", + abstract = "The method of conjugate directions provides a very + effective way to optimize large, deterministic systems + by gradient descent. In its standard form, however, it + is not amenable to stochastic approximation of the + gradient. Here we explore ideas from conjugate gradient + in the stochastic (online) setting, using fast + Hessian-gradient products to set up low-dimensional + Krylov subspaces within individual mini-batches. In our + benchmark experiments the resulting online learning + algorithms converge orders of magnitude faster than + ordinary stochastic gradient descent.", +} + +@Article{Schmidhuber92, + author = "J{\"u}rgen Schmidhuber", + title = "Learning Complex, Extended Sequences using the + Principle of History Compression", + journal = nc, + volume = "4", + number = "2", + pages = "234--242", + year = "1992", +} + +@Article{Schmidhuber96, + author = "J{\"u}rgen Schmidhuber", + title = "Sequential Neural Text Compression", + journal = "IEEE Transactions on Neural Networks", + volume = "7", + number = "1", + pages = "142--146", + year = "1996", +} + +@InCollection{Schmidt-2006, + author = "Volker Schmidt", + booktitle = "Lecture Notes, Summer 2006", + title = {Markov Chains and Monte-Carlo Simulation}, + address = "Ulm University, Department of Stochastics", + year = "2006", + URL = "http://www.mathematik.uni-ulm.de/stochastik/lehre/ss06/markov/skript-engl/skript-engl.htm", +} + +@Article{Schmitt-2002, + author = "M. Schmitt", + title = "Descartes' Rule of Signs for Radial Basis Function + Neural Networks", + journal = "Neural Computation", + volume = "14", + number = "12", + pages = "2997--3011", + year = "2002", +} + +@Article{Schneider-2001, + author = "Tapio Schneider", + title = "Analysis of Incomplete Climate Data: Estimation of + Mean Values and Covariance Matrices and Imputation of + Missing Values", + journal = "Journal of Climate", + volume = "14", + pages = "853--871", + year = "2001", +} + +@article{Schneidman+al-2003, + address = {Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.}, + author = {Schneidman, E. and Bialek, W. and Berry, M. J. }, + issn = {1529-2401}, + journal = {Journal of Neuroscience}, + month = {December}, + number = {37}, + pages = {11539--11553}, + title = {Synergy, redundancy, and independence in population codes}, + url = {http://www.jneurosci.org/cgi/content/abstract/23/37/11539}, + volume = {23}, + year = {2003} +} + + +@Article{schoelkopf97comparing, + author = "B. Sch{\"o}lkopf and K. Sung and C. Burges and F. + Girosi and P. Niyogi and T. Poggio and V. Vapnik", + title = "Comparing support vector machines with {G}aussian + kernels to radial basis function classifiers", + journal = "IEEE Transactions on Signal Processing", + volume = "45", + pages = "2758--2765", + year = "1997", + text = "Sch{\"o}lkopf, B., Sung, K., Burges, C., Girosi, F., + Niyogi, P., Poggio, T., and Vapnik, V.: Comparing + support vector machines with {G}aussian kernels to radial + basis function classifiers. IEEE Transactions on Signal + Processing, 45 (1997) 2758-2765.", +} + +@Book{Scholkopf02-book, + author = "B. Sch{\"o}lkopf and A. J. Smola", + title = "Learning with Kernels: Support Vector Machines, + Regularization, Optimization and Beyond", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2002", +} + +@TechReport{Scholkopf96, + author = "B. Sch{\"o}lkopf and A. Smola and K.-R. M{\"u}ller", + title = "Nonlinear Component Analysis as a Kernel Eigenvalue + Problem", + number = "44", + institution = "Max Planck Institute for Biological Cybernetics, + Tübingen, Germany", + year = "1996", +} + +@Article{Scholkopf98, + author = "B. Sch{\"o}lkopf and A. Smola and K.-R. M{\"u}ller", + title = "Nonlinear component analysis as a kernel eigenvalue + problem", + journal = "Neural Computation", + volume = "10", + pages = "1299--1319", + year = "1998", +} + +@Book{Scholkopf98-book, + author = "B. Sch{\"o}lkopf and C. J. C. Burges and A. J. Smola", + title = "Advances in kernel methods: support vector learning", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "1998", +} + +@Article{Scholkopf99, + author = "B. Sch{\"o}lkopf and S. Mika and C. Burges and P. + Knirsch and K.-R. M{\"u}ller and G. R{\"a}tsch and A. + Smola", + title = "Input Space Versus Feature Space in Kernel-Based Methods", + journal = "IEEE Trans. Neural Networks", + volume = "10", + number = "5", + pages = "1000--1017", + year = "1999", +} + +@Article{Schraudolph02, + author = "Nicol N. Schraudolph", + title = "Fast Curvature Matrix-Vector Products for Second-Order + Gradient Descent", + journal = "Neural Computation", + volume = "14", + number = "7", + pages = "1723--1738", + year = "2002", +} + +@InProceedings{Schraudolph99, + author = "Nicol N. Schraudolph", + booktitle = "Proceedings of the 9th International Conference on + Artificial Neural Networks", + title = "Local gain adaptation in stochastic gradient descent", + pages = "569--574", + year = "1999", +} + +@InProceedings{Schutze92, + author = "Hinrich Sch{\"u}tze", + booktitle = "Supercomputing'92", + title = "Dimensions of Meaning", + address = "Minneapolis MN", + pages = "787--796", + year = "1992", +} + +@InProceedings{Schutze93, + author = "H. Schutze", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Word space", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + pages = "895--902", + year = "1993", +} + +@Misc{Schuurmans1999, + author = "Dale Schuurmans", + title = "Greedy importance sampling: {A} new Monte Carlo + inference method", + year = "1999", + URL = "citeseer.nj.nec.com/25013.html", +} + +@InProceedings{Schuurmans2000, + author = "Dale Schuurmans and Finnegan Southey", + title = "Monte Carlo inference via greedy importance sampling", + pages = "523--532", + year = "2000", + URL = "citeseer.nj.nec.com/281712.html", +} + +@Article{Schuurmans2001, + author = "D. Schuurmans and F. Southey", + title = "Metric-based methods for adaptive model selection and + regularization", + journal = "Machine Learning", + volume = "48", + number = "1", + pages = "51--84", + year = "2002", +} + +@InProceedings{Schuurmans97, + author = "D. Schuurmans", + booktitle = "Proceedings of the National Conference on Artificial + Intelligence (AAAI-97)", + title = "A new metric-based approach to model selection", + pages = "552--558", + year = "1997", +} + +@Article{Schwartz90, + author = "D. B. Schwartz and V. K. Samalam and S. A. Solla and + J. S. Denker", + title = "Exhaustive Learning", + journal = nc, + volume = "2", + pages = "371--382", + year = "1990", +} + +@Article{Schwenk+Bengio00, + author = "Holger Schwenk and Yoshua Bengio", + title = "Boosting Neural Networks", + journal = "Neural Computation", + volume = "12", + number = "8", + pages = "1869--1887", + year = "2000", +} + +@InProceedings{Schwenk+Gauvain-2005, + author = "Holger Schwenk and Jean-Luc Gauvain", + booktitle = "Interspeech", + title = "Building continuous space language models for + transcribing European languages", + pages = "737--740", + year = "2005", +} + +@InProceedings{Schwenk+Gauvain2002, + author = "H. Schwenk and J-L. Gauvain", + booktitle = icassp, + title = "Connectionist Language Modeling for Large Vocabulary + Continuous Speech Recognition", + address = "Orlando, Florida", + pages = "765--768", + year = "2002", +} + +@InProceedings{Schwenk+Gauvain2002-short, + author = "H. Schwenk and J-L. Gauvain", + booktitle = {Int. Conf. Acoust. Speech \& Sig. Proc.}, + title = "Connectionist Language Modeling for Large Vocabulary + Continuous Speech Recognition", + address = "Orlando, Florida", + pages = "765--768", + year = "2002", +} + +@InProceedings{Schwenk05C, + author = "Holger Schwenk and Jean-Luc Gauvain", + booktitle = "Joint Human Language Technology Conference and + Conference on Empirical Methods in Natural Language + Processing (EMNLP)", + title = "Training Neural Network Language Models On Very Large + Corpora", + address = "Vancouver", + pages = "201--208", + month = oct, + year = "2005", + URL = "ftp://tlp.limsi.fr/public/emnlp05.pdf", +} + +@InProceedings{Schwenk05C-small, + author = "Holger Schwenk and Jean-Luc Gauvain", + booktitle = "EMNLP'2005", + title = "Training Neural Network Language Models On Very Large + Corpora", + pages = "201--208", + year = "2005", +} + +@TechReport{Schwenk:2001:tr, + author = "Holger Schwenk", + title = "Language Modeling in the Continuous Domain", + number = "2001-20", + institution = "LIMSI-CNRS, Orsay, France", + year = "2001", + date = "dec 2001", +} + +@InProceedings{Schwenk:2002:icassp, + author = "Holger Schwenk and Jean-Luc Gauvain", + booktitle = icassp, + title = "Connectionist Language Modeling for Large Vocabulary + Continuous Speech Recognition", + volume = "1", + pages = "765--768", + year = "2002", +} + +@InProceedings{Schwenk:2003:sspr, + author = "Holger Schwenk and Jean-Luc Gauvain", + booktitle = "ISCA \& IEEE Workshop on Spontaneous Speech Processing + and Recognition", + title = "{Using Continuous Space Language Models for + Conversational Speech Recognition}", + address = "Tokyo", + month = apr, + year = "2003", +} + +@InProceedings{Schwenk:2004:icslp, + author = "Holger Schwenk and Jean-Luc Gauvain", + booktitle = icslp, + title = "Using a Continuous Space Language Model for + Conversational Speech Recognition", + year = "2004", + note = "submitted", +} + +@InProceedings{Schwenk:2004:ijcnn, + author = "Holger Schwenk", + booktitle = ijcnn, + title = "Efficient Training of Large Neural Networks for + Language Modeling", + volume = "4", + pages = "3050--3064", + year = "2004", +} + +@InProceedings{SchYuGue07, + author = "Nicol N. Schraudolph and Jin Yu and Simon G{\"u}nter", + booktitle = "Proc.\ 11th Intl.\ Conf.\ Artificial Intelligence and + Statistics (AIstats)", + title = "A Stochastic Quasi-{Newton} Method for Online Convex + Optimization", + publisher = "Society for Artificial Intelligence and Statistics", + address = "San Juan, Puerto Rico", + pages = "433--440", + year = "2007", + ISBN = "0-9727358-2-8", +} + +@InProceedings{Scofield88, + author = "C. L. Scofield", + booktitle = icnn, + title = "Learning Internal Representations in the Coulomb + Energy Network", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "271--276", + year = "1988", +} + +@InProceedings{Scott+al-2003, + author = "Scott S. L. Piao and Paul Rayson and Dawn Archer and + Andrew Wilson and Tony McEnery", + booktitle = "Proceedings of the ACL 2003 workshop on Multiword + expressions", + title = "Extracting multiword expressions with a semantic + tagger", + publisher = "Association for Computational Linguistics", + address = "Morristown, NJ, USA", + pages = "49--56", + year = "2003", +} + +@Book{Scott92, + author = "D. W. Scott", + title = "Multivariate Density Estimation: Theory, Practice, and + Visualization", + publisher = "Wiley", + address = "New York", + year = "1992", +} + +@Article{ScST95, + author = "A. Schaerf and S. Yoav and M. Tennenholtz", + title = "Adaptive load balancing: a study in multi-agent + learning", + journal = "Journal of Artificial Intelligence Research", + volume = "2", + pages = "475--500", + year = "1995", +} + +@Article{Scudder65, + author = "{Henry J. Scudder, III}", + title = {Probability of Error of Some Adaptive Pattern-Recognition Machines}, + journal = {IEEE Transactions on Information Theory}, + year = 1965, + volume = 11, + pages = {363-371} +} + +@TechReport{Seeger-2005, + author = "Matthias Seeger", + title = "Low Rank Updates for the {Cholesky} Decomposition", + institution = "Department of EECS, University of California at + Berkeley", + year = "2005", +} + +@InProceedings{Seeger-Williams-Lawrence-2003, + author = "M. Seeger and C. Williams and N. Lawrence", + booktitle = "Workshop on AI and Statistics", + title = "Fast Forward Selection to Speed Up Sparse {G}aussian + Process Regression", + volume = "9", + year = "2003", +} + +@TechReport{Seeger2001, + author = "M. Seeger", + title = "Learning with labeled and unlabeled data", + institution = "Edinburgh University", + year = "2001", +} + +@InProceedings{seidl91p1, + author = "D. R. Seidl and D. Lorenz", + booktitle = ijcnn, + title = "A structure by which a recurrent neural network can + approximate a nonlinear dynamic system", + volume = "2", + pages = "709--714", + month = jul, + year = "1991", +} + +@TechReport{Sejnowski+Rosenberg86, + author = "T. J. Sejnowski and C. R. Rosenberg", + key = "Sejnowski", + title = "{\em NETtalk: A parallel network that learns to read + aloud}", + type = "Technical Report 86-01", + institution = "Department of Electrical Engineering and Computer + Science, Johns Hopkins University, Baltimore, MD.", + year = "1986", +} + +@Article{Sejnowski86, + author = "T. J. Sejnowski and P. K. Kienker and G. Hinton", + title = "Learning Symmetry Groups with Hidden Units: Beyond the + Perceptron", + journal = physicaD, + volume = "22", + pages = "260--275", + year = "1986", +} + +@Article{Sejnowski87, + author = "T. J. Sejnowski and C. R. Rosenberg", + title = "Parallel Networks that Learn to Pronounce English + Text", + journal = cs, + volume = "1", + pages = "145--168", + year = "1987", +} + +@InProceedings{Seneff84, + author = "S. Seneff", + booktitle = icassp, + title = "Pitch and spectral estimation of speech based on an + auditory synchrony model", + pages = "", + year = "1984", +} + +@TechReport{Seneff85, + author = "S. Seneff", + title = "Pitch and spectral estimation of speech based on an + auditory synchrony model", + number = "RLE Technical report no. 504", + institution = "LRE", + address = "Cambridge, MA: MIT Press", + year = "1985", +} + +@InProceedings{Seneff86, + author = "S. Seneff", + booktitle = icassp, + title = "A computational model for the peripheral auditory + system: application to speech recognition research", + pages = "1983--1986", + year = "1986", +} + +@Article{Seneff88, + author = "S. Seneff", + title = "A joint synchrony/mean-rate model of auditory speech + processing", + journal = "Journal of Phonetics", + volume = "16", + pages = "55--76", + year = "1988", +} + +@Book{Seneta-81, + author = "E. Seneta", + title = "Nonnegative Matrices and {Markov} Chains", + publisher = "Springer", + address = "New York", + year = "1981", +} + +@Article{senseval-2000, + author = "Adam Kilgarrif and Joseph Rosenzweig", + title = "Framework and results for English {SENSEVAL}", + journal = "Computers and the Humanities: special issue on + {SENSEVAL}", + volume = "34", + pages = "15--48", + year = "2000", +} + +@Article{Serbedzija-1996, + author = "Nikola B. {\v{S}}erbed{\v{z}}ija", + title = "Simulating Artificial Neural Networks on Parallel + Architectures", + journal = "Computer", + volume = "29", + number = "3", + publisher = "IEEE Computer Society Press", + address = "Los Alamitos, CA, USA", + pages = "56--63", + year = "1996", + ISSN = "0018-9162", + doi = "http://dx.doi.org/10.1109/2.485893", +} + +@Article{Serre2007, + author = "T. Serre and G. Kreiman and M. Kouh and C. Cadieu and + U. Knoblich and T. Poggio", + title = "A quantitative theory of immediate visual + recognition", + journal = "Progress in Brain Research, Computational + Neuroscience: Theoretical Insights into Brain + Function", + volume = "165", + pages = "33--56", + year = "2007", +} + +@Article{Serre2007-small, + author = "T. Serre and G. Kreiman and M. Kouh and C. Cadieu and + U. Knoblich and T. Poggio", + title = "A quantitative theory of immediate visual + recognition", + journal = "Progress in Brain Res., Comput. + Neurosc.", + volume = "165", + pages = "33--56", + year = "2007", +} + +@article{Serre-Wolf-2007, + author = {Thomas Serre and Lior Wolf and Stanley Bileschi and Maximilian Riesenhuber}, + note = {Member-Poggio, Tomaso}, + title = {Robust Object Recognition with Cortex-Like Mechanisms}, + journal = {IEEE Trans. Pattern Anal. Mach. Intell.}, + volume = {29}, + number = {3}, + year = {2007}, + issn = {0162-8828}, + pages = {411--426}, + doi = {http://dx.doi.org/10.1109/TPAMI.2007.56}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, +} + + +@INPROCEEDINGS{SeungS1998, + author = {Sebastian H. Seung}, + title = {Learning continuous attractors in recurrent networks}, + editor = NIPS10ed, + booktitle = NIPS10, + year = {1998}, + pages = {654--660}, + publisher = {MIT Press} +} + +@INPROCEEDINGS{Jain-Seung-08, + author = {Viren Jain and Sebastian H. Seung}, + title = {Natural Image Denoising with Convolutional Networks}, + editor = NIPS21ed, + booktitle = NIPS21, + year = {2008}, +} + +@inproceedings{Sha+Saul-2005, + author = {Fei Sha and Lawrence K. Saul}, + title = {Analysis and extension of spectral methods for nonlinear dimensionality reduction}, + booktitle = {Proceedings of the 22nd International Conference on Machine Learning}, + year = {2005}, + isbn = {1-59593-180-5}, + pages = {784--791}, + location = {Bonn, Germany}, + doi = {http://doi.acm.org/10.1145/1102351.1102450}, + publisher = {ACM}, + address = {New York, NY}, +} + +@article{Shannon-1949, + Author = {C. E. Shannon}, + Title = {Communication in the presence of noise}, + Journal = {{Proceedings of the Institute of Radio Engineers}}, + Volume = {37}, + number = 1, + Pages = {10--21}, + Year = {1949} +} + +@Article{shapiro00lift, + author = "Gregory Piatetsky-Shapiro and Sam Steingold", + title = "Measuring lift quality in database marketing", + journal = "SIGKDD Explor. Newsl.", + volume = "2", + number = "2", + publisher = "ACM Press", + address = "New York, NY, USA", + pages = "76--80", + year = "2000", + ISSN = "1931-0145", +} + +@InProceedings{shardanand95, + author = "Upendra Shardanand and Pattie Maes", + booktitle = "CHI '95: Proceedings of the SIGCHI conference on Human + factors in computing systems", + title = "{Social information filtering: algorithms for + automating ``word of mouth''}", + publisher = "ACM Press/Addison-Wesley Publishing Co.", + pages = "210--217", + year = "1995", + location = "Denver, Colorado, United States", +} + +@article{Sharma-2000, + title = {Induction of Visual Orientation Modules in Auditory Cortex}, + author = {J. Sharma and A. Angelucci and M. Sur}, + journal = {Nature}, + pages = {841--847}, + volume = {404}, + year = {2000}, +} + +@Article{Sharpe-64, + author = "W. F. Sharpe", + title = "Capital Asset Prices: {A} Theory of Market Equilibrium + under Conditions of Risk", + journal = "Journal of Finance", + volume = "19", + pages = "425--442", + year = "1964", +} + +@Article{Sharpe-66, + author = "W. F. Sharpe", + title = "Mutual Fund Performance", + journal = "Journal of Business", + volume = "39", + number = "1", + pages = "119--138", + year = "1966", +} + +@InProceedings{Shaw+Jebara-2007, + author = "Blake Shaw and Tony Jebara", + booktitle = aistats07, + title = "Minimum Volume Embedding", + publisher = "Omnipress", + date = "March 21-24, 2007", + address = "San Juan, Porto Rico", + year = "2007", +} + +@InProceedings{Shawe-Taylor+Cristianini+Kandola-2002, + author = "J. Shawe-Taylor and N. Cristianini and J. Kandola", + editor = NIPS14ed, + booktitle = NIPS14, + title = "On the concentration of spectral properties", + publisher = "{MIT} Press", + year = "2002", +} + +@InProceedings{Shawe-Taylor+Williams-2003, + author = "J. Shawe-Taylor and C. K. I. Williams", + editor = NIPS15ed, + booktitle = NIPS15, + title = "The Stability of Kernel Principal Components Analysis + and its Relation to the Process Eigenspectrum", + publisher = "{MIT} Press", + year = "2003", +} + +@Article{Shawe-Taylor98, + author = "John Shawe-Taylor and Peter Bartlett and Robert + Williamson and Martin Anthony", + title = "Structural Risk Minimization over Data-Dependent + Hierarchies", + journal = "IEEE Transactions on Information Theory", + volume = "44", + number = "5", + pages = "1926--1940", + year = "1998", +} + +@Article{Sherrington75, + author = "D. Sherrington and S. Kirkpatrick", + title = "Solvable Model of a Spin Glass", + journal = prl, + volume = "35", + pages = "1792--1796", + year = "1975", +} + +@Article{Shi+Malik-2000, + author = "Jianbo Shi and Jitendra Malik", + title = "Normalized Cuts and Image Segmentation", + journal = "IEEE Transactions on Pattern Analysis and Machine + Intelligence (PAMI)", + year = "2000", +} + +@InProceedings{Shi+Malik-97, + author = "J. Shi and J. Malik", + booktitle = cvpr97, + title = "Normalized cuts and image segmentation", + pages = "731--737", + year = "1997", +} + +@InProceedings{Shimohara88, + author = "K. Shimohara and T. Uchiyama and Y. Tokunaga", + booktitle = icnn, + title = "Back-Propagation Networks for Event-Driven Temporal + Sequence Processing", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "665--672", + year = "1988", +} + +@InProceedings{Shimohata+al-1997, + author = "Sayori Shimohata and Toshiyuki Sugio and Junji + Nagata", + booktitle = "Proceedings of the 35th Conference of the Association + for Computational Linguistics", + title = "Retrieving Collocations by Co-occurrences and Word + Order Constraints", + address = "Madrid", + pages = "476--481", + year = "1997", +} + +@inproceedings{shin:1991, + title = {The Pi-Sigma Network: An Efficient Higher-Order Neural Network for + Pattern Classification and Function Approximation}, + author = {Yoan Shin and Joydeep Ghosh}, + crossref = {IJCNN:1991}, +} +@proceedings{IJCNN:1991, + title = {International Joint Conference on Neural Networks ({IJCNN})}, + booktitle = ijcnn, + year = {1991}, + address = {Seattle, Washington, USA}, +} + +@article{ShmulevichI2002, + author = {Ilya Shmulevich and Wei Zhang}, + journal = {Bioinformatics}, + number = {4}, + pages = {555--565}, + title = {Binary analysis and optimization-based normalization of gene expression data}, + volume = {18}, + year = {2002} +} + +@Article{short81optimal, + author = "R. D. Short and K. Fukunaga", + title = "The optimal distance measure for nearest neighbor + classification", + journal = "IEEE Transactions on Information Theory", + volume = "27", + pages = "622--627", + year = "1981", +} + +@InProceedings{ShrikiO2001, + author = "Oren Shriki and Haim Sompolinsky and Daniel D. Lee", + editor = NIPS13ed, + booktitle = NIPS13, + title = "An Information Maximization Approach to Overcomplete + and Recurrent Representations", + publisher = "{MIT} Press", + pages = "933--938", + year = "2001", +} + +@InProceedings{ShrikiO2001-small, + author = "Oren Shriki and Haim Sompolinsky and Daniel D. Lee", + booktitle = "NIPS 13", + title = "An Information Maximization Approach to Overcomplete + and Recurrent Representations", + year = "2001", +} + +@Article{Shumway82, + author = "R. H. Shumway and D. S. Stoffer", + title = "An approach to time series smoothing and forecasting + using the {EM} algorithm", + journal = "Journal of Time Series Analysis", + volume = "3", + number = "4", + pages = "253--264", + year = "1982", +} + +@Article{Shumway91, + author = "R. H. Shumway and D. S. Stoffer", + title = "Dynamic linear models with switching", + journal = "J. Amer. Stat. Assoc.", + volume = "86", + pages = "763--769", + year = "1991", +} + +@Article{Sichel91, + author = "D. E. Sichel", + title = "Business cycle duration dependence: a parametric + approach", + journal = "Review of Economics and Statistics", + volume = "71", + pages = "245--260", + year = "1991", +} + +@TechReport{Siegelmann92, + author = "H. T. Siegelmann and E. D. Sontag", + title = "Neural Networks with Real Weighs: Analog Computational + Complexity", + number = "SYCON-92-05", + institution = "Rutgers Center for System and Control", + address = "New Brunswick, NJ", + month = sep, + year = "1992", +} + +@InProceedings{Sietsma88, + author = "J. Sietsma and R. J. F. Dow", + booktitle = icnn, + title = "Neural Net Pruning---Why and How", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "325--333", + year = "1988", +} + +@InProceedings{silver95, + author = "Daniel L. Silver and Robert E. Mercer", + booktitle = "Proceedings of the INNS World Congress on Neural + Networks", + title = "Toward a Model of Consolidation: The Retention and + Transfer of Neural Net Task Knowledge", + volume = "3", + address = "Washington, DC", + pages = "164--169", + month = jul, + year = "1995", +} + +@Article{silver96, + author = "Daniel L. Silver and Robert E. Mercer", + title = "The Parallel Transfer of Task Knowledge Using Dynamic + Learning Rates Based on a Measure of Relatedness", + journal = "Connection Science, Special issue on Transfer in + Inductive Systems", + volume = "8", + number = "2", + pages = "277--294", + year = "1996", +} + +@TechReport{silver97, + author = "Daniel L. Silver and Robert E. Mercer and Gilbert A. + Hurwitz", + title = "The Functional Transfer of Knowledge for Coronary + Artery Disease Diagnosis", + number = "513", + institution = "Department of Computer Science, University of Western + Ontario", + month = jan, + year = "1997", +} + +@InCollection{Silverman-encyc86, + author = "B. W. Silverman", + editor = "N. L. Johnson and S. Kotz", + booktitle = "Encyclopaedia of Statistical Sciences", + title = "Penalized Likelihood", + volume = "6", + publisher = "Wiley, New York", + pages = "664--667", + year = "1986", +} + +@Book{Silverman86, + author = "Bernard W. Silverman", + title = "Density Estimation for Statistics and Data Analysis", + publisher = "Chapman and Hall", + address = "London", + year = "1986", +} + +@InProceedings{Silverman88, + author = "R. H. Silverman and A. S. Noetzel", + editor = nips87ed, + booktitle = nips87, + title = "Time-Sequential Self-Organization of Hierarchical + Neural Networks", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "709--714", + year = "1988", +} + +@InProceedings{simard-03, + author = "D. Simard and P. Y. Steinkraus and J. C. Platt", + booktitle = ICDAR03, + title = "Best Practices for Convolutional Neural Networks", + year = "2003", + isbn = {0-7695-1960-1}, + pages = {958}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, + doi = "http://doi.ieeecomputersociety.org/10.1109/ICDAR.2003.1227801", +} + +@InProceedings{Simard89, + author = "P. Y. Simard and M. B. Ottaway and D. H. Ballard", + editor = "D. Touretzky and G. Hinton and T. Sejnowski", + booktitle = cmss88, + title = "Analysis of Recurrent Backpropagation", + publisher = "Morgan Kaufmann, San Mateo", + address = "Pittsburg 1988", + pages = "103--112", + year = "1989", +} + +@InProceedings{Simard92, + author = "Patrice Simard and Bernard Victorri and Yann LeCun + and John Denker", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Tangent Prop - {A} formalism for specifying selected + invariances in an adaptive network", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "895--903", + year = "1992", +} + +@InProceedings{Simard93, + author = "P. Y. Simard and Y. {LeCun} and J. Denker", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Efficient pattern recognition using a new + transformation distance", + publisher = "Morgan Kaufmann, San Mateo", + pages = "50--58", + year = "1993", +} + +@Article{Simard98, + author = "P. Y. Simard and Y. A. {LeCun} and J. S. Denker and B. + Victorri", + title = "Transformation Invariance in Pattern Recognition --- + Tangent Distance and Tangent Propagation", + journal = "Lecture Notes in Computer Science", + volume = "1524", + year = "1998", + CODEN = "LNCSD9", + ISSN = "0302-9743", + bibdate = "Tue Jan 5 08:21:58 1999", + acknowledgement = ack-nhfb, + OPTpages = "239--??", +} + +@InProceedings{Simard-nips92, + author = "P. Simard and Y. {LeCun}", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Reverse {TDNN}: An Architecture for Trajectory + Generation", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "579--588", + year = "1992", +} + +@PhdThesis{Simard-PhD, + author = "P. Y. Simard", + title = "Learning State Space Dynamics in Recurrent Networks", + school = "University of Rochester", + address = "Rochester, NY", + year = "1991", + note = "Tech. Rep. 383", +} + +@Article{Simic90, + author = "P. D. Simic", + title = "Statistical Mechanics As the Underlying Theory of + ``Elastic'' and ``Neural'' Optimizations", + journal = network, + volume = "1", + pages = "89--103", + year = "1990", +} + +@article{Simoncelli+al-1992, + author = "Eero P. Simoncelli and William T. Freeman and Edward H. Adelson and David J. Heeger", + title = "Shiftable Multi-scale Transforms", + journal = "IEEE Transactions on Informations Theory", + volume = "38", + number = "2", + year = "1992", + publisher = "The IEEE Computer Society", +} + +@InProceedings{Simoncelli97, + author = "E. P. Simoncelli", + booktitle = "Proc. 31st Asilomar Conference on Signals, Systems and + Computers", + title = "Statistical Models for Images: Compression, + Restoration and Synthesis", + publisher = "IEEE", + year = "1997", +} + +@InProceedings{Simoncelli99, + author = "E. P. Simoncelli", + booktitle = "Proc. SPIE,44th annual meeting", + title = "Modeling the Joint Statistics of Images in the Wavelet + Domain", + volume = "3813", + publisher = "SPIE", + year = "1999", +} + +@Article{Sinex+Geisler83, + author = "D. G. Sinex and C. D. Geisler", + title = "Response of auditory nerve fibers to consonant-vowel + syllables", + journal = jasa, + volume = "73", + number = "2", + pages = "602--615", + year = "1983", +} + +@Article{Singer, + author = "A. Singer", + title = "Implementations of Artificial Neural Networks on the + Connection Machine", + journal = "Parallel Computing", + volume = "14", + pages = "305--315", + year = "1990", + OPTnote = "", +} + +@InProceedings{Singer-1990, + author = "Alexander Singer", + booktitle = "Proceedings of the International Neural Networks + Conference", + title = "Exploiting the Inherent Parallelism of Artificial + Neural Networks to Achieve 1300 Million Interconnects + per Second", + pages = "656--660", + year = "1990", +} + +@InProceedings{singer00leveraged, + author = "Y. Singer", + editor = NIPS12ed, + booktitle = NIPS12, + title = "Leveraged vector machines", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "610--616", + year = "2000", +} + +@InProceedings{Singer96, + author = "Y. Singer", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Adaptive Mixtures of Probabilistic Transducers", + publisher = "MIT Press, Cambridge, MA", + year = "1996", +} + +@Article{Singer97, + author = "Y. Singer", + title = "Adaptive Mixtures of Probabilistic Transducers", + journal = "Neural Computation", + volume = "9", + number = "8", + year = "1997", +} + +@InProceedings{singer:1996:nips, + author = "Y. Singer", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Adaptive Mixtures of Probabilistic Transducers", + publisher = "MIT Press, Cambridge, MA", + year = "1996", +} + +@InProceedings{Singh92, + author = "S. P. Singh", + booktitle = "Proceedings of the 10th National Conference on + Artificial Intelligence", + title = "Reinforcement learning with a hierarchy of abstract + models", + publisher = "MIT/AAAI Press", + pages = "202--207", + year = "1992", +} + +@InProceedings{SinkkonenJ2002, + author = "Janne Sinkkonen and Samuel Kaski and Janne + Nikkil{\"{a}}", + booktitle = ECML02, + title = "Discriminative Clustering: Optimal Contingency Tables + by Learning Metrics", + publisher = "Springer-Verlag", + address = "London, UK", + pages = "418--430", + year = "2002", + ISBN = "3-540-44036-4", +} + +@TechReport{Sirat90, + author = "J.-A. Sirat and J.-P. Nadal", + title = "Neural Trees: {A} New Tool for Classification", + type = "Preprint", + institution = "Laboratoires d'Electronique Philips", + address = "Limeil-Bre\'vannes, France", + year = "1990", +} + +@InProceedings{SiroshJ1994, + author = "Joseph Sirosh and Risto Miikkulainen", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Ocular Dominance and Patterned Lateral Connections in + a Self-Organizing Model of the Primary Visual Cortex", + publisher = "Morgan Kaufmann", + pages = "109--116", + year = "1994", +} + +@InProceedings{SiroshJ1994-small, + author = "J. Sirosh and R. Miikkulainen", + booktitle = "NIPS 6", + title = "Ocular Dominance and Patterned Lateral Connections in + a Self-Organizing Model of the Primary Visual Cortex", + year = "1994", +} + +@InProceedings{Sivilotti87, + author = "M. A. Sivilotti and M. A. Mahowald and C. A. Mead", + editor = "P. Losleben", + booktitle = "Advanced Research in VLSI: Proceedings of the 1987 + Stanford Conference", + title = "Real-Time Visual Computations Using Analog {CMOS} + Processing Arrays", + publisher = "MIT Press, Cambridge", + pages = "295--312", + year = "1987", +} + +@TechReport{Sjoberg92, + author = "Jonas Si{\"o}berg and Lennart Ljung", + title = "Overtraining, Regularization, and Searching for + Minimum in Neural Networks", + institution = "Link{\"o}ping University", + address = "S-581 83 Link{\"o}ping, Sweden", + year = "1992", +} + +@article{Sjoberg95, + title={{Overtraining, regularization and searching for a minimum, with application to neural networks}}, + author={Sj{\"o}berg, J. and Ljung, L.}, + journal={International Journal of Control}, + volume={62}, + number={6}, + pages={1391--1407}, + year={1995}, + publisher={Taylor \& Francis} +} + +@Article{Skinner1958, + author = "Burrhus F. Skinner", + title = "Reinforcement Today", + journal = "American Psychologist", + volume = "13", + pages = "94--99", + year = "1958", +} + +@PhdThesis{Small1980, + author = "Steven L. Small", + title = "Word Expert Parsing: {A} Theory of Distributed + Word-Based Natural Language Understanding", + school = "University of Maryland", + year = "1980", +} + +@Article{smilde97, + author = "A. K. Smilde", + title = "Comments on multilinear {PLS}", + journal = "Journal of Chemometrics", + volume = "11", + pages = "367--377", + year = "1997", +} + +@Article{Smith+Waterman81, + author = "T. F. Smith and W. S. Waterman", + title = "Identification of common molecular subsequences", + journal = "Journal of Molecular Biology", + volume = "147", + pages = "195--197", + year = "1981", +} + +@Article{Smith95, + author = "S. P. Smith", + title = "Differentiation of the Cholesky algorithm", + journal = "Journal of Computational and Graphical Statistics", + volume = "4", + pages = "134--147", + year = "1995", +} + +@InProceedings{smola00sparsegreedy, + author = "A. J. Smola and B. Sch{\"o}lkopf", + editor = "P. Langley", + booktitle = "International Conference on Machine Learning", + title = "Sparse greedy matrix approximation for machine + learning", + publisher = "Morgan Kaufmann", + address = "San Francisco", + pages = "911--918", + year = "2000", +} + +@InProceedings{Smola2000sparsegreedy, + author = "A. J. Smola and P. Bartlett", + editor = NIPS13ed, + booktitle = NIPS13, + title = "Sparse Greedy {G}aussian Process Regression", + year = "2001", +} + +@InProceedings{Smola99semiparametricSVM, + author = "A. J. Smola and T. Friess and B. {Sch\"olkopf}", + editor = NIPS11ed, + booktitle = NIPS11, + title = "Semiparametric Support Vector and Linear Programming + Machines", + publisher = "MIT Press", + pages = "585--591", + year = "1999", + OPTaddress = "Cambridge, MA", + OPTannote = "", + OPTcrossref = "", + OPTkey = "", + OPTmonth = "", + OPTnote = "", + OPTnumber = "", + OPTorganization = "", + OPTseries = "", +} + +@InCollection{Smolensky86, + author = "Paul Smolensky", + editor = "D. E. Rumelhart and J. L. McClelland", + booktitle = pdp, + title = "Information Processing in Dynamical Systems: + Foundations of Harmony Theory", + chapter = "6", + volume = "1", + publisher = "MIT Press", + address = "Cambridge", + pages = "194--281", + year = "1986", +} + +@Article{Smyth94, + author = "P. Smyth", + title = {Hidden Markov models for fault detection in dynamic + systems}, + journal = "Pattern Recognition", + volume = "27", + number = "1", + pages = "149--164", + year = "1994", +} + +@Article{Smyth97, + author = "P. Smyth and D. Heckerman and M. I. Jordan", + title = {Probabilistic independence networks for hidden Markov + probability models}, + journal = "Neural Computation", + volume = "9", + number = "2", + pages = "227--269", + year = "1997", +} + +@InProceedings{Smyth97-nips, + author = "P. Smyth", + editor = NIPS9ed, + booktitle = NIPS9, + title = {Clustering sequences with hidden Markov models}, + publisher = "MIT Press", + year = "1997", +} + +@Article{Smyth98, + author = "P. Smyth", + title = {Belief Networks, Hidden Markov Models, and Markov + Random Fields: a Unifying View}, + journal = "Pattern Recognition Letters", + year = "1998", +} + +@TechReport{Snapp+Venkatesh-1998, + author = "Robert R. Snapp and Santosh S. Venkatesh", + title = "Asymptotic derivation of the finite-sample risk of the + k nearest neighbor classifier", + number = "UVM-CS-1998-0101", + institution = "Department of Computer Science, University of + Vermont", + year = "1998", +} + +@InCollection{SNE-nips15, + author = "G. E. Hinton and S. Roweis", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Stochastic Neighbor Embedding", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2003", +} + +@InProceedings{Snow+al-2006, + author = "Rion Snow and Daniel Jurafsky and Andrew Y. Ng", + booktitle = "Proceedings of COLING/ACL 2006", + title = "Semantic taxonomy induction from heterogenous + evidence", + year = "2006", +} + +@book{SocietyNeuro-2006, + author = "{Society for Neuroscience}", + title = "Brain Facts: A Primer on the Brain and Nervous System", + year = 2006, + edition = "Fifth", + note = "{http://sfn.org}", +} + +@Article{Soffer86, + author = "B. H. Soffer and G. J. Dunning and Y. Owechko and E. + Marom", + title = "Associative Holographic Memory with Feedback Using + Phase-Conjugate Mirrors", + journal = optlett, + volume = "11", + pages = "118--120", + year = "1986", +} + +@Article{Sola94, + author = "M. Sola and J. Driffill", + title = "Testing the term structure of interest rates using a + stationary vector autoregression with regime + switching", + journal = "Journal of Economic Dynamics and Control", + volume = "18", + pages = "601--628", + year = "1994", +} + +@Article{Solla88, + author = "S. A. Solla and E. Levin and M. Fleisher", + title = "Accelerated Learning in Layered Neural Networks", + journal = cs, + volume = "2", + pages = "625--639", + year = "1988", +} + +@InProceedings{Solla89, + author = "S. A. Solla", + editor = "L. Personnaz and G. Dreyfus", + booktitle = "Neural Networks from Models to Applications", + title = "Learning and Generalization in Layered Neural + Networks: The Contiguity Problem", + publisher = "I.D.S.E.T., Paris", + address = "Paris 1988", + pages = "168--177", + year = "1989", +} + +@Article{Solomonoff64, + author = "Ray J. Solomonoff", + title = "A formal theory of inductive inference", + journal = "Information and Control", + volume = "7", + pages = "1--22, 224--254", + year = "1964", +} + +@Article{Sompolinsky86, + author = "H. Sompolinsky and I. Kanter", + title = "Temporal Association in Asymmetric Neural Networks", + journal = prl, + volume = "57", + pages = "2861--2864", + year = "1986", +} + +@InProceedings{Sompolinsky87, + author = "H. Sompolinsky", + editor = "J. L. van Hemmen and I. Morgenstern", + booktitle = "Heidelberg Colloquium on Glassy Dynamics", + title = "The Theory of Neural Networks: The Hebb Rules and + Beyond", + publisher = "Springer-Verlag, Berlin", + address = "Heidelberg 1986", + pages = "485--527", + year = "1987", +} + +@Article{Sompolinsky88, + author = "H. Sompolinsky and A. Crisanti and H. J. Sommers", + title = "Chaos in Random Neural Networks", + journal = prl, + volume = "61", + pages = "259--262", + year = "1988", +} + +@Article{Sondik73, + author = "E. J. Sondik", + title = "The optimal control of partially observable Markov + processes over the finite horizon", + journal = "Operations Research", + volume = "11", + pages = "1071--1088", + year = "1973", +} + +@Article{Sondik78, + author = "E. J. Sondik", + title = "The optimal control of partially observable Markov + processes over the infinite horizon: discounted case", + journal = "Operations Research", + volume = "26", + pages = "282--304", + year = "1978", +} + +@misc{Song+al-2008a, + author = {Yangqiu Song and Feiping Nie and Changshui Zhang}, + title = {Semi-Supervised Sub-Manifold Discriminant Analysis}, + note = {Pattern Recognition Letter}, + year = 2008, +} + +@article{Song+al-2008b, + author = {Yangqiu Song and Feiping Nie and Changshui Zhang and Shiming Xiang}, + title = {A Unified Framework for Semi-Supervised Dimensionality Reduction}, + journal = {Pattern Recognition}, + volume = 41, + number = 9, + pages = {2789--2799}, + year = 2008, +} + +@incollection{Song+al-2008c, + title = {Colored Maximum Variance Unfolding}, + author = {Le Song and Alex Smola and Karsten Borgwardt and Arthur Gretton}, + editor = NIPS20ed, + booktitle = NIPS20, + publisher = {MIT Press}, + address = {Cambridge, MA}, + pages = {1385--1392}, + year = {2008} +} + +@Article{Sontag-cs89, + author = "E. D. Sontag and H. J. Sussman", + title = "Backpropagation Can Give Rise to Spurious Local Minima + Even for Networks without Hidden Layers", + journal = "Complex Systems", + volume = "3", + pages = "91--106", + year = "1989", +} + +@InProceedings{Sontag-ijcnn89, + author = "E. D. Sontag and H. J. Sussman", + booktitle = ijcnn, + title = "Backpropagation Separates when Perceptrons Do", + publisher = "IEEE Press", + address = "Washington DC", + year = "1989", + OPTpages = "639--642", +} + +@TechReport{sontag92t1, + author = "E. D. Sontag", + title = "Systems Combining Linearity and Saturations and + Relations to Neural Networks", + number = "SYCON--92--01", + institution = "Rutgers Center for Systems and Control", + year = "1992", +} + +@Article{Soukoulis83, + author = "C. M. Soukoulis and K. Levin and G. S. Grest", + title = "Irreversibility and Metastability in Spin-Glasses. + {I}. Ising Model", + journal = prB, + volume = "28", + pages = "1495--1509", + year = "1983", +} + +@Article{Specht90, + author = "D. F. Specht", + title = "Probabilistic Neural Networks", + journal = nn, + volume = "3", + pages = "109--118", + year = "1990", +} + +@Article{Specht91, + author = "D. F. Specht", + title = "A General Regression Neural Network", + journal = "IEEE Trans. Neural Networks", + volume = "2", + number = "6", + pages = "568--576", + month = nov, + year = "1991", +} + +@Article{Spiegelhalter93, + author = "D. J. Spiegelhalter and A. P. Dawid and S. L. + Lauritzen and R. G. Cowell", + title = "Bayesian Analysis in Expert Systems", + journal = "Statistical Science", + volume = "8", + pages = "219--283", + year = "1993", +} + +@InProceedings{Spielman-96, + author = "D. Spielman and S. Teng", + booktitle = "Proceedings of the 37th Annual Symposium on + Foundations of Computer Science", + title = "Spectral partitioning works: planar graphs and finite + element meshes", + year = "1996", +} + +@TechReport{Spielman-96b, + author = "Daniel A. Spielman and Shang-Hua Teng", + title = "Spectral Partitioning Works: Planar Graphs and Finite + Element Meshes", + number = "UCB CSD-96-898", + institution = "U.C. Berkeley", + year = "1996", +} + +@ARTICLE{spirkovska:1990, + author={Spirkovska, L. and Reid, M. B.}, + title={Connectivity Strategies for Higher-Order Neural Networks Applied to + Pattern Recognition}, + journal=ijcnn, + year={1990}, + month={June}, + volume={1}, + number={}, + pages={21--26}, + keywords={computerised pattern recognition, neural netsconnection + strategies, higher-order neural networks, interconnections, pattern + recognition, pattern-recognition, regional connectivity}, + doi={10.1109/IJCNN.1990.137538}, + ISSN={}, +} + + +@Book{Spirtes-book93, + author = "P. Spirtes and C. Glymour and R. Scheines", + title = "Causation, Prediction, and Search", + publisher = "Springer-Verlag, New York", + year = "1993", +} + +@Article{Spirtes-Glymour91, + author = "P. Spirtes and C. Glymour", + title = "An algorithm for fast recovery of sparse causal + graphs", + journal = "Social Science Computing Reviews", + volume = "9", + number = "1", + pages = "62--72", + year = "1991", +} + +@InProceedings{Srebro-Jaakkola, + author = "N. Srebro and T. Jaakkola", + booktitle = ICML03, + editor = ICML03ed, + publisher = ICML03publ, + title = "Weighted Low-Rank Approximations", + address = "Washington, D.C.", + pages = "720--727", + year = "2003", +} + +@Book{SSL-Book-2006, + author = "Olivier Chapelle and Bernhard. Sch{\"{o}}lkopf and Alexander Zien", + title = "Semi-Supervised Learning", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2006", +} + +@Article{Steels2003, + author = "L. Steels", + title = "Evolving grounded communication for robots", + journal = "Trends in Cognitive Science", + volume = "7", + number = "7", + pages = "308--312", + month = jul, + year = "2003", + URL = "http://www.csl.sony.fr/downloads/papers/2003/steels-03c.pdf", +} + +@Article{Steinbuch61, + author = "K. Steinbuch", + title = "Die Lernmatrix", + journal = kyb, + volume = "1", + pages = "36--45", + year = "1961", +} + +@Article{SteinhausH1956, + author = {Hugo Steinhaus}, + title = {Sur la division des corps mat\'eriels en parties}, + journal = {Bulletin L'Acad\'emie Polonaise des Sciences}, + year = {1956}, + volume = {4}, + pages = {801-804}, +} + +@InCollection{Stevens+Blumstein81, + author = "K. N. Stevens and S. E. Blumstein", + editor = "P. D. Eimas and J. L. Miller", + booktitle = "Perspectives on the study of speech", + title = "The search for invariant acoustic correlates of + phonetic features", + publisher = "Lawrence Erlbaum ass.", + pages = "1--38", + year = "1981", +} + +@InCollection{Stevens75, + author = "K. N. Stevens", + editor = "G. Fant and M. A. Tatham", + booktitle = "Auditory analysis and perception of speech", + title = "The potential role of properties detectors in the + perception of consonants", + publisher = "Academic Press, London", + pages = "303--330", + year = "1975", +} + +@Article{Stevenson90, + author = "M. Stevenson and R. Winter and B. Widrow", + title = "Sensitivity of Feedforward Neural Networks to Weight + Errors", + journal = "IEEE. Trans. on Neural Networks", + volume = "1", + number = "1", + pages = "71--80", + month = mar, + year = "1990", + keywords = "neural network fault tolerance robustness reliability + adaline weight errors", +} + +@Book{Stewart-1998, + author = "G. W. Stewart", + title = "Matrix Algorithms, Volume {I}: Basic Decompositions", + publisher = "SIAM", + address = "Philadelphia", + year = "1998", +} + +@Book{Stewart73, + author = "G. W. Stewart", + title = "Introduction to matrix computations", + publisher = "Academic Press", + year = "1973", +} + +@InProceedings{Stinchcombe+White89, + author = "M. Stinchcombe and H. White", + booktitle = ijcnn, + title = "Universal approximation using feedforward networks + with non-sigmoid hidden layer activation function", + publisher = "IEEE", + address = "Washington DC", + pages = "613--617", + year = "1989", +} + +@TechReport{Stokbro90, + author = "K. Stokbro and D. K. Umberger and J. A. Hertz", + title = "Exploiting Neurons with Localized Receptive Fields to + Learn Chaos", + type = "Preprint", + number = "90/28 S", + institution = "Nordita", + address = "Copenhagen, Denmark", + year = "1990", +} + +@InProceedings{Stolcke-ICSLP02, + author = "A. Stolcke", + booktitle = "Proceedings of the International Conference on + Statistical Language Processing", + title = "{SRILM} - An extensible language modeling toolkit", + address = "Denver, Colorado", + year = "2002", +} + +@InProceedings{Stolcke93, + author = "A. Stolcke and S. Omohundro", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Hidden {Markov} model induction by {Bayesian} model + merging", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "11--18", + year = "1993", +} + +@TechReport{Stolcke94a, + author = "A. Stolcke and S. M. Omohundro", + title = "Best-first Model Merging for Hidden {Markov} Model + Induction", + number = "TR-94-003", + institution = "International Computer Science Institute", + address = "Berkeley, CA", + month = jan, + year = "1994", +} + +@TechReport{Stolcke94b, + author = "A. Stolcke and J. Segal", + title = "Precise n-gram Probabilities from Stochastic + Context-free Grammars", + number = "TR-94-007", + institution = "International Computer Science Institute", + address = "Berkeley, CA", + month = jan, + year = "1994", +} + +@Article{Stone-80, + author = "C. J. Stone", + title = "Optimal rates of convergence for nonparametric + estimators", + journal = "Annals of Statistics", + volume = "8", + number = "6", + pages = "1348--1360", + year = "1980", +} + +@Article{Stormo82, + author = "G. D. Stormo and T. D. Schneider and L. Gold and A. + Ehrenfeucht", + title = "Use of the perceptron algorithm to distinguish + translational initiation sites in {\it {E}. {Coli}}", + journal = "Nucleic Acid Research", + volume = "10", + pages = "2997--3010", + year = "1982", +} + +@InProceedings{Stornetta88, + author = "W. S. Stornetta and T. Hogg and B. A. Huberman", + editor = nips87ed, + booktitle = nips87, + title = "A Dynamical Approach to Temporal Pattern Processing", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "750--759", + year = "1988", +} + +@Book{Strang80, + author = "G. Strang", + title = "Linear Algebra and Its Applications", + publisher = "Academic Press", + address = "New York", + year = "1980", +} + +@PhdThesis{Suaudeau94, + author = "N. Suaudeau", + title = "Un mod\`ele probabiliste pour int\'egrer la dimension + temporelle dans un syst\`eme de reconnaissance + automatique de la parole", + school = "Universit\'e de Rennes I", + address = "France", + year = "1994", +} + +@Article{suddarth91, + author = "Steven C. Suddarth and Alistair D. C. Holden", + title = "Symbolic-neural systems and the use of hints for + developing complex systems", + journal = "Int. J. Man-Mach. Stud.", + volume = "35", + number = "3", + publisher = "Academic Press Ltd.", + address = "London, UK", + pages = "291--311", + year = "1991", +} + +@article{Sudderth-2007, + author = {Erik B. Sudderth and Antonio Torralba and William T. Freeman and Alan S. Willsky}, + title = {Describing visual scenes using transformed objects and parts}, + journal = {Int. Journal of Computer Vision}, + volume = 77, + publisher = {Springer}, + pages = "291--330", + year = "2007", +} + +@article{Sugiyama-2007, + author = {Masashi Sugiyama}, + title = {Dimensionality reduction of multimodal labeled data by local {F}isher discriminant analysis}, + journal = jmlr, + year = {2007}, + volume = {8}, + pages = {1027--1061} +} + +@InProceedings{Sun-ijcnn90, + author = "G. Z. Sun and H. H. Chen and Y. C. Lee and C. L + Giles", + booktitle = ijcnn, + title = "Recurrent Neural Networks, Hidden {Markov} Models and + Stochastic Grammars", + volume = "I", + address = "San Diego CA", + pages = "729--734", + year = "1990", +} + +@Book{Sundararajan+Saratchandran-1998, + author = "N. Sundararajan and P. Saratchandran", + title = "Parallel Architectures for Artificial Neural Networks: + Paradigms and Implementations", + publisher = "IEEE Computer Society Press", + address = "Los Alamitos, CA", + year = "1998", + ISBN = "0-8186-8399-6", +} + +@InProceedings{Sutskever+Hinton-2007, + author = "Ilya Sutskever and Geoffrey E. Hinton", + booktitle = aistats07, + title = "Learning Multilevel Distributed Representations for + High-Dimensional Sequences", + publisher = "Omnipress", + date = "March 21-24, 2007", + address = "San Juan, Porto Rico", + year = "2007", +} + +@Article{Sutskever+Hinton-2008, + author = "Ilya Sutskever and Geoffrey E. Hinton", + title = "Deep Narrow Sigmoid Belief Networks are Universal + Approximators", + journal = "Neural Computation", + volume = "to appear", + year = "2008", +} + +@Book{Sutton+Barto-98, + author = "Richard Sutton and Andrew Barto", + title = "Reinforcement Learning: An Introduction", + publisher = "MIT Press", + year = "1998", +} + +@InCollection{sutton06introduction, + author = "Charles Sutton and Andrew McCallum", + editor = "Lise Getoor and Ben Taskar", + booktitle = "Introduction to Statistical Relational Learning", + title = "An Introduction to Conditional Random Fields for + Relational Learning", + publisher = "MIT Press", + year = "2006", + note = "", + URL = "publications/crf-tutorial.pdf", + tags = "recent", +} + +@PhdThesis{Sutton84, + author = "R. S. Sutton", + title = "Temporal Credit Assignment in Reinforcement Learning", + school = "University of Massachusetts", + address = "Amherst", + year = "1984", +} + +@Article{Sutton88, + author = "R. S. Sutton", + title = "Learning to Predict by the Methods of Temporal + Differences", + journal = mlearn, + volume = "3", + pages = "9--44", + year = "1988", +} + +@InCollection{Sutton91, + author = "R. S. Sutton and A. G. Barto", + editor = "M. Gabriel and J. W. Moore", + booktitle = "Learning and Computational Neuroscience", + title = "Time Derivative Models of Pavlovian Reinforcement", + publisher = "MIT Press", + address = "Cambridge", + year = "1991", +} + +@InProceedings{Sutton95, + author = "R. S. Sutton", + booktitle = "Proceedings of the 12th International Conference on + Machine Learning", + title = "{TD} models: modeling the world at a mixture of time + scales", + publisher = "Morgan Kaufmann", + year = "1995", +} + +@InProceedings{Szu86, + author = "H. Szu", + editor = "J. S. Denker", + booktitle = snowbird, + title = "Fast Simulated Annealing", + publisher = "American Institute of Physics, New York", + address = "Snowbird 1986", + pages = "420--425", + year = "1986", +} + +@InProceedings{Szummer+Jaakkola-2002, + author = "M. Szummer and T. Jaakkola", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Partially labeled classification with Markov random + walks", + publisher = "{MIT} Press", + address = "Cambridge, MA", + year = "2002", +} + + +@article{Takabatake+al-2007, + author = {Hiroki Takabatake and Manabu Kotani and Seiichi Ozawa}, + title = {Feature extraction by supervised independent component analysis based on category information}, + journal = {Electrical Engineering in Japan}, + volume = 161, + number = 2, + pages = {25--32}, + year = 2007, +} + +@InProceedings{TakahashiN2001, + author = "Naoto Takahashi and Minoru Motoki and Yoshio Shimazu + and Yoichi Tomiura and Tory Hitaka", + booktitle = "Proceedings of the Second Workshop on Natural Language + Processing and Neural Networks", + title = "{PP}-attachment Ambiguity Resolution Using a Neural + Network with Modified {FGREP} Method", + address = "Tokyo", + year = "2001", +} + +@InProceedings{Takens81, + author = "F. Takens", + editor = "D. A. Rand and L.-S. Young", + booktitle = "Dynamical Systems and Turbulenc", + title = "Detecting Strange Attractors In Turbulence", + volume = "898", + publisher = "Springer-Verlag, Berlin", + address = "Warwick 1980", + pages = "366--381", + year = "1981", + series = "Lecture Notes in Mathematics", +} + +@Article{Takeuchi79, + author = "A. Takeuchi and S. Amari", + title = "Formation of Topographic Maps and Columnar + Microstructures in Nerve Fields", + journal = biocyb, + volume = "35", + pages = "63--72", + year = "1979", +} + +@InCollection{Tam+Perkel89, + author = "Tam D. C. and Perkel D. H.", + editor = "Hawkins R. D. and Bower G. H.", + booktitle = "Computational Models of Learning in Simple Neural + Systems", + title = "Quantitative modeling of synaptic plasticity", + publisher = "Academic Press", + pages = "1--30", + year = "1989", +} + +@Article{Tank86, + author = "D. W. Tank and J. J. Hopfield", + title = "Simple ``Neural'' Optimization Networks: An {A}/{D} + Converter, Signal Decision Circuit, and a Linear + Programming Circuit", + journal = ieeetcas, + volume = "33", + pages = "533--541", + year = "1986", +} + +@Article{Tank87a, + author = "D. W. Tank and J. J. Hopfield", + title = "Neural Computation by Time Compression", + journal = PNAS, + volume = "84", + pages = "1896--1900", + year = "1987", +} + +@InProceedings{Tank87b, + author = "D. W. Tank and J. J. Hopfield", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Concentrating Information in Time: Analog Neural + Networks with Applications to Speech Recognition + Problems", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "455--468", + year = "1987", +} + +@Book{Tanner1993, + author = "M. Tanner", + title = "Tools for statistical inference: Methods for + exploration of posterior distributions and likelihood + functions", + publisher = "Springer", + address = "New York", + year = "1993", +} + +@Article{Tappert90, + author = "C. Tappert and C. Suen and T. Wakahara", + title = "The state of the art in on-line handwriting + recognition", + journal = ieeetpami, + volume = "8", + number = "12", + pages = "787--808", + year = "1990", +} + +@InCollection{Taylor+2007, + author = "Graham Taylor and Geoffrey E. Hinton and Sam Roweis", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Modeling Human Motion Using Binary Latent Variables", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "1345--1352", + year = "2007", +} + +%%FRED: I deprecate this one as the years in the tag is not the one for the publication but the conference! +@InProceedings{Taylor2006, + author = "Graham Taylor and Geoffrey E. Hinton and Sam Roweis", + editor = NIPS19ed, + booktitle = NIPS19, + title = "Modeling Human Motion Using Binary Latent Variables", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "1345--1352", + year = "2007", +} + +@InProceedings{Taylor2006-small, + author = "Graham Taylor and Geoffrey E. Hinton and Sam Roweis", + booktitle = "NIPS 20", + title = "Modeling Human Motion Using Binary Latent Variables", + year = "2006", +} + +@InProceedings{TaylorHintonICML2009, + author = {Graham Taylor and Geoffrey Hinton}, + title = {Factored Conditional Restricted {Boltzmann} Machines for Modeling Motion Style}, + booktitle = {Proceedings of the 26th International Conference on Machine Learning (ICML'09)}, + pages = {1025--1032}, + year = 2009, + editor = {L\'{e}on Bottou and Michael Littman}, + address = {Montreal}, + month = {June}, + publisher = {Omnipress} +} + +@InProceedings{Taylor56, + author = "W. K. Taylor", + editor = "C. Cherry", + booktitle = "Information Theory", + title = "Electrical Simulation of Some Nervous System + Functional Activities", + publisher = "Butterworths, London", + address = "London 1985", + pages = "314--328", + year = "1956", +} + +@InProceedings{Tebelskis91, + author = "J. Tebelskis and A. Waibel and B. Petek and O. + Schmidbauer", + editor = NIPS3ed, + booktitle = NIPS3, + title = "Continuous Speech Recognition Using Linked Predictive + Networks", + publisher = "Morgan Kaufmann, San Mateo", + address = "Denver, CO", + pages = "199--205", + year = "1991", +} + +@Article{Teh-2003, + author = "{Yee Wye} Teh and Max Welling and Simon Osindero and + Geoffrey E. Hinton", + title = "Energy-Based Models for Sparse Overcomplete + Representations", + journal = jmlr, + volume = "4", + pages = "1235--1260", + year = "2003", +} + +@InProceedings{Teh-Roweis-2003, + author = "Y. Whye Teh and S. Roweis", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Automatic Alignment of Local Representations", + publisher = "{MIT} Press", + year = "2003", +} + +@article{TehY2006, +title= "Hierarchical {D}irichlet Processes", +author= "Y. W. Teh and M. I. Jordan and M. J. Beal and D. M. Blei", +journal= "Journal of the American Statistical Association", +volume= "101", +number= "476", +pages= "1566-1581", +year= "2006" +} + +@Article{tenenbaum00separating, + author = "Joshua B. Tenenbaum and William T. Freeman", + title = "Separating Style and Content with Bilinear Models", + journal = "Neural Computation", + volume = "12", + number = "6", + pages = "1247--1283", + year = "2000", +} + +@Article{Tenenbaum2000-isomap, + author = "Joshua Tenenbaum and Vin {de Silva} and John C. Langford", + title = "A Global Geometric Framework for Nonlinear + Dimensionality Reduction", + journal = "Science", + volume = "290", + number = "5500", + pages = "2319--2323", + month = dec, + year = "2000", +} + +@Article{Terrell+Scott-1992, + author = "G. R. Terrell and D. W. Scott", + title = "Variable Kernel Density Estimation", + journal = "Annals of Statistics", + volume = "20", + pages = "1236--1265", + year = "1992", +} + +@Article{Tesauro86, + author = "G. Tesauro", + title = "Simple Neural Models of Classical Conditioning", + journal = biocyb, + volume = "55", + pages = "187--200", + year = "1986", +} + +@Article{Tesauro88a, + author = "G. Tesauro and B. Janssens", + title = "Scaling Relationships in Back-Propagation Learning", + journal = cs, + volume = "2", + pages = "39--44", + year = "1988", +} + +@InProceedings{Tesauro88b, + author = "G. Tesauro and T. J. Sejnowski", + editor = nips87ed, + booktitle = nips87, + title = "A ``Neural'' Network That Learns to Play Backgammon", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "442--456", + year = "1988", +} + +@Article{Tesauro90, + author = "G. Tesauro", + title = "Neurogammon Wins Computer Olympiad", + journal = nc, + volume = "1", + pages = "321--323", + year = "1990", +} + +@Article{Tesauro92, + author = "G. Tesauro", + title = "Practical issues in temporal difference learning", + journal = "Machine Learning", + volume = "8", + pages = "257--277", + year = "1992", +} + +@Article{tesauro:1994:nc, + author = "G. Tesauro", + title = "{TD-Gammon}, a Self-Teaching Backgammon Program, + Achieves Master-Level Play", + journal = nc, + volume = "6", + number = "2", + pages = "215--219", + year = "1994", +} + +@Article{Thakoor87, + author = "A. P. Thakoor and A. Moopenn and J. Lambe and S. K. + Khanna", + title = "Electronic Hardware Implementations of Neural + Networks", + journal = applopt, + volume = "26", + pages = "5085--5092", + year = "1987", +} + +@InProceedings{THastie95, + author = "Trevor Hastie and Patrice Simard and Eduard + Sackinger", + editor = NIPS7ed, + booktitle = NIPS7, + title = "Learning Prototype Models for Tangent Distance", + publisher = "MIT Press", + pages = "999--1006", + year = "1995", +} + +@Article{THastie98, + author = "T. Hastie and P. Simard", + title = "Metrics and Models for Handwritten Character + Recognition", + journal = "Statistical Science", + volume = "13", + number = "1", + pages = "54--65", + month = jan, + year = "1998", + URL = "citeseer.ist.psu.edu/hastie97metrics.html", +} + +@Book{thrun+pratt-book-1998, + editor = "Sebastian Thrun and Lorien Y. Pratt", + title = "Learning to Learn", + publisher = "Kluwer Academic", + year = "1998", +} + +@InProceedings{Thrun1995, + author = "T. Thrun and T. Mitchell", + booktitle = "Proceedings of the 14th International Joint Conference + on Artificial Intelligence (IJCAI)", + title = "Learning One More Thing", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + month = aug, + year = "1995", +} + +@Misc{thrun95, + author = "S. Thrun and J. O'Sullivan", + title = "Clustering learning tasks and the selective cross-task + transfer of knowledge", + year = "1995", + text = "Technical Report CMU-CS-95-209, Carnegie Mellon + University, School of Computer Science", +} + +@TechReport{thrun95a, + author = "Sebastian Thrun", + title = "Lifelong Learning: {A} Case Study", + number = "CMU-CS-95-208", + institution = "School of Computer Science, Carnegie Mellon + University", + address = "Pittsburgh, PA 15213", + month = nov, + year = "1995", +} + +@InProceedings{thrun95b, + author = "Sebastian Thrun and Tom M. Mitchell", + booktitle = "Proceedings of IJCAI-95", + title = "Learning One More Thing", + organization = "IJCAI", + address = "Montreal, Canada", + year = "1995", +} + +@InProceedings{Thrun96a, + author = "S. Thrun", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Is Learning the $n$-th Thing Any Easier Than Learning + the First?", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "640--646", + year = "1996", +} + +@BOOK{Thrun96b, + AUTHOR = {S. Thrun}, + YEAR = {1996}, + TITLE = {Explanation-Based Neural Network Learning: A Lifelong + Learning Approach}, + PUBLISHER = {Kluwer Academic Publishers}, + ADDRESS = {Boston, MA} +} + +@Article{Tibshirani95, + author = "Robert J. Tibshirani", + title = "Regression shrinkage and selection via the lasso", + journal = "Journal of the Royal Statistical Society B", + volume = "58", + pages = "267--288", + year = "1995", +} + +@Article{Ticknor87, + author = "A. J. Ticknor and H. Barrett", + title = "Optical Implementations of {Boltzmann} Machines", + journal = opteng, + volume = "26", + pages = "16--21", + year = "1987", +} + +@Book{Tikhonov+Arsenin77, + author = "A. N. Tikhonov and V. Y. Arsenin", + title = "Solutions of Ill-posed Problems", + publisher = "W. H. Winston", + address = "Washington D.C.", + year = "1977", +} + +@InProceedings{tipping00relevance, + author = "M. E. Tipping", + editor = NIPS12ed, + booktitle = NIPS12, + title = "The Relevance Vector Machine", + publisher = "MIT Press", + pages = "652--658", + year = "2000", + OPTaddress = "Cambridge, MA", +} + +@Article{tipping99mixtures, + author = "M. E. Tipping and C. M. Bishop", + title = "Mixtures of Probabilistic Principal Component + Analysers", + journal = "Neural Computation", + volume = "11", + number = "2", + pages = "443--482", + year = "1999", + URL = "citeseer.nj.nec.com/tipping98mixtures.html", +} + +@InProceedings{Tishby89, + author = "N. Tishby and E. Levin and S. A. Solla", + booktitle = ijcnn, + title = "Consistent Inference of Probabilities in Layered + Networks: Predictions and Generalization", + volume = "2", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "403--410", + year = "1989", +} + +@InProceedings{Titov+Henderson-2007, + author = "Ivan Titov and James Henderson", + booktitle = "Proc. 45th Meeting of Association for Computational + Linguistics (ACL'07)", + title = "Constituent Parsing with Incremental Sigmoid Belief + Networks", + address = "Prague, Czech Republic", + pages = "632--639", + year = "2007", + URL = {http://aclweb.org/anthology-new/P/P07/P07-1080.pdf}, +} + +@InProceedings{ToMa00, + author = "Kristina Toutanova and Christopher D. Manning", + booktitle = "EMNLP/VLC 2000", + title = "Enriching the Knowledge Sources Used in a Maximum + Entropy Part-of-Speech Tagger", + pages = "63--70", + year = "2000", +} + +@InProceedings{Tomita82, + author = "M. Tomita", + booktitle = "Proceedings of the Fourth Annual Cognitive Science + Conference", + title = "Dynamic Construction of Finite-state Automata from + Examples Using Hill-Climbing", + address = "Ann Arbor, MI", + pages = "105--108", + year = "1982", +} + +@Book{Tong83, + author = "H. Tong", + title = "Threshold Models in Nonlinear Time Series Analysis", + publisher = "Springer-Verlag", + address = "Berlin", + year = "1983", +} + +@InProceedings{TongKoller2000, + author = "S. Tong and D. Koller", + booktitle = "Proceedings of the 17th National Conference on + Artificial Intelligence (AAAI)", + title = "Restricted Bayes Optimal Classifiers", + address = "Austin, Texas", + pages = "658--664", + year = "2000", +} + +@Article{Torgerson52, + author = "W. Torgerson", + title = "Multidimensional scaling, 1: Theory and method", + journal = "Psychometrika", + volume = "17", + pages = "401--419", + year = "1952", +} + +@inproceedings{Torralba+Fergus+Weiss-2008, + author = {Antonio Torralba and Robert Fergus and Yair Weiss}, + title = {Small codes and large databases for recognition}, + booktitle = cvpr08, + pages = "1-8", + year = 2008, +} + +@incollection{Torresani+Lee-2007, + title = {Large Margin Component Analysis}, + author = {Lorenzo Torresani and Kuang-Chih Lee}, + booktitle = NIPS19, + editor = NIPS19ed, + publisher = {MIT Press}, + address = {Cambridge, MA}, + pages = {1385--1392}, + year = {2007} +} + +@InProceedings{Torresen+al-1995, + author = "J. Torresen and S. Mori and H. Nakashima and S. Tomita + and O. Landsverk", + booktitle = "Proceedings of the Fourth International Conference on + Artificial Neural Networks", + title = "Exploiting multiple degrees of {BP} parallelism on the + highly parallel computer {AP1000}", + address = "Cambridge, UK", + pages = "483--488", + year = "1995", +} + +@InProceedings{Torresen+al-1995b, + author = "J. Torresen and S. Tomita and O. Landsverk", + booktitle = "World Congress on Neural Networks", + title = "The relation of Weight Update Frequency to Convergence + of {BP}", + address = "Washington D.C., USA", + year = "1995", +} + +@Article{Torresen-1997, + author = "Jim Torresen", + title = "The Convergence of Backpropagation Trained Neural + Networks for Various Weight Update Frequencies", + journal = "International Journal of Neural Systems", + volume = "8", + number = "3", + year = "1997", +} + +@Article{Toulouse86, + author = "G. Toulouse and S. Dehaene and J.-P. Changeux", + title = "Spin Glass Model of Learning by Selection", + journal = PNAS, + volume = "83", + pages = "1695--1698", + year = "1986", +} + +@Article{Touretzky89, + author = "D. S. Touretzky and D. A. Pomerleau", + title = "What's Hidden in the Hidden Layers?", + journal = BYTE, + pages = "227--233", + month = aug, + year = "1989", +} + +@InProceedings{ToutanovaKMS03, + author = "Kristina Toutanova and Dan Klein and Christopher D. + Manning and Yoram Singer", + booktitle = "HLT-NAACL", + title = "Feature-Rich Part-of-Speech Tagging with a Cyclic + Dependency Network.", + year = "2003", + bibsource = "DBLP, http://dblp.uni-trier.de", + ee = "http://acl.ldc.upenn.edu/N/N03/N03-1033.pdf", +} + +@InProceedings{Towell-nips92, + author = "G. G. Towell and J. W. Shawlik", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Interpretation of Artificial Neural Networks: Mapping + Knowledge-Based Neural Networks into Rules", + publisher = "Morgan Kaufmann", + address = "San Mateo CA", + year = "1992", +} + +@InProceedings{towell93, + author = "G. G. Towell and J. W. Shavlik", + editor = NIPS4ed, + booktitle = NIPS4, + title = "Interpretation of Artificial Neural Networks: Mapping + Knowledge-Based Neural Networks into rules", + publisher = "Morgan Kaufmann", + address = "San Meteo, CA", + pages = "977--984", + year = "1992", +} + +@InProceedings{Towell-aaai90, + author = "G. G. Towell and J. W. Shawlick and M. O. Noordewier", + booktitle = "Proceedings of the Eighth National Conference on + Artificial Intelligence (AAAI-90)", + title = "Refinement of Approximate Domain Theories by + Knowledge-Based Neural Networks", + pages = "861--866", + year = "1990", + OPTnote = "", +} + +@TechReport{TR:Breiman.arcing, + author = "Leo Breiman", + title = "Bias, variance, and Arcing classifiers", + number = "460", + institution = "Statistics Department, University of California at + Berkeley", + year = "1996", +} + +@TechReport{TR:Breiman:edge, + author = "Leo Breiman", + title = "Arcing the edge", + number = "486", + institution = "Statistics Department, University of California at + Berkeley", + year = "1997", +} + +@TechReport{TR:Breiman:gametheorie, + author = "Leo Breiman", + title = "Prediction games and arcing classifiers", + number = "504", + institution = "Statistics Department, University of California at + Berkeley", + year = "1997", +} + +@TechReport{TR:Friedman+Hastie+Tibshirani:AdaBoost-theory, + author = "J. Friedman and T. Hastie and R. Tibshirani", + title = "Additive Logistic Regression: a Statistical View of + Boosting", + institution = "August 1998, Department of Statistics, Stanford + University", + year = "1998", +} + +@TechReport{TR:Tibshirani:bias+var, + author = "R. Tibshirani", + title = "Bias, Variance and Prediction Error for Classification + Rules", + institution = "Departement od Statistics, University of Toronto", + year = "1996", +} + +@Article{Traven91, + author = "H. G. C. Traven", + title = "A neural network approach to statistical pattern + classification by semiparametric estimation of + probability density functions", + journal = ieeetrnn, + volume = "2", + number = "3", + pages = "366--377", + year = "1991", +} + +@InCollection{TreHolAhm93, + author = "V. Tresp and J. Hollatz and S. Ahmad", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Network structuring and training using rule-based + knowledge", + publisher = "Morgan Kaufman Publishers", + address = "San Mateo, CA", + year = "1993", +} + +@InProceedings{Tresp-nips93, + author = "V. Tresp and J. Hollatz and S. Ahmad", + editor = NIPS5ed, + booktitle = NIPS5, + title = "Network Structuring and Training Using Rule-based + Knowledge", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + year = "1993", +} + +@Article{tresp2001, + author = "V. Tresp", + title = "Scaling Kernel-Based Systems to Large Data Sets", + journal = "Data Mining and Knowledge Discovery", + volume = "5", + number = "3", + pages = "197--211", + year = "2001", +} + +@InCollection{Tresp94, + author = "V. Tresp and S. Ahmad and R. Neuneier", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Training neural networks with deficient data", + publisher = "Morgan Kaufman Publishers", + address = "San Mateo, CA", + pages = "128--135", + year = "1994", +} + +@Article{TRNN:Tsoi94, + author = "A. C. Tsoi and A. Back", + title = "Locally Recurrent Globally Feedforward Networks, {A} + Critical Review of Architectures", + journal = "IEEE Transactions on Neural Networks", + volume = "5", + number = "2", + pages = "229--239", + year = "1994", +} + +@InProceedings{Tseng-1998, + author = "Yuen-Hsien Tseng", + booktitle = "SIGIR '98: Proceedings of the 21st Annual + International ACM SIGIR Conference on Research and + Development in Information Retrieval, August 24-28 + 1998, Melbourne, Australia", + title = "Multilingual Keyword Extraction for Term Suggestion", + publisher = "ACM", + pages = "377--378", + year = "1998", +} + +@Article{TsochantaridisI2005, + author = "Ioannis Tsochantaridis and Thorsten Joachims and + Thomas Hofmann and Yasemin Altun", + title = "Large Margin Methods for Structured and Interdependent + Output Variables", + journal = "J. Mach. Learn. Res.", + volume = "6", + publisher = "MIT Press", + address = "Cambridge, MA, USA", + pages = "1453--1484", + year = "2005", + ISSN = "1533-7928", +} + +@Article{Tsodyks88, + author = "M. V. Tsodyks and M. V. Feigel'man", + title = "The Enhanced Storage Capacity in Neural Networks with + Low Activity Level", + journal = eul, + volume = "6", + pages = "101--105", + year = "1988", +} + +@InProceedings{Tsoi+Pearson91, + author = "A. C. Tsoi and R. A. Pearson", + editor = NIPS3ed, + booktitle = NIPS3, + title = "Comparison of three classification techniques: {CART}, + {C4}.5, and multi-layer perceptron", + publisher = "Morgan Kaufmann", + address = "Denver, CO", + pages = "", + year = "1991", +} + +@Book{TSP93, + editor = "A. Weigend and N. Gershenfeld", + title = "Time Series Prediction: Forecasting the future and + understanding the past", + publisher = "Addison-Wesley", + year = "1993", +} + +@InProceedings{Tsuda99, + author = "K. Tsuda", + booktitle = "ICANN'99", + title = "Optimal Hyperplane Classifier based on Entropy Number + Bound", + pages = "419--424", + year = "1999", +} + +@PhdThesis{Turian07thesis, + author = "Joseph Turian", + title = "Constituent Parsing by Classification", + school = "New York University", + year = "2007", +} + +@Article{tzanetakis+cook:2002, + author = "George Tzanetakis and Perry Cook", + title = "Musical Genre Classification of Audio Signals", + journal = "IEEE Transactions on Speech and Audio Processing", + volume = "10", + number = "5", + pages = "293--302", + month = jul, + year = "2002", +} + +@Article{Uberbacher91, + author = "E. C. Uberbacher and R. J. Mural", + title = "Locating protein-coding regions in human {DNA} + sequences by a multiple sensor-neural network + approach", + journal = "Proc. Natl. Acad. Sci. USA", + volume = "88", + pages = "11261--11265", + year = "1991", +} + +@Article{Uhrig91, + author = "R. E. Uhrig", + title = "Potential Applications of Neural Networks to the + Operation of a Nuclear Power Plant", + journal = "Nuclear Safety", + volume = "32", + number = "1", + year = "1991", +} + +@Article{Uhrig94, + author = "R. E. Uhrig", + title = "Artificial Neural Networks in Nuclear Power Plants", + journal = "Nuclear News", + volume = "37", + number = "9", + pages = "38", + year = "1994", +} + +@Article{Utgoff-2002, + author = "Paul E. Utgoff and David J. Stracuzzi", + title = "Many-Layered Learning", + journal = "Neural Computation", + volume = "14", + pages = "2497--2539", + year = "2002", +} + +@Article{Valiant84, + author = "L. G. Valiant", + title = "A Theory of the Learnable", + journal = "Communications of the ACM", + volume = "27", + number = "11", + pages = "1134--1142", + year = "1984", +} + +@InProceedings{VandenBout88, + author = "D. E. Van den Bout and T. K. Miller", + booktitle = icnn, + title = "A Travelling Salesman Objective Function That Works", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "299--303", + year = "1988", +} + +@Article{VandenBout89, + author = "D. E. Van den Bout and T. K. Miller", + title = "Improving the Performance of the Hopfield-Tank Neural + Network Through Normalization and Annealing", + journal = biocyb, + volume = "62", + pages = "129--139", + year = "1989", +} + +@Article{VanDerMaaten08, + author = "Laurens {van der Maaten} and Geoffrey E. Hinton", + title = {Visualizing Data using t-SNE}, + journal = jmlr, + year = "2008", + keywords = {dimension-reduction, locality, nearest-neighbors, spectral, visualization}, + month = {November}, + pages = {2579--2605}, + url = {http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf}, + volume = {9}, +} + +@Book{VanDerVaart+Wellner-1996, + author = "A. W. {van der Vaart} and J. Wellner", + title = "Weak Convergence and Empirical Processes with + applications to Statistics", + publisher = "Springer", + address = "New York", + year = "1996", +} + +@Article{vanHemmen79, + author = "J. L. van Hemmen and R. G. Palmer", + title = "The Replica Method and a Solvable Spin Glass Model", + journal = jpa, + volume = "12", + pages = "563--580", + year = "1979", +} + +@Article{vanHemmen86, + author = "J. L. van Hemmen and R. K{\"u}hn", + title = "Nonlinear Neural Networks", + journal = prl, + volume = "57", + pages = "913--916", + year = "1986", +} + +@Article{vanHemmen90, + author = "J. L. van Hemmen and L. B. Ioffe and R. K{\"u}hn and + M. Vaas", + title = "Increasing the Efficiency of a Neural Network through + Unlearning", + journal = physicaA, + volume = "163", + pages = "386--392", + year = "1990", +} + +% HUGO: Haven't found what A. stands for... +@Article{VapnikV63, + author = "Vladimir Vapnik and A. Lerner", + title = "Pattern Recognition using Generalized Portrait Method", + journal = "Automation and Remote Control", + volume = "24", + year = "1963", +} + +@Article{Vapnik71, + author = "V. N. Vapnik and A. Y. Chervonenkis", + title = "On the Uniform Convergence of Relative Frequencies of + Events to Their Probabilities", + journal = tprobapp, + volume = "16", + pages = "264--280", + year = "1971", +} + +@Book{Vapnik82, + author = "V. N. Vapnik", + title = "Estimation of Dependences Based on Empirical Data", + publisher = "Springer-Verlag", + address = "Berlin", + year = "1982", +} + +@Article{Vapnik93, + author = "V. Vapnik and L. Bottou", + title = "Local algorithms for pattern recognition and + dependencies estimation", + journal = nc, + volume = "5", + number = "6", + pages = "893--909", + year = "1993", +} + +@Book{Vapnik95, + author = "V. N. Vapnik", + title = "The Nature of Statistical Learning Theory", + publisher = "Springer", + address = "New York", + year = "1995", +} + +@Book{Vapnik98, + author = "Vladimir Vapnik", + title = "Statistical Learning Theory", + publisher = "Wiley, Lecture Notes in Economics and Mathematical + Systems, volume 454", + year = "1998", +} + +@InCollection{variational99, + author = "M. I. Jordan and Z. Ghahramani and T. Jaakkola and L. + Saul", + editor = "M. I. Jordan", + booktitle = "Learning in Graphical Models", + title = "An introduction to variational methods in graphical + models", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "1999", +} + +@InProceedings{Venka+PC-2004, + author = "Shailaja Venkatsubramanyan and Jose Perez-Carballo", + booktitle = "Second ACL Workshop on Multiword Expressions", + title = "Multiword Expression Filtering for Building Knowledge + Maps", + pages = "40--47", + year = "2004", +} + +@InProceedings{Verbeek-2004, + author = "Jakob J. Verbeek and Sam T. Roweis and Nikos Vlassis", + editor = NIPS16ed, + booktitle = NIPS16, + title = "Non-linear {CCA} and {PCA} by Alignment of Local + Models", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2004", + keywords = "dimensionality reduction, spectral methods, mixture + density, CCA, PCA", +} + +@InProceedings{Veronis1990, + author = "Jean Veronis and Nancy Ide", + booktitle = "COLING'90", + title = "Word Sense Disambiguation with Very Large Neural + Networks Extracted from Machine Readable Dictionaries", + year = "1990", +} + +@Misc{Veronis98, + author = "Jean Veronis", + title = "A study of polysemy judgements and inter-annotator + agreement", + year = "1998", + URL = "citeseer.nj.nec.com/veronis98study.html", + text = "Veronis, J., 1998. A study of polysemy judgements and + inter-annotator agreement. In Programme and advanced + papers of the Senseval workshop. Herstmonceux Castle, + England.", +} + +@InProceedings{Vilalta+al-1997, + author = "Ricardo Vilalta and Gunnar Blix and Larry Rendell", + booktitle = ECML97, + title = "Global Data Analysis and the Fragmentation Problem in + Decision Tree Induction", + publisher = "Springer-Verlag", + pages = "312--327", + year = "1997", +} + +@InProceedings{Vincent-Bengio-2003-short, + author = "Pascal Vincent and Yoshua Bengio", + booktitle = NIPS15, + title = "Manifold Parzen Windows", + publisher = "MIT Press", + year = "2003", +} + +@TechReport{Vincent-TR1316-small, + author = "P. Vincent and H. Larochelle and Y. Bengio and P.-A. + Manzagol", + title = "Extracting and Composing Robust Features with + Denoising Autoencoders", + number = "1316", + institution = "Universit\'e de Montr\'eal, dept. IRO", + year = "2008", +} + +@Article{Vincent2001, + author = "P. Vincent and Y. Bengio", + title = "Kernel Matching Pursuit", + journal = "Machine Learning", + volume = "48", + number = "", + pages = "165--187", + year = "2002", +} + +@InProceedings{Vincent2002, + author = "P. Vincent and Y. Bengio", + editor = NIPS14ed, + booktitle = NIPS14, + title = "{K}-Local Hyperplane and Convex Distance Nearest + Neighbor Algorithms", + publisher = "{MIT} Press", + address = "Cambridge, MA", + pages = "985--992", + year = "2002", +} + +@InProceedings{VincentPLarochelleH2008-small, + author = "Pascal Vincent and Hugo Larochelle and Yoshua Bengio + and Pierre-Antoine Manzagol", + booktitle = "ICML 2008", + title = "Extracting and Composing Robust Features with + Denoising Autoencoders", + year = "2008", +} + +@InProceedings{VincentPLarochelleH2008-short, + author = "Pascal Vincent and Hugo Larochelle and Yoshua Bengio + and Pierre-Antoine Manzagol", + booktitle = "Int. Conf. Mach. Learn.", + title = "Extracting and Composing Robust Features with + Denoising Autoencoders", + year = "2008", + pages = "1096--1103" +} + + +@InProceedings{vincent:icml08, + author = "Pascal Vincent and Hugo Larochelle and Yoshua Bengio and {Pierre-Antoine Manzagol}", + title = "Extracting and composing robust features with denoising autoencoders", + booktitle = "Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008)", + location = "Helsinki, Finland", + editor = "Andrew McCallum and Sam Roweis", + publisher = "Omnipress", + year = "2008", + pages = "1096--1103", +} + %url = "http://icml2008.cs.helsinki.fi/papers/592.pdf", + +@InProceedings{VincentPLarochelleH2008-very-small, + author = "P. Vincent and H. Larochelle and Y. Bengio and P.-A. + Manzagol", + booktitle = "ICML 2008", + title = "Extracting and Composing Robust Features with + Denoising Autoencoders", + year = "2008", +} + +@Article{Viterbi67, + author = "A. Viterbi", + title = "Error bounds for convolutional codes and an + asymptotically optimum decoding algorithm", + journal = ieeeit, + pages = "260--269", + year = "1967", +} + +@InProceedings{Vlachos-2002, + author = "Michail Vlachos and Carlotta Domeniconi and Dimitrios + Gunopulos and George Kollios and Nick Koudas", + booktitle = "Proc. of 8th SIGKDD", + title = "Non-Linear Dimensionality Reduction Techniques for + Classification and Visualization", + address = "Edmonton, Canada", + year = "2002", + URL = "citeseer.ist.psu.edu/573153.html", +} + +@Article{vogl-88, + author = "T. Vogl and J. Mangis and J. Rigler and W. Zink and D. + Alkon", + title = "accelerating convergence of the back-propagation + method", + journal = "Biological Cybernetics", + volume = "59", + pages = "257--263", + year = "1988", +} + +@Article{Vogl88, + author = "T. P. Vogl and J. K. Mangis and A. K. Rigler and W. T. + Zink and D. L. Alkon", + title = "Accelerating the Convergence of the Back-Propagation + Method", + journal = biocyb, + volume = "59", + pages = "257--263", + year = "1988", +} + +@Book{Volterra, + author = "V. Volterra", + title = "Theory of Functionals and of Integrals and + Integro-Differential Equations", + publisher = "Dover", + address = "New York", + year = "1959", +} + +@Article{vonderMalsburg73, + author = "Ch. von der Malsburg", + title = "Self-Organization of Orientation Sensitive Cells in + the Striate Cortex", + journal = kyb, + volume = "14", + year = "1973", +} + +@Article{vonderMalsburg82, + author = "Ch. von der Malsburg and J. D. Cowan", + title = "Outline of a Theory for the Ontogenesis of + Iso-Orientation Domains in Visual Cortex", + journal = biocyb, + volume = "45", + pages = "49--56", + year = "1982", +} + +@InProceedings{vonLehman88, + author = "A. von Lehman and E. G. Paek and P. F. Liao and A. + Marrakchi and J. S. Patel", + booktitle = icnn, + title = "Factors Influencing Learning by Back-Propagation", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "335--341", + year = "1988", +} + +@Article{vonLuxurg07, + author = "U. von Luxburg", + title = "A Tutorial on Spectral Clustering.", + journal = "Statistics and Computing", + volume = "17(4)", + pages = "395-416", + year = "2007", +} + +@InCollection{vonNeumann56, + author = "J. von Neumann", + editor = "C. E. Shannon and J. McCarthy", + booktitle = "Automata Studies", + title = "Probabilistic Logics and the Synthesis of Reliable + Organisms from Unreliable Components", + publisher = "Princeton University Press", + address = "Princeton", + pages = "43--98", + year = "1956", +} + +@Article{Wagner87, + author = "K. Wagner and D. Psaltis", + title = "Multilayer Optical Learning Networks", + journal = applopt, + volume = "26", + pages = "5061--5076", + year = "1987", +} + +@InCollection{Wahba82, + author = "G. Wahba", + editor = "Gupta and Berger", + booktitle = "Statistical Decision Theory and Related Topics III", + title = "Constrained regularization for ill-posed linear + operator equations, with applications in meteorology + and medecine", + publisher = "Academic Press", + year = "1982", +} + +@InProceedings{Wahba90, + author = "G. Wahba", + booktitle = "CBMS-NSF Regional Conference Series in Applied + Mathematics", + title = "Spline models for observational data", + volume = "59", + publisher = "Society for Industrial and Applied Mathematics + (SIAM)", + address = "Philadelphia, PA", + year = "1990", +} + +@Article{Waibel89a, + author = "A. Waibel", + title = "Modular Construction of Time-Delay Neural Networks for + Speech Recognition", + journal = nc, + volume = "1", + pages = "39--46", + year = "1989", +} + +@Article{Waibel89b, + author = "A. Waibel and T. Hanazawa and G. E. Hinton and K. + Shikano and K. Lang", + title = "Phoneme Recognition Using Time-Delay Neural Networks", + journal = ieeetassp, + volume = "37", + pages = "328--339", + year = "1989", +} + +@Article{Waibel89c, + author = "A. Waibel and H Sawai and K. Shikano", + title = "Modularity and Scaling in Large Phonemic Neural + Networks", + journal = ieeetassp, + volume = "37", + pages = "1888--1898", + year = "1989", +} + +@Article{Wallace+Boulton-1968, + author = "C. S. Wallace and D. M. Boulton", + title = "An information measure for classification", + journal = "Computer Journal", + volume = "11", + number = "2", + pages = "185--194", + year = "1968", +} + +@InCollection{Wan93, + author = "Wan E. A.", + editor = "A. S. Weigend and N. A. Gershenfeld", + booktitle = "Time Series Prediction: Forecasting the Future and + Understanding the Past", + title = "Time series prediction by using a connectionist + network with internal delay lines", + publisher = "Addison-Wesley", + pages = "195--217", + year = "1993", +} + +@InCollection{Wan93a, + author = "E. A. Wan", + editor = "A. Weigend and N. Gershenfeld", + booktitle = "Predicting the future and understanding the past", + title = "Time Series Prediction by Using a Connectionist + Network with Internal Delay Lines", + publisher = "Addison-Wesley", + address = "Redwood City, CA", + pages = "175--193", + year = "1993", +} + +@InProceedings{Wang-ijcnn91, + author = "S. D. Wang and C. H. Hsu", + booktitle = ijcnn, + title = "Terminal Attractor Learning Algorithms for + Backpropagation Neural Networks", + publisher = "IEEE Press", + address = "Singapore", + pages = "183--189", + month = nov, + year = "1991", +} + +@INPROCEEDINGS{WangC1994, + author = {Changfeng Wang and Santosh S. Venkatesh and J. Stephen Judd}, + title = {Optimal stopping and effective machine complexity in learning}, + editor = NIPS6ed, + booktitle = NIPS6, + year = {1994}, + pages = {303--310}, + publisher = {Morgan Kaufmann} +} + +@inproceedings{wangetal08, +author = "Wang, Q. and Lin, D. and Schuurmans, D.", +title = "Semi-supervised convex training for dependency parsing", +booktitle = "Proceedings of the Forty-sixth Annual Conference of the +Association for Computational Linguistics: Human Language Technologies (ACL)", +year = 2008, +note = "Acceptance rate 25\%; Wang a trainee" +} + +@inproceedings{wangetal07, +author = "Wang, T. and Lizotte, D. and Bowling, M. and Schuurmans, D.", +title = "Stable dual dynamic programming", +editor = NIPS20ed, +booktitle = NIPS20, +year = 2007, +note = "Acceptance rate 22\%; Wang and Lizotte trainees" +} + + +@Misc{Wang02, + author = "L. Wang and K. Luk Chan", + howpublished = "6th kernel machines workshop, in conjunction with Neural Information Processing Systems (NIPS)", + title = "Learning Kernel Parameters by using Class Separability + Measure", + year = "2002", + url = "http://users.rsise.anu.edu.au/~wanglei/#Publication", +} + +@Article{Wang89, + author = "H. Wang and J. Wu and P. Tang", + title = "Superfamily expands", + journal = "Nature", + volume = "337", + pages = "514", + year = "1989", +} + +@InProceedings{WangHarper2002, + author = "Wen Wang and Mary P. Harper", + booktitle = "EMNLP '02: Proceedings of the ACL-02 conference on + Empirical methods in natural language processing", + title = "The Super{ARV} language model: investigating the + effectiveness of tightly integrating multiple knowledge + sources", + publisher = "Association for Computational Linguistics", + address = "Morristown, NJ, USA", + pages = "238--247", + year = "2002", +} + +@Article{Warmuth95, + author = "Sally Floyd and Manfred Warmuth", + title = "Sample Compression, Learnability, and the + Vapnik-Chervonenkis Dimension", + journal = "Machine Learning", + volume = "21", + number = "3", + pages = "269--304", + year = "1995", +} + +@Book{Wasserman-2004, + author = "Larry Wasserman", + title = "All of Statistics - A Concise Course in Statistical Inference", + publisher = "Springer", + year = "2004", +} + +@PhdThesis{Watkins-PhD, + author = "C. J. C. H. Watkins", + title = "Learning from Delayed Rewards", + school = "Cambridge University", + address = "Cambridge, England", + year = "1989", +} + +@InProceedings{Watrous87, + author = "R. L. Watrous", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "Learning Algorithms for Connectionist Networks: + Applied Gradient Methods of Nonlinear Optimization", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "619--627", + year = "1987", +} + +@TechReport{Watrous89, + author = "R. L. Watrous", + title = "Context-modulated discrimination of similar vowels + using second-order connectionist networks", + number = "{CRG-TR}-89-5", + institution = "University of Toronto", + year = "1989", +} + +@Article{Watrous-nc92, + author = "R. L. Watrous and G. M. Kuhn", + title = "Induction of Finite-State Languages Using Second-Order + Recurrent Networks", + journal = nc, + volume = "4", + number = "3", + pages = "406--414", + year = "1992", +} + +@Article{Watson64, + author = "G. S. Watson", + title = "Smooth regression analysis", + journal = "Sankhya - The Indian Journal of Statistics", + volume = "26", + pages = "359--372", + year = "1964", +} + +@inproceedings{Weber-2000, + author = {Markus Weber and Max Welling and Pietro Perona}, + title = {Unsupervised Learning of Models for Recognition}, + booktitle = {Proc. 6th Europ. Conf. Comp. Vis., ECCV2000}, + address = {Dublin}, + year = 2000, + pages = {18-32}, + url = {http://link.springer.de/link/service/series/0558/bibs/1842/18420018.htm}, +} + +@Book{Webster88, + editor = "Webster", + title = "Webster's Ninth New Collegiate Dictionary", + publisher = "Merriam-Webster", + address = "Springfield", + year = "1988", +} + +@Book{Wegener87, + author = "Ingo Wegener", + title = "The Complexity of Boolean Functions", + publisher = "John Wiley \& Sons", + year = "1987", +} + +@InCollection{Weigend93, + author = "N. A. Gershenfeld and A. S. Weigend", + editor = "A. Weigend and N. Gershenfeld", + booktitle = "Predicting the future and understanding the past", + title = "The Future of Time Series: Learning and + Understanding", + publisher = "Addison-Wesley", + address = "Redwood City, CA", + pages = "1--70", + year = "1993", +} + +@Article{Weigend95, + author = "A. S. Weigend and A. N. Srivastava", + title = "Predicting Conditional Probability Distributions: {A} + Connectionist Approach", + journal = "International Journal of Neural Systems", + volume = "6", + year = "1995", +} + +@InProceedings{Weinberger+Saul-06, + author = "K. Q. Weinberger and L. K. Saul", + booktitle = "Proceedings of the National Conference on Artificial + Intelligence (AAAI)", + title = "An Introduction to Nonlinear Dimensionality Reduction + by Maximum Variance Unfolding", + address = "Boston, MA", + year = "2006", +} + +@InProceedings{weinberger-learningkernel-04, + author = "Kilian Q. Weinberger and Fei Sha and Lawrence K. Saul", + booktitle = ICML04, + editor = ICML04ed, + publisher = ICML04publ, + title = "Learning a kernel matrix for nonlinear dimensionality + reduction", + address = "Banff, Canada", + pages = "839--846", + year = "2004", +} + +@InProceedings{Weinberger04a, + author = "K. Q. Weinberger and L. K. Saul", + booktitle = cvpr04, + title = "Unsupervised Learning of Image Manifolds by + Semidefinite Programming", + volume = "2", + address = "Washington D.C.", + pages = "988--995", + year = "2004", +} + +@Article{weinberger95, + author = "M. J. Weinberger and J. Rissanen and M. Feder", + title = "A universal finite memory source", + journal = "IEEE Transactions on Information Theory", + pages = "656--664", + year = "1983", +} + +@InCollection{WeinbergerK2006, + author = "Kilian Q. Weinberger and John Blitzer and Lawrence K. Saul", + editor = NIPS18ed, + booktitle = NIPS18, + title = "Distance Metric Learning for Large Margin Nearest + Neighbor Classification", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "1473--1480", + year = "2006", +} + +@conference{WeinbergerK2007, + author = {Kilian Q. Weinberger and Gerald Tesauro}, + title = {Metric Learning for Kernel Regression}, + booktitle = {Proc. of the 11 thInternational Conference on Artificial Intelligence and Statistics}, + year = {2007}, +} + %url = {http://www.stat.umn.edu/~aistat/proceedings/data/papers/077.pdf} + +@Article{Weingartner, + author = "H. M. Weingartner and D. N. Ness", + title = "Methods for the Solution of the Multi-Dimensional 0/1 + Knapsack Problem", + journal = "Operations Research", + volume = "15", + pages = "83--103", + year = "1967", +} + +@Article{Weisbuch85, + author = "G. Weisbuch and F. Fogelman-Souli\'e", + title = "Scaling Laws for the Attractors of Hopfield Networks", + journal = jppl, + volume = "46", + pages = "623--630", + year = "1985", +} + +@InProceedings{Weiss-99, + author = "Yair Weiss", + booktitle = ICCV99, + title = "Segmentation using eigenvectors: a unifying view", + pages = "975--982", + year = "1999", +} + +@Article{Weiss2000, + author = "Yair Weiss", + title = "Correctness of local probability propagation in + graphical models with loops", + journal = "Neural Computation", + volume = "12", + pages = "1--41", + year = "2000", +} + +@Book{Weiss90, + author = "S. M. Weiss and C. A. Kulikowski", + title = "Computer Systems That Learn", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + year = "1990", +} + +@InProceedings{Welling05, + author = "Max Welling and Michal Rosen-Zvi and Geoffrey E. Hinton", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Exponential Family Harmoniums with an Application to + Information Retrieval", + volume = "17", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2005", +} + +@InProceedings{Welling05-small, + author = "M. Welling and M. Rosen-Zvi and G. E. Hinton", + booktitle = "NIPS 17", + title = "Exponential Family Harmoniums with an Application to + Information Retrieval", + publisher = "MIT Press", + address = "Cambridge, MA", + year = "2005", +} + +@InProceedings{Welling2003, + author = "Max Welling and Richard Zemel and Geoffrey E. Hinton", + editor = NIPS15ed, + booktitle = NIPS15, + title = "Self-Supervised Boosting", + publisher = "{MIT} Press", + pages = "665--672", + year = "2003", +} + +@InProceedings{WellingM2002, + author = "Max Welling and Geoffrey E. Hinton", + booktitle = "ICANN '02: Proceedings of the International Conference + on Artificial Neural Networks", + title = "A New Learning Algorithm for Mean Field {Boltzmann} + Machines", + publisher = "Springer-Verlag", + address = "London, UK", + pages = "351--357", + year = "2002", + ISBN = "3-540-44074-7", +} + +@InProceedings{WellingNIPS17, + author = "Max Welling and Michal Rosen-Zvi and Geoffrey E. Hinton", + editor = NIPS17ed, + booktitle = NIPS17, + title = "Exponential Family Harmoniums with an Application to + Information Retrieval", + publisher = "{MIT} Press", + address = {Cambridge, MA}, + pages = "1481--1488", + year = "2005", +} + +@InProceedings{WellingNIPS17-small, + author = "M. Welling and M. Rosen-Zvi and G. E. Hinton", + booktitle = "NIPS 17", + title = "Exponential Family Harmoniums with an Application to + Information Retrieval", + publisher = "{MIT} Press", + year = "2005", +} + + +@InProceedings{WellingUAI2009, + author = "Max Welling", + booktitle = UAI09, + title = "Herding Dynamic Weights for Partially Observed Random Field Models", + publisher = "Morgan Kaufmann", + year = "2009", +} + +@InProceedings{WellingICML2009, + author = "Max Welling", + booktitle = ICML09, + editor = ICML09ed, + publisher = ICML09publ, + title = {Herding Dynamic Weights to Learn}, + year = "2009", +} + +@InProceedings{Werbos-icnn88, + author = "P. J. Werbos", + booktitle = icnn, + title = "Back-Propagation: Past and Future", + publisher = "IEEE Press", + address = "New York, NY", + year = "1988", + OPTpages = "343--353", +} + +@PhdThesis{Werbos74, + author = "P. Werbos", + title = "Beyond Regression: New Tools for Prediction and + Analysis in the Behavioral Sciences", + school = "Harvard University", + year = "1974", +} + +@Article{Werbos87, + author = "P. J. Werbos", + title = "Building and Understanding Adaptive Systems: {A} + Statistical/Numerical Approach to Factory Automation + and Brain Research", + journal = ieeesmc, + volume = "17", + pages = "7--20", + year = "1987", +} + +@Article{Werbos88, + author = "P. J. Werbos", + title = "Generalization of Backpropagation with Application to + a Recurrent Gas Market Model", + journal = nn, + volume = "1", + pages = "339--356", + year = "1988", +} + +@InProceedings{wermuth+cox92, + author = "N. Wermuth and D. R. Cox", + booktitle = "Proceedings of the 10th Symposium on Computational + Statistics", + title = "Graphical models for dependencies and associations", + volume = "1", + address = "Physica, Heidelberg", + pages = "235--249", + year = "1992", +} + +@Article{wermuth+lauritzen90, + author = "N. Wermuth and S. L. Lauritzen", + title = "On substantive research hypotheses, conditional + independence graphs and graphical chain models", + journal = "J. Roy. Statist. Soc. Ser. B", + volume = "52", + pages = "21--72", + year = "1990", +} + +@Article{Wessels-trnn92, + author = "L. F. A. Wessels and E. Barnad", + title = "Avoiding False Local Minima by Proper Initialization + of Connections", + journal = ieeetrnn, + volume = "3", + number = "6", + pages = "899--905", + year = "1992", +} + +@Article{weston03zeronorm, + author = "Jason Weston and Andr\'e Elisseeff and Bernhard + Sch{\"o}lkopf and Mike Tipping", + title = "Use of the zero norm with linear models and kernel + methods", + journal = jmlr, + volume = "3", + publisher = "MIT Press", + pages = "1439--1461", + year = "2003", + ISSN = "1533-7928", +} + +@InProceedings{weston99density, + author = "J. Weston and A. Gammerman and M. Stitson and V. + Vapnik and V. Vovk and C. Watkins", + editor = "B. {Sch\"olkopf} and C. J. C. Burges and A. J. Smola", + booktitle = "Advances in Kernel Methods --- Support Vector + Learning", + title = "Density estimation using support vector machines", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "293--306", + year = "1999", +} + +@InProceedings{WestonJ2008, + author = "Jason Weston and {Fr\'ed\'eric} Ratle and Ronan + Collobert", + booktitle = ICML08, + editor = ICML08ed, + publisher = ICML08publ, + title = "Deep Learning via Semi-Supervised Embedding", + year = "2008", + isbn = {978-1-60558-205-4}, + pages = {1168--1175}, + location = {Helsinki, Finland}, + doi = {http://doi.acm.org/10.1145/1390156.1390303}, + address = {New York, NY, USA}, +} + %url = "http://www.kyb.tuebingen.mpg.de/bs/people/weston/papers/deep-embed.pdf", + +@InProceedings{WestonJ2008-small, + author = "J. Weston and F. Ratle and R. Collobert", + booktitle = "ICML 2008", + title = "Deep Learning via Semi-Supervised Embedding", + year = "2008", +} + +@InProceedings{WestonJ2008-short, + author = "J. Weston and F. Ratle and R. Collobert", + booktitle = "Int. Conf. Mach. Learn. 2008", + title = "Deep Learning via Semi-Supervised Embedding", + year = "2008", + pages = {1168--1175}, +} + +@InProceedings{MobahiCollobertWestonICML2009, + author = {Hossein Mobahi and Ronan Collobert and Jason Weston}, + title = {Deep Learning from Temporal Coherence in Video}, + booktitle = {Proceedings of the 26th International Conference on Machine Learning}, + pages = {737--744}, + year = 2009, + editor = {L\'{e}on Bottou and Michael Littman}, + address = {Montreal}, + month = {June}, + publisher = {Omnipress} +} + +@Article{White89, + author = "H. White", + title = "Learning in Artificial Neural Networks: {A} + Statistical Perspective", + journal = "Neural Computation", + volume = "1", + type = "Review", + number = "4", + pages = "425--464", + year = "1989", +} + +@Article{White90, + author = "H. White", + title = "Connectionist nonparametric regression: {Multilayer} + feedforward networks can learn arbitrary mappings", + journal = "Neural Networks", + volume = "3", + number = "5", + publisher = "Pergamon Press Ltd., Inc.", + pages = "535--549", + year = "1990", +} + +@InProceedings{White91, + author = "H. White", + booktitle = "?", + title = "An overview of representation and convergence results + for multilayer feedforward networks", + pages = "", + year = "1991", +} + +@InProceedings{Whitley89, + author = "D. Whitley and T. Hanson", + editor = "J. D. Schaffer", + booktitle = "Proceedings of the Third International Conference on + Genetic Algorithms", + title = "Optimizing Neural Networks Using Faster, More Accurate + Genetic Search", + publisher = "Morgan Kaufmann, San Mateo", + address = "Arlington 1989", + pages = "391--396", + year = "1989", +} + +@Book{whittaker90, + author = "J. Whittaker", + title = "Graphical Models in Applied Multivariate Statistics", + publisher = "Wiley, Chichester", + year = "1990", +} + +@InCollection{Widrow60, + author = "B. Widrow and M. E. Hoff", + booktitle = "1960 IRE WESCON Convention Record", + title = "Adaptive Switching Circuits", + volume = "4", + publisher = "IRE", + address = "New York", + pages = "96--104", + year = "1960", +} + +@InProceedings{Widrow62, + author = "B. Widrow", + editor = "M. C. Yovits and G. T. Jacobi and G. D. Goldstein", + booktitle = "Self-Organizing Systems 1962", + title = "Generalization and Information Storage in Networks of + Adaline ``Neurons''", + publisher = "Spartan, Washington", + address = "Chicago 1962", + pages = "435--461", + year = "1962", +} + +@Article{Widrow73, + author = "B. Widrow and N. K. Gupta and S. Maitra", + title = "Punish/Reward: Learning with a Critic in Adaptive + Threshold Systems", + journal = ieeesmc, + volume = "3", + pages = "455--465", + year = "1973", +} + +@Book{Wiener48, + author = "N. Wiener", + title = "Cybernetics, or Control and Communication in the + Animal and the Machine", + publisher = "Wiley", + address = "New York", + year = "1948", +} + +@Book{Wiener49, + author = "N. Wiener", + title = "The Extrapolation, Interpolation and Smoothing of + Stationary Time Series with Engineering Applications", + publisher = "Wiley", + address = "New York", + year = "1949", +} + +@Article{Wilbur+Lipman83, + author = "W. J. Wilbur and D. J. Lipman", + title = "Rapid similarity searches of nucleic acids and protein + data banks", + journal = "Proc. Natl. Acad. Sci. USA", + volume = "80", + pages = "726--730", + year = "1983", +} + +@TechReport{Wilks1996, + author = "Yorick Wilks and Mark Stevenson", + title = "The grammar of sense: Is word sense tagging much more + than part-of-speech tagging?", + institution = "University of Sheffield", + year = "1996", +} + +@Article{Williams+Barclay88, + author = "A. F. Williams and A. N. Barclay", + title = "The immunoglobulin superfamily domains for cell + surface recognition", + journal = "Annual Review of Immunology", + volume = "6", + pages = "381--405", + year = "1988", +} + +@InProceedings{Williams+Rasmussen-nips8, + author = "C. K. I. Williams and C. E. Rasmussen", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Gaussian Processes for Regression", + publisher = "MIT Press, Cambridge, MA", + pages = "514--520", + year = "1996", +} + +@InProceedings{Williams+Seeger-2000, + author = "C. K. I. Williams and M. Seeger", + booktitle = "Proceedings of the Seventeenth International + Conference on Machine Learning", + title = "The Effect of the Input Density Distribution on + Kernel-based Classifiers", + publisher = "Morgan Kaufmann", + year = "2000", +} + +@InProceedings{Williams+Seeger-2001, + author = "Christopher K. I. Williams and Matthias Seeger", + editor = NIPS13ed, + booktitle = NIPS13, + title = "Using the {Nystr{\"o}m} Method to Speed Up Kernel + Machines", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "682--688", + year = "2001", +} + +@InProceedings{Williams2001, + author = "C. K. I. Williams", + editor = NIPS13ed, + booktitle = NIPS13, + title = "On a Connection between Kernel {PCA} and Metric + Multidimensional Scaling", + publisher = "{MIT} Press", + pages = "675--681", + year = "2001", +} + +@InProceedings{Williams87, + author = "R. J. Williams", + editor = "M. Caudill and C. Butler", + booktitle = icnn, + title = "A Class of Gradient-Estimating Algorithms for + Reinforcement Learning in Neural Networks", + volume = "2", + publisher = "IEEE, New York", + address = "San Diego 1987", + pages = "601--608", + year = "1987", +} + +@InProceedings{Williams88a, + author = "R. J. Williams", + booktitle = icnn, + title = "On the Use of Back-Propagation in Associative + Reinforcement Learning", + volume = "1", + publisher = "IEEE, New York", + address = "San Diego 1988", + pages = "263--270", + year = "1988", +} + +@TechReport{Williams88b, + author = "R. J. Williams", + title = "Towards a Theory of Reinforcement-Learning + Connectionist Systems", + number = "NU--CCS--88--3", + institution = "College of Computer Science, Northeastern University", + address = "Boston, MA", + year = "1988", +} + +@InProceedings{Williams89a, + author = "R. J. Williams and J. Peng", + booktitle = ijcnn, + title = "Reinforcement Learning Algorithms As Function + Optimizers", + volume = "2", + publisher = "IEEE, New York", + address = "Washington 1989", + pages = "89--95", + year = "1989", +} + +@Article{Williams89b, + author = "R. J. Williams and D. Zipser", + title = "A Learning Algorithm for Continually Running Fully + Recurrent Neural Networks", + journal = nc, + volume = "1", + pages = "270--280", + year = "1989", +} + +@Article{Williams89c, + author = "R. J. Williams and D. Zipser", + title = "Experimental Analysis of the Real-Time Recurrent + Learning Algorithm", + journal = connsci, + volume = "1", + pages = "87--111", + year = "1989", +} + +@InProceedings{Williams93, + author = "William Evans and Sridhar Rajagopalan and Umesh + Vazirani", + booktitle = "Proceedings of the 6th Annual Conference on + Computational Learning Theory", + title = "Choosing a Reliable Hypothesis", + publisher = "ACM Press", + address = "Santa Cruz, CA, USA", + pages = "269--276", + month = jul, + year = "1993", + ISBN = "0-89791-611-5", +} + +@InProceedings{williams95gaussian, + author = "Christopher K. I. Williams and Carl Edward Rasmussen", + editor = NIPS8ed, + booktitle = NIPS8, + title = "{Gaussian} Processes for Regression", + volume = "8", + publisher = "{MIT} Press", + year = "1995", + ISBN = "0-262-20107-0", +} + +@InProceedings{Williams96-nips, + author = "C. K. I. Williams", + editor = NIPS9ed, + booktitle = NIPS9, + title = "Computing with infinite networks", + publisher = "MIT Press", + year = "1997", +} + +@InProceedings{WilliamsC1990, + author = {Christopher K. I. Williams and Geoffrey E. Hinton}, + title = {Mean field networks that learn to discriminate temporally distorted strings}, + booktitle = {Connectionist Models: Proceedings of the 1990 Connectionist Summer School}, + year = {1990}, + address = {San Mateo, CA}, +} + +@Article{Willshaw69, + author = "D. J. Willshaw and O. P. Buneman and H. C. + Longuet-Higgins", + title = "Non-Holographic Associative Memory", + journal = nature, + volume = "222", + year = "1969", +} + +@Article{Willshaw76, + author = "D. J. Willshaw and C. von der Malsburg", + title = "How Patterned Neural Connections Can Be Set Up by + Self-Organization", + journal = PRSLB, + volume = "194", + pages = "431--445", + year = "1976", +} + +@Article{Wilson-2003, + author = "D. Randall Wilson and Tony R. Martinez", + title = "The general inefficiency of batch training for + gradient descent learning", + journal = "Neural Networks", + volume = "16", + number = "10", + publisher = "Elsevier Science Ltd.", + address = "Oxford, UK", + pages = "1429--1451", + year = "2003", + ISSN = "0893-6080", +} + +@InProceedings{Wilson2007, + author = "D. Keith Wilson", + booktitle = "Proceedings of NOISE-CON 2007", + title = "Weather effects and outdoor noise exposure: Where, + when, and how often to measure?", + address = "Reno, Nevada", + year = "2007", +} + +@Article{Wilson73, + author = "H. R. Wilson and J. D. Cowan", + title = "A Mathematical Theory of the Functional Dynamics of + Cortical and Thalamic Nervous Tissue", + journal = kyb, + volume = "13", + pages = "55--80", + year = "1973", +} + +@Article{Wilson88, + author = "G. V. Wilson and G. S. Pawley", + title = "On the Stability of the Travelling Salesman Problem + Algorithm of Hopfield and Tank", + journal = biocyb, + volume = "58", + pages = "63--70", + year = "1988", +} + +@InProceedings{wilson97instance, + author = "D. Randall Wilson and Tony R. Martinez", + booktitle = "Proc. 14th International Conference on Machine + Learning", + title = "Instance pruning techniques", + publisher = "Morgan Kaufmann", + pages = "403--411", + year = "1997", + URL = "citeseer.nj.nec.com/wilson97instance.html", +} + +@Book{Winograd63, + author = "S. Winograd and J. D. Cowan", + title = "Reliable Computation in the Presence of Noise", + publisher = "MIT Press", + address = "Cambridge", + year = "1963", +} + +@Article{Winters89, + author = "J. H. Winters and C. Rose", + title = "Minimum Distance Automata in Parallel Networks for + Optimum Classification", + journal = nn, + volume = "2", + pages = "127--132", + year = "1989", +} + +@Article{WisSej2002, + author = "L. Wiskott and T. J. Sejnowski", + title = "Slow Feature Analysis: Unsupervised Learning of + Invariances", + journal = "Neural Computation", + volume = "14", + number = "4", + pages = "715--770", + year = "2002", + uralbstract = "{http://itb.biologie.hu-berlin.de/~wiskott/Abstracts/WisSej2002.html}", + urlpaper = "{http://itb.biologie.hu-berlin.de/~wiskott/Publications/WisSej2002-LearningInvariances-NC.ps.gz}", +} + +@TechReport{Witbrock+Zagha-1989, + author = "Michael Witbrock and Marco Zagha", + title = "An Implementation of Back-Propagation Learning on + {GF11}, a Large {SIMD} Parallel Computer", + number = "CMU-CS-89-208", + institution = "Carnegie Mellon University", + year = "1989", +} + +@Book{Wittgenstein58, + author = "L. Wittgenstein", + title = "Philosophical Investigations", + publisher = "Blackwell", + address = "Oxford", + year = "1958", +} + +@InProceedings{Wittner88, + author = "B. S. Wittner and J. S. Denker", + editor = nips87ed, + booktitle = nips87, + title = "Strategies for Teaching Layered Networks + Classification Tasks", + publisher = "American Institute of Physics, New York", + address = "Denver, CO", + pages = "850--859", + year = "1988", +} + +@Book{WL90, + author = "A. Waibel and K. F. Lee", + title = "Readings in Speech Recognition", + publisher = "Morgan Kaufmann", + year = "1990", +} + +@Article{Wolpert-1996, + author = "D. H. Wolpert", + title = "The lack of a priori distinction between learning + algorithms", + journal = "Neural Computation", + volume = "8", + number = "7", + pages = "1341--1390", + year = "1996", +} + +@Article{Wolpert92, + author = "D. H. Wolpert", + title = "Stacked Generalization", + journal = "Neural Networks", + volume = "5", + pages = "241--249", + year = "1992", +} + +@TechReport{wolpert95, + author = "D. Wolpert and W. Macready", + title = "No free lunch theorems for search", + number = "SFI-TR-95-02-010", + institution = "The Santa Fe Institute", + year = "1995", +} + +@article{wolpert96no, + author = "D. Wolpert and W. MacReady", + title = "No free lunch theorems for optimization", + year = "1997", + journal = "IEEE Transactions on Evolutionary Computation", + volume = 1, + pages = {67--82}, +} + +@Book{wordnet-book98, + author = "Christiane Fellbaum", + title = "{WordNet}: An Electronic Lexical Database", + publisher = "MIT Press", + year = "1998", +} + +@TechReport{wrong-delve-citation, + author = "G. Hinton and R. Neal and R. Tibshirani", + title = "Assessing learning procedures using {DELVE}", + institution = "University of Toronto, Department of Computer Science, + http://www.cs.utoronto.ca/neuron/delve/delve.html.", + year = "1995", +} + +@Article{Wu-97, + author = "Zhijun Wu", + title = "Global continuation for distance geometry problems", + journal = "{SIAM} Journal of Optimization", + volume = "7", + pages = "814--836", + year = "1997", +} + +@Article{Wu-97-short, + author = "Z. Wu", + title = "Global continuation for distance geometry problems", + journal = "{SIAM} J. Optimization", + volume = "7", + pages = "814--836", + year = "1997", +} + +@Article{Wu97, + author = "C. H. Wu", + title = "Artificial neural networks for molecular sequence + analysis", + journal = "Comp. Chem.", + volume = "21", + pages = "237--256", + year = "1997", +} + +@InProceedings{XingE2005, + author = "Eric P. Xing and Rong Yan and Alexander G. Hauptmann", + booktitle = UAI05, + title = "Mining Associated Text and Images with Dual-Wing + Harmoniums.", + publisher = "AUAI Press", + pages = "633--641", + year = "2005", + ISBN = "0-9749039-1-4", + date = "2007-07-26", + OPTcrossref = "conf/uai/2005", + OPTdescription = "dblp", + OPTee = "http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article-id=1184&proceeding-id=21", + OPTkeywords = "dblp", +} + %url = "http://dblp.uni-trier.de/db/conf/uai/uai2005.html#XingYH05", + +@InProceedings{Xu+Rudnicky-2000, + author = "Wei Xu and Alex Rudnicky", + booktitle = "International Conference on Statistical Language + Processing", + title = "Can Artificial Neural Networks Learn Language Models", + address = "Beijing, China", + pages = "M1--13", + year = "2000", +} + +@InProceedings{Xu-Emami-Jelinek-2003, + author = "P. Xu and A. Emami and F. Jelinek", + booktitle = "Proceedings of the 2003 Conference on Empirical + Methods in Natural Language Processing (EMNLP'2003)", + title = "Training Connectionist Models for the Structured + Language Model", + volume = "10", + pages = "160--167", + year = "2003", +} + +@Misc{xu-jordan-94, + author = "L. Xu and M. I. Jordan", + title = "Theoretical and experimental studies of convergence + properties of the {EM} algorithm for unsupervised + learning based on finite mixtures", + address = "Snowbird, UTAH", + pages = "", + year = "1994", + note = "Presented at the Neural Networks for Computing + Conference", +} + +@inproceedings{xuetal04, +author = "Xu, L. and Neufeld, J. and Larson, B. and Schuurmans, D.", +title = "Maximum margin clustering", +editor = NIPS17ed, +booktitle = NIPS17, +year = 2004, +} + +@inproceedings{Xu-ICML-2006, +author = "Xu, L. and Wilkinson, D. and Southey, F. and Schuurmans, D.", +title = "Discriminative unsupervised learning of structured predictors", +booktitle = ICML06, +editor = ICML06ed, +publisher = ICML06publ, +year = 2006, +} + +@InProceedings{Xu-AAAI-2006, + author = "L. Xu and K. Crammer and D. Schuurmans", + booktitle = "Twenty-first National Conference on Artificial + Intelligence (AAAI-06)", + title = "Robust support vector machine training via convex + outlier ablation", + year = "2006", +} + + + +@Misc{YA97a, + author = "Howard Hua Yang and {Shun-ichi} Amari", + title = "Natural Gradient Descent for Training Multi-Layer + Perceptrons", + year = "1997", + URL = "citeseer.ist.psu.edu/hua96natural.html", +} + +@Article{yang98complexity, + author = "Howard Hua Yang and {Shun-ichi} Amari", + title = "Complexity Issues in Natural Gradient Descent Method + for Training Multi-Layer Perceptrons", + journal = "Neural Computation", + volume = "10", + number = "8", + pages = "2137--2157", + year = "1998", + URL = "citeseer.ist.psu.edu/91462.html", +} + +@inproceedings{Yang+al-2006, + author = {Xin Yang and Haoying Fu and Hongyuan Zha and Jesse Barlow}, + title = {Semi-supervised nonlinear dimensionality reduction}, + booktitle = {Proceedings of the 23rd International Conference on Machine Learning}, + year = {2006}, + isbn = {1-59593-383-2}, + pages = {1065--1072}, + location = {Pittsburgh, Pennsylvania}, + doi = {http://doi.acm.org/10.1145/1143844.1143978}, + publisher = {ACM}, + address = {New York, NY, USA}, +} + +@misc{Yang+Jin-2006, + author = {Liu Yang and Rong Jin}, + title = {Distance Metric Learning: A Comprehensive Survey}, + year = 2006, + note = {url{http://www.cse.msu.edu/~yangliu1/frame\_survey\_v2.pdf}}, +} + +@misc{Yang-2007, + author = {Liu Yang}, + title = {An Overview of Distance Metric Learning}, + year = 2007, + note = {url{http://www.cse.msu.edu/~yangliu1/dist\_overview.pdf}}, +} + +@InProceedings{YangL2007, + author = "Liu Yang and Rong Jin and Caroline Pantofaru and Rahul + Sukthankar", + booktitle = cvpr07, + title = "Discriminative Cluster Refinement: Improving Object + Category Recognition Given Limited Training Data", + month = jun, + year = "2007", +} + +@InProceedings{Yao85, + author = "Andrew Yao", + booktitle = "Proceedings of the 26th Annual {IEEE} Symposium on + Foundations of Computer Science", + title = "Separating the polynomial-time hierarchy by oracles", + pages = "1--10", + year = "1985", +} + +@InProceedings{Yarowsky-92, + author = "David Yarowsky", + booktitle = "Proceedings of the 14th International Conference on + Computational Linguistics (COLING-92)", + title = "Word-sense disambiguation using statistical models of + {Roget}'s categories trained on large corpora", + address = "Nantes, France", + pages = "454--460", + year = "1992", +} + +@InProceedings{Yarowsky-93, + author = "David Yarowsky", + booktitle = "{ARPA} Workshop on Human Language Technology", + title = "One sense per collocation", + address = "Princeton, {NJ}", + year = "1993", +} + +@InProceedings{Yarowsky-95, + author = "David Yarowsky", + booktitle = "33rd Annual Meeting of the {ACL}", + title = "Unsupervised word sense disambiguation rivaling + supervised methods", + address = "Cambridge, {MA}", + pages = "189--196", + year = "1995", +} + +@InProceedings{Yarowsky1994, + author = "David Yarowsky", + booktitle = "Meeting of the Association for Computational + Linguistics", + title = "Decision Lists for Lexical Ambiguity Resolution: + Application to Accent Restoration in Spanish and + French", + pages = "88--95", + year = "1994", + URL = "citeseer.nj.nec.com/yarowsky94decision.html", +} + +@InProceedings{Yarowsky1995, + author = "David Yarowsky", + booktitle = "Meeting of the Association for Computational + Linguistics", + title = "Unsupervised Word Sense Disambiguation Rivaling + Supervised Methods", + pages = "189--196", + year = "1995", + URL = "citeseer.nj.nec.com/yarowsky95unsupervised.html", +} + +@TechReport{Yianilos95, + author = "Peter N. Yianilos", + title = "Metric Learning via Normal Mixtures", + institution = "NEC Research Institute", + address = "Princeton, NJ", + month = oct, + year = "1995", +} + +@InProceedings{Younes98onthe, + author = {Laurent Younes}, + title = {On The Convergence Of Markovian Stochastic Algorithms With Rapidly Decreasing Ergodicity Rates}, + booktitle = {Stochastics and Stochastics Models}, + year = {1998}, + pages = {177--228} +} + +@Article{Young+Sachs79, + author = "E. D. Young and M. B. Sachs", + title = "Representation of steady-state vowels in the temporal + aspects of the discharge pattern of population of + auditory nerve fibers", + journal = jasa, + volume = "66", + number = "5", + pages = "1381--1403", + year = "1979", +} + +@InProceedings{Yu+Simmons90, + author = "Y. H. Yu and R. F. Simmons", + booktitle = ijcnn, + title = "Extra output biased learning", + publisher = "Lawrence Erlbaum, Hillsdale", + address = "Washington 1990", + year = "1990", +} + +@Article{Yu-trnn92, + author = "X. H. Yu", + title = "Can Backpropagation Error Surface Not Have Local + Minima?", + journal = ieeetrnn, + volume = "3", + number = "6", + pages = "1019--1020", + year = "1992", +} + +@Article{Yu92, + author = "X. H. Yu", + title = "Can Backpropagation Error Surface Not Have Local + Minima?", + journal = ieeetrnn, + volume = "3", + number = "6", + pages = "1019--1020", + year = "1992", +} + +@InProceedings{Yuille2005, + author = "Alan L. Yuille", + editor = NIPS17ed, + booktitle = NIPS17, + title = "The Convergence of Contrastive Divergences", + publisher = "{MIT} Press", + pages = "1593--1600", + year = "2005", +} + +@Article{Yuille89, + author = "Alan L. Yuille and D. M. Kammen and D. S. Cohen", + title = "Quadrature and the Development of Orientation + Selective Cortical Cells by Hebb Rules", + journal = biocyb, + volume = "61", + pages = "183--194", + year = "1989", +} + +@Article{Yuille90, + author = "Alan L. Yuille", + title = "Generalized Deformable Models, Statistical Physics, + and Matching Problems", + journal = "Neural Computation", + volume = "2", + number = "1", + pages = "1--24", + year = "1990", +} + +@Article{Zak-nn92, + author = "M. Zak", + title = "Terminal Attractors in Neural Networks", + journal = nn, + volume = "2", + pages = "259--274", + year = "1989", +} + +@Article{Zak88, + author = "M. Zak", + title = "Terminal Attractors for Addressable Memory in Neural + Networks", + journal = plettA, + volume = "133", + pages = "18--22", + year = "1988", +} + +@Article{Zak89, + author = "M. Zak", + title = "Terminal Attractors in Neural Networks", + journal = nn, + volume = "2", + pages = "259--274", + year = "1989", +} + +@Article{Zavaliagkos93, + author = "G. Zavaliagkos and S. Austin and J. Makhoul and R. + Schwartz", + title = "A Hybrid Continuous Speech Recognition System Using + Segmental Neural Nets with Hidden {Markov} Models", + journal = "Int. Journal of Pattern Recognition and Artificial + Intelligence", + pages = "305--319", + year = "1993", + note = "Special Issue on Applications of Neural Networks to + Pattern Recognition (I. Guyon Ed.)", +} + +@InProceedings{Zell+al-1993, + author = "Andreas Zell and Niels Mache and Michael Vogt and + Markus H{\"u}ttel", + booktitle = "Proceedings of the IEEE International Conference on + Neural Networks", + title = "Problems of Massive Parallelism in Neural Network + Simulation", + volume = "3", + address = "San Francisco, CA", + pages = "1890--1895", + year = "1993", +} + +@InProceedings{Zemel90, + author = "R. S. Zemel and M. C. Mozer and G. E. Hinton", + editor = NIPS2ed, + booktitle = NIPS2, + title = "Recognizing objects using hierarchical reference frame + transformations", + address = "San Mateo, CA", + year = "1990", +} + +@PhdThesis{Zemel93-thesis, + author = "Richard S. Zemel", + title = "A Minimum Description Length Framework for + Unsupervised Learning", + school = "University of Toronto", + year = "1993", +} + +@InProceedings{Zha2002, + author = "H. Zha and C. Ding and M. Gu and X. He and H. Simon", + editor = NIPS14ed, + booktitle = NIPS14, + title = "Spectral relaxation for {K}-means clustering", + publisher = "{MIT} Press", + year = "2002", +} + +@InProceedings{Zhang-nips90, + author = "X. Zhang and Others", + editor = NIPS2ed, + booktitle = NIPS2, + title = "An Efficient Implementation of the Backpropagation + Algorithm on the Connection Machine {CM}-2", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + pages = "801--809", + year = "1990", +} + +@Misc{zhang-workshop-2005, + author = "Jian Zhang", + title = "Sparsity Models for Multi-task Learning", + howpublished = "'Inductive Transfer: 10 Years Later' NIPS Workshop", + year = "2005", + OPTkey = "", +} + +@TechReport{Zhang2001, + author = "Bin Zhang", + title = "Is the Maximal Margin Hyperplane Special in a Feature + Space?", + number = "HPL-2001-89", + institution = "Hewlett-Packards Labs", + year = "2001", +} + +@article{Zhang+Zha-2005, + address = {Philadelphia, PA}, + author = {Zhang, Zhenyue and Zha, Hongyuan }, + doi = {10.1137/S1064827502419154}, + issn = {1064-8275}, + journal = {SIAM Journal on Scientific Computing}, + number = {1}, + pages = {313--338}, + publisher = {Society for Industrial and Applied Mathematics}, + title = {Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment}, + url = {http://portal.acm.org/citation.cfm?id=1024004.1039898}, + volume = {26}, + year = {2005} +} + +@InProceedings{Zhang+al-2007, + author = {D. Zhang and Z. H. Zhou and S. Chen}, + title = {Semi-supervised dimensionality reduction}, + booktitle = {Proceedings of the 7th SIAM International Conference on Data Mining}, + address = {Minneapolis, MN}, + year = 2007, +} + +@article{Zhao+al-2006, + author = {Haitao Zhao and Shaoyuan Sun and Zhongliang Jing and Jingyu Yang}, + title = {Local structure based supervised feature extraction}, + journal = {Pattern Recognition}, + volume = {39}, + number = {8}, + year = {2006}, + issn = {0031-3203}, + pages = {1546--1550}, + doi = {http://dx.doi.org/10.1016/j.patcog.2006.02.023}, + publisher = {Elsevier Science Inc.}, + address = {New York, NY, USA}, +} + +@InProceedings{Zhou+al-2004, + author = "D. Zhou and O. Bousquet and T. {Navin Lal} and J. + Weston and B. Sch{\"o}lkopf", + editor = NIPS16ed, + booktitle = NIPS16, + title = "Learning with local and global consistency", + publisher = "MIT Press", + address = "Cambridge, MA", + pages = "321--328", + year = "2004", + keywords = "semi-supervised learning, manifold, kernel methods", +} + +@InProceedings{Zhou+Dapkus-1995, + author = "J. Zhou and P. Dapkus", + booktitle = "Proceedings of the Third Workshop on Very Large + Corpora", + title = "Automatic Suggestion of Significant Terms for a + Predefined Topic", + address = "Cambridge", + pages = "131--147", + year = "1995", +} + +@InProceedings{Zhou+Tanner-1997, + author = "Joe Zhou and Troy Tanner", + booktitle = "Proceedings of the fifth conference on Applied natural + language processing", + title = "Construction and visualization of key term + hierarchies", + publisher = "Morgan Kaufmann Publishers Inc.", + address = "San Francisco, CA, USA", + pages = "307--311", + year = "1997", + location = "Washington, DC", +} + +@InProceedings{zhou2002, + author = "Z.-H. Zhou and M.-L. Zhang", + booktitle = "Proceedings of the International Conference on + Intelligent Information Technology, 2002, pp.455-459", + title = "Neural Networks for Multi-Instance Learning", + address = "Beijing, China", + year = "2002", + page = "455-459", +} + +@InProceedings{ZhouX2007, + author = "Xiaojin Zhu and Timothy J. Rogers and Ruichen Qian and + Chuck Kalish", + booktitle = "AAAI", + title = "Humans Perform Semi-Supervised Classification Too.", + publisher = "AAAI Press", + pages = "864", + year = "2007", + ISBN = "978-1-57735-323-2", + URL = "http://dblp.uni-trier.de/db/conf/aaai/aaai2007.html#ZhuRQK07", + date = "2007-09-05", + description = "dblp", + keywords = "dblp", +} + +@article{Zhu2009, + author = {Long Zhu and Yuanhao Chen and Alan Yuille}, + title = {Unsupervised Learning of Probabilistic Grammar-Markov Models for Object Categories}, + journal = {{IEEE} Transactions on Pattern Analysis and Machine Intelligence}, + volume = 31, + number = 1, + pages = {114--128}, + year = 2009, +} + +@InProceedings{Zhu+al-2003, + author = "Xiaojin Zhu and Zoubin Ghahramani and John Lafferty", + booktitle = ICML03, + editor = ICML03ed, + publisher = ICML03publ, + title = "Semi-supervised learning using {Gaussian} fields and + harmonic functions", + pages = "912--919", + year = "2003", +} + +@TechReport{Zhu+al-TR2003, + author = "Xiaojin Zhu and John Lafferty and Zoubin Ghahramani", + title = "Semi-Supervised Learning: From {G}aussian Fields to + {G}aussian Processes", + number = "CMU-CS-03-175", + institution = "CMU", + year = "2003", +} + +@Article{Zhu-2006, + author = "M. Zhu and W. Su and H. A. Chipman", + title = "{LAGO}: {A} computationally efficient approach for + statistical detection", + journal = "Technometrics", + volume = "48", + number = "2", + pages = "193--205", + year = "2006", +} + +@InProceedings{Zhu-ijcai-2005, + author = "Tingshao Zhu and Russ Greiner and Gerald Haeubl and + Kevin Jewell and Bob Price", + booktitle = "Nineteenth International Joint Conference on + Artificial Intelligence (IJCAI-05)", + title = "Using Learned Browsing Behavior Models to Recommend + Relevant Web Pages", + address = "Edinburgh, U.K.", + pages = "1589--1591", + year = "2005", +} + +@TechReport{Zhu-Lafferty-Ghahramani-2003, + author = "Xiaojin Zhu and John Lafferty and Zoubin Ghahramani", + title = "Semi-supervised learning: from {G}aussian fields to + {G}aussian processes", + number = "CMU-CS-03-175", + institution = "School of Computer Science, Carnegie Mellon + University", + year = "2003", +} + +@Article{zhu-rohwer96, + author = "H. Zhu and R. Rohwer", + title = "No free lunch for cross validation", + journal = "Neural Computation", + volume = "8", + number = "7", + pages = "1421--1426", + year = "1996", +} + +@TechReport{zhu05survey, + author = "Xiaojin Zhu", + title = "Semi-Supervised Learning Literature Survey", + number = "1530", + institution = "Computer Science, University of Wisconsin-Madison", + year = "2005", + note = "http://www.cs.wisc.edu/$\sim$jerryzhu/pub/ssl\-survey.pdf", +} + +@TechReport{ZhuX2002, + author = "Xiaojin Zhu and Zoubin Ghahramani", + title = "Towards semisupervised classification with Markov + random fields", + institution = "Carnegie Mellon University", + year = "2002", +} + +@inproceedings{Zinkevich-2003, + author = {Martin Zinkevich}, + title ={Online convex programming and generalized infinitesimal gradient ascent}, + booktitle = ICML03, + editor = ICML03ed, + publisher = ICML03publ, + pages = "928--936", + year = "2003", +} + +@InProceedings{Zoubin-nips8, + author = "Z. Ghahramani and M. I. Jordan", + editor = NIPS8ed, + booktitle = NIPS8, + title = "Factorial Hidden Markov Models", + publisher = "MIT Press, Cambridge, MA", + year = "1996", +} + +@InProceedings{Zoubin-nips94, + author = "Z. Ghahramani and M. I. Jordan", + editor = NIPS6ed, + booktitle = NIPS6, + title = "Supervised learning from incomplete data via an {EM} + approach", + publisher = "Morgan Kaufmann", + address = "San Mateo, CA", + year = "1994", +} + +@TechReport{Zoubin-tr93, + author = "Z. Ghahramani and M. I. Jordan", + title = "Function approximation via density estimation using + the {E}{M} approach", + type = "Computational Cognitive Science", + number = "TR 9304", + institution = "MIT", + year = "1993", +} + +@TechReport{Zoubin96, + author = "Z. Ghahramani and G. E. Hinton", + title = "Parameter estimation for linear dynamical systems", + number = "Technical Report CRG-TR-91-1", + institution = "University of Toronto", + year = "1996", +} + +@TechReport{Zoubin96b, + author = "Z. Ghahramani and G. E. Hinton", + title = "Switching state-space models", + number = "Technical Report CRG-TR-91-3", + institution = "University of Toronto", + year = "1996", +} + +@Article{Zue90a, + author = "V. Zue and S. Seneff and J. Glass", + title = "Speech database development: {TIMIT} and beyond", + journal = spcomm, + volume = "9", + number = "4", + pages = "351--356", + month = aug, + year = "1990", +} + +@InProceedings{Zue90b, + author = "V. Zue and J. Glass and D. Goddeau and D. Goodine and + H. Leung and M. McCandless and M. Phillips and J. + Polifroni and S. Seneff and D. Whitney", + booktitle = "Proc. Int. Conf. Spoken Languague Processing", + title = "Recent progress on the {MIT} {VOYAGER} spoken language + system", + address = "Kobe, Japan", + pages = "29.6.1", + year = "1990", +} + +@InProceedings{Zwald+al-2004, + author = "Laurent Zwald and Olivier Bousquet and Gilles + Blanchard", + editor = "John Shawe-Taylor and Yoram Singer", + booktitle = colt04, + title = "Statistical Properties of Kernel Principal Component + Analysis", + volume = "3120", + publisher = "Springer-Verlag", + pages = "594--608", + year = "2004", + series = "Lecture Notes in Computer Science", +} + +@InProceedings{Zweig+Russel-AAAI98, + author = "G. Zweig and S. Russel", + booktitle = "Proceedings of the AAAI Conference", + title = "Speech Recognition with Dynamic {Bayesian} Networks", + publisher = "AAAI Press", + address = "Madison, Wisconsin", + year = "1998", +} + +@InProceedings{Zweig+Russel-ICSLP98, + author = "G. Zweig and S. Russel", + booktitle = "Proceedings of the International Conference on + Statistical Language Processing", + title = "Probabilistic Modeling with {Bayesian} Networks for + {ASR}", + address = "Sidney, Australia", + year = "1998", +} + +@Article{Zwicker+Terhardt80, + author = "E. Zwicker and E. Terhardt", + title = "Analytical expressions for critical band rate and + critical bandwidths as a function of frequency", + journal = jasa, + volume = "68", + number = "5", + pages = "1523--1525", + year = "1980", +} + +@Proceedings{colt03, + editor = "Bernhard Sch{\"o}lkopf and Manfred K. Warmuth", + booktitle = colt03, + title = "Computational Learning Theory and Kernel Machines, + 16th Annual Conference on Computational Learning Theory + and 7th Kernel Workshop, {COLT}/Kernel 2003, + Washington, {DC}, {USA}, August 24-27, 2003, + Proceedings", + volume = "2777", + publisher = "Springer", + year = "2003", + series = "Lecture Notes in Computer Science", +} + +@Proceedings{FOCS3, + booktitle = "Proceedings of the Third Annual Symposium on Switching + Circuit Theory and Logical Design", + title = "Proceedings of the Third Annual Symposium on Switching + Circuit Theory and Logical Design", + organization = "American Institute of Electrical Engineers", + address = "Chicago, Illinois", + month = "7--12" # oct, + year = "1962", + crossrefonly = "1", + url = "http://theory.lcs.mit.edu/~dmjones/FOCS/focs.bib", +} + +@Book{TricksOfTheTrade, + editor = "Genevieve Orr and Klaus-Robert Muller", + booktitle = "Neural networks: tricks of the trade", + title = "Neural networks: tricks of the trade", + volume = "1524", + publisher = "Springer-Verlag Inc.", + address = "New York, NY, USA", + pages = "vi + 432", + year = "1998", + ISBN = "3-540-65311-2 (paperback)", + ISSN = "0302-9743", + LCCN = "QA76.87.N4913 1998", + bibdate = "Sat Jan 9 14:35:31 1999", + series = "Lecture Notes in Computer Science", + acknowledgement = ack-nhfb, + keywords = "Neural networks (Computer science)", +} + +@Article{Besag75pseudolikelihood, + author = "Julian Besag", + title = "Statistical analysis of non-lattice data", + journal = "The Statistician", + volume = "24", + number = "3", + pages = "179--195", + year = "1975", +} + +@INPROCEEDINGS{Marlin05unsupervisedlearning, + author = {Benjamin Marlin and Richard S. Zemel and Sam T. Roweis}, + title = {Unsupervised learning with non-ignorable missing data}, + booktitle = {In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005)}, + year = {2005}, + pages = {222--229} +} + +@PhdThesis{MarlinThesis08, + author = "Benjamin M. Marlin", + title = "Missing Data Problems in Machine Learning", + school = "Dept. of Computer Science, University of Toronto", + year = "2008" +} + +@inproceedings{odonnellservedio08, +author = "{O'Donnell}, R. and Servedio, R.", +title = "The {Chow} parameters problem", +booktitle = "Proceedings of the Fortieth Annual Symposium on Theory of +Computing (STOC)", +year = 2008, +pages = "517-526", +} + +@article{bendaviddichterman98, +author = "{Ben-David}, S. and Dichterman, E.", +title = "Learning with restricted focus of attention", +journal = "Journal of Computer and System Sciences", +volume = 56, +numer = 3, +year = 1998, +pages = "277-298", +} + +@techreport{cma07, +author = "Canadian Medical Association", +title = "Information technology and health care in Canada: 2007 status report", +year = 2007, +} + +@article{hanetal05, +author = "Y. Han and J. Carcillo and S. Venkataraman and R. Clark and +R. Watson and T. Nguyen and H. Bayir and R. Orr", +title = "Unexpected increased mortality after implementation +of a commercially sold computerized physician order entry system", +journal = "Pediatrics", +volume = "116", +number = 6, +pages = "1506-1512", +year = 2005, +} + +@InProceedings{conf/uai/McCallum03, + title = "Efficiently Inducing Features of Conditional Random + Fields", + author = "Andrew McCallum", + booktitle = UAI03, + publisher = "Morgan Kaufmann", + date = "August 7-10", + location = "Acapulco, Mexico", + year = "2003", + editor = "Christopher Meek and Uffe Kj{\ae}rulff", + ISBN = "0-127-05664-5", + pages = "403--410", +} + + +@InProceedings{conf/uai/McCallum03-small, + title = "Efficiently Inducing Features of Conditional Random + Fields", + author = "A. McCallum", + booktitle = "UAI", + year = "2003", +} + + +@InProceedings{conf/icml/RanzatoS08, + title = "Semi-supervised learning of compact document + representations with deep networks", + author = "Marc'Aurelio Ranzato and Martin Szummer", + booktitle = ICML08, + editor = ICML08ed, + publisher = ICML08publ, + year = "2008", + volume = "307", + ISBN = "978-1-60558-205-4", + pages = "792--799", + series = "ACM International Conference Proceeding Series", + date = "June 5-9, 2008", + location = "Helsinki, Finland", + URL = "http://doi.acm.org/10.1145/1390156.1390256", +} + +@InProceedings{conf/icml/RanzatoS08-small, + title = "Semi-supervised learning of compact document + representations with deep networks", + author = "M. Ranzato and M. Szummer", + booktitle = "ICML", + year = "2008", +} + +@PhdThesis{Cosatto02sample-basedtalking-head, + author = {Eric Cosatto and Prof Murat Kunt}, + title = {Sample-Based Talking-Head Synthesis}, + institution = {Signal Processing Lab, Swiss Federal Institute of Techology}, + year = {2002} +} + +@incollection{SutskeverHintonTaylor2009, + title = {The Recurrent Temporal Restricted Boltzmann Machine}, + author = {Ilya Sutskever and Geoffrey E Hinton and Graham Taylor}, + editor = NIPS21ed, + booktitle = NIPS21, + pages = {1601--1608}, + year = {2009} +} + +@TechReport{Bergstra+2009-small, + author = "J. Bergstra and G. Desjardins and P. Lamblin and Y. Bengio", + title = "Quadratic Polynomials Learn Better Image Features", + number = "1337", + institution = "DIRO, Universit\'e de Montr\'eal", + year = "2009", +} + +@inproceedings{Haffner+al-1998, + author = {Haffner, P. and Bottou, L. and Howard, P. G. and Simard, P. and Bengio, Y. and Cun, Y. Le}, + title = {Browsing through High Quality Document Images with {DjVu}}, + booktitle = {Proceedings of the Advances in Digital Libraries Conference (ADL'98)}, + year = {1998}, + isbn = {0-8186-8464-X}, + pages = {309}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, + } + +@inproceedings{Bottou+Howard+Bengio-1998, + author = {Bottou, L. and Howard, P. G. and Bengio, Y.}, + title = {The {Z}-Coder Adaptive Binary Coder}, + booktitle = {Proceedings of the Conference on Data Compression (DCC'98)}, + year = {1998}, + pages = {13}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, + } + +@inproceedings{Pigeon+Bengio-1998, + author = {Steven Pigeon and + Yoshua Bengio}, + title = {A Memory-Efficient Adaptive Huffman Coding Algorithm for + Very Large Sets of Symbols}, + booktitle = {Proceedings of the Conference on Data Compression (DCC'98)}, + year = {1998}, + pages = {568}, + ee = {http://dlib.computer.org/conferen/dcc/8406/pdf/84060568.pdf}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + +@INPROCEEDINGS{LeCun+Bottou+Bengio-1997, +title={Reading checks with multilayer graph transformer networks}, +author={Yann LeCun and Bottou, L. and Bengio, Y.}, +booktitle={IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'97)}, +year={1997}, +month={Apr}, +volume={1}, +pages={151--154}, +keywords={backpropagation, banking, cheque processing, document image processing, image segmentation, optical character recognitionbusiness checks, business cheques, check reading system, cheque reading system, convolutional neural network character recognizers, gradient-based learning algorithms, graph-based stochastic models, machine learning paradigm, multilayer graph transformer networks, personal checks, personal cheques}, +doi={10.1109/ICASSP.1997.599580}, + } + +@INPROCEEDINGS{Rahim97discriminativefeature, + author = {Mazin Rahim and Yoshua Bengio and Yann {LeCun}}, + title = {Discriminative Feature And Model Design For Automatic Speech Recognition}, + booktitle = {In Proc. of Eurospeech}, + year = {1997}, + pages = {75--78} +} + +@InProceedings{Bengio-nncm-1996, +author = {Yoshua Bengio}, +title = {Training A Neural Network with a Financial Criterion Rather then a Prediction Criterion}, +booktitle = {Proceedings of the Fourth International Conference on Neural Networks in the Capital Markets (NNCM-96)}, +editor = { A.S. Weigend and Y.S Abu-Mostafa and A.-P.N. Regenes}, +publisher = {World Scientific}, +pages = {433--443}, +year = "1997", +} + +@INPROCEEDINGS{Bengio+Bengio+Cloutier-1994, +title={Use of genetic programming for the search of a new learning rule for neural networks}, +author={Bengio, S. and Bengio, Y. and Cloutier, J.}, +booktitle={Proceedings of the First IEEE Conference on Evolutionary Computation}, +year={1994}, +month={Jun}, +pages={324-327 vol.1}, +keywords={ backpropagation, genetic algorithms, learning (artificial intelligence), neural nets, optimisation, search problems backpropagation algorithm, classification tasks, genetic algorithms, genetic programming, gradient descent, learning rule, neural networks, optimization, parametric function, rule parameters, search, simulated annealing, standard optimization methods}, +doi={10.1109/ICEC.1994.349932}, +} + +@article{Chakraborty+al-2002, + author = {Chakraborty, Basabi and Chakraborty, Goutam}, + title = {A new feature extraction technique for on-line recognition of handwritten alphanumeric characters}, + journal = {Inf. Sci. Appl.}, + volume = {148}, + number = {1-4}, + year = {2002}, + issn = {0020-0255}, + pages = {55--70}, + doi = {http://dx.doi.org/10.1016/S0020-0255(02)00276-1}, + publisher = {Elsevier Science Inc.}, + address = {New York, NY, USA}, + } + + +@INPROCEEDINGS{LeCun+al-1993, +title={On-Line handwriting recognition with neural networks: spatial representation versus temporal representation}, +author={{LeCun}, Y and Bengio, Y. and Henderson, D. and Weisbuch, A.}, +booktitle={Proceedings of the International Conference on Handwriting and Drawing}, +year={1993}, +location= {Ecole Nationale Superieure des Telecommunications}, +} + +@INPROCEEDINGS{Bengio+al-92, + author = {Yoshua Bengio and Samy Bengio and Jocelyn Cloutier and Jan Gecsei}, + title = {On the Optimization of a Synaptic Learning Rule}, + booktitle = {in Conference on Optimality in Biological and Artificial Networks}, + year = {1992} +} + +@INPROCEEDINGS{Bengio+al-91, + author = {Yoshua Bengio and Samy Bengio and Jocelyn Cloutier and Jan Gecsei}, + title = {Learning a Synaptic Learning Rule}, + booktitle = ijcnn, + location = "Seattle, WA", + pages = "II-A969", + year = {1991} +} + +@INPROCEEDINGS{Bengio91acomparative, + author = {Yoshua Bengio and Renato De Mori and Giovanni Flammia and Ralf Kompe}, + title = {A Comparative Study On Hybrid Acoustic Phonetic Decoders Based On Artificial Neural Networks}, + booktitle = {Proceeding of EuroSpeech}, + location = {Genova, Italy}, + year = {1991} +} + +@inproceedings { lecun-01a, +original = "orig/lecun-01a.ps.gz", +author = "{LeCun}, Y. and Bottou, L. and Bengio, Y. and Haffner, P.", +title = "Gradient-Based Learning Applied to Document Recognition", +booktitle = "Intelligent Signal Processing", +editors = "Haykin, S. and Kosko, B.", +pages = "306-351", +publisher = "IEEE Press", +note = "chap. 9", +year = 2001, +} + +@InCollection{Hochreiter+al-2000, + abstract = {Introduction Recurrent networks (crossreference Chapter 12) can, in principle, use their feedback connections to store representations of recent input events in the form of activations. The most widely used algorithms for learning what to put in short-term memory, however, take too much time to be feasible or do not work well at all, especially when minimal time lags between inputs and corresponding teacher signals are long. Although theoretically fascinating, they do not provide clear practical advantages over, say, backprop in feedforward networks with limited time windows (see crossreference Chapters 11 and 12). With conventional \&\#034;algorithms based on the computation of the complete gradient\&\#034;, such as \&\#034;Back-Propagation Through Time\&\#034; (BPTT, e.g., [22, 27, 26]) or \&\#034;Real-Time Recurrent Learning\&\#034; (RTRL, e.g., [21]) error signals \&\#034;flowing backwards in time\&\#034; tend to either (1) blow up or (2) vanish: the temporal evolution of the backpropagated error ex}, + author = {Hochreiter, Sepp and Informatik, Fakultat F. and Bengio, Yoshua and Frasconi, Paolo and Schmidhuber, Jurgen}, + citeulike-article-id = {4450697}, + citeulike-linkout-0 = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7321}, + keywords = {gradient-descent, long-term-dependencies, rnn}, + posted-at = {2009-05-02 00:58:01}, + priority = {2}, + title = {Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies}, + url = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7321}, + booktitle = "Field Guide to Dynamical Recurrent Networks", + editor = "J. Kolen and S. Kremer", + publisher = "IEEE Press", + year = "2000", +} + +@INPROCEEDINGS{Lecun99objectrecognition, + author = {Yann {LeCun} and Patrick Haffner and Léon Bottou and Yoshua Bengio}, + title = {Object Recognition with Gradient-Based Learning}, + booktitle = {Shape, Contour and Grouping in Computer Vision}, + year = {1999}, + publisher = {Springer}, + pages = {319--345}, +} + + +% non-ref conference +@MISC{snowbird_learn_conf, +title = "Snowbirds papers", +author = "many authors", +howpublished = "Learning Conference, Snowbird", +location = "Utah", +year = "many", +} + +@MISC{Collobert+Bengio-2001, +title = "Magic Mix", +author = "Collobert, R. and Bengioy, Y.", +year = "2002", +howpublished = "Learning Conference, Snowbird", +location = "Utah", +} + +@MISC{Bengio+al-2001, +title = "Learning a Distributed Representation for Statistical Language Modeling and Information Retrieval", +author = "Yoshua Bengio and Pascal Vincent and Florence d'Alché-Buc", +year = "2001", +howpublished = "Learning Conference, Snowbird", +location = "Utah", +} + +@MISC{Bengio+Nadeau-2000, +title = "About Realistic Comparisons Between Learning Algorithms", +author = "Yoshua Bengio and C. Nadeau", +year = "2000", +howpublished = "Learning Conference, Snowbird", +location = "Utah", +} +@MISC{Bengio-1999, +title = "Learning from Structured High-Dimensional Data", +author = "Yoshua Bengio", +howpublished = "Meeting of the Mathematical Society of Canada", +location = "Montreal, Canada", +year = "1999", +} + +@MISC{Bengio+al-1999, +title = "Gradient-Based Learning of Hyper-Parameters", +author = "Yoshua Bengio and S. Latendresse and Charles Dugas", +year = "1999", +howpublished = "Learning Conference, Snowbird", +location = "Utah", +} + +@MISC{Bengio+al-1999b, +title = "Learning Algorithms for Sorting Compounds from Titration Curves", +author = "Yoshua Bengio and J-J. Brault and F. Major and R. Neal and S. Pigeon", +howpublished = "Symposium on New Perspectives for Computer-Aided Drug Design", +location = "Montreal, Canada", +year = "1999", +} + +@MISC{Bengio+al-1998, +title = "Stochastic learning of strategic equilibria for auctions", +author = "Yoshua Bengio and S. Latendresse and Charles Dugas", +howpublished = "Machines That Learn Conference, Snowbird", +location = "Utah", +year = "1998", +} + +@MISC{Bengio+al-1997, +title = "On the Clusterization of Probabilistic Transducers", +author = "Bengio, Y. and Bengio, S. and Singer, Y. and Isabelle, J-F.", +howpublished = "1997 Neural Networks for Computing Conference, Snowbird", +location = "Utah", +year = "1997", +} + +@MISC{Bengio-1995, +title = "Fast High Capacity Classifiers", +author = "Bengio, Y. and Bengio, S. and Singer, Y. and Isabelle, J-F.", +howpublished = "1995 Neural Networks for Computing Conference, Snowbird", +location = "Utah", +year = "1997", +} + +@MISC{Bengio+Frasconi-1994, +title = "Réseaux de neurones Markoviens pour l'inférence grammaticale", +author = "Bengio, Y. and Frasconi, P.", +howpublished = "1994 ACFAS Conference, neural networks colloquium", +location = "Montréal, Québec", +year = "1994", +} + +@MISC{Bengio+LeCun-1994, +title = "Reconnaissance de mots manuscrits avec réseaux de neurones et modèles de Markov", +author = "Bengio, Y. and {LeCun}, Y.", +howpublished = "1994 ACFAS Conference, neural networks colloquium", +location = "Montréal, Québec", +year = "1994", +} + +@MISC{Bengio+al-1994, +title = "Optimisation d'une règle d'apprentissage pour réseaux de neurones artificiels", +author = "Bengio, S. and Bengio, Y. and Cloutier, J. and Gecsei, J.", +howpublished = "1994 ACFAS Conference, neural networks colloquium", +location = "Montréal, Québec", +year = "1994", +} + +@MISC{Bengio+Frasconi-1994b, +title = "An {EM} Algorithm for Target Propagation", +author = "Bengio, Y. and Frasconi P.", +howpublished = "1994 Neural Networks for Computing Conference, Snowbird", +location = "Utah", +year = "1994", +} + +@MISC{Bengio+al-1993, +title = "The Problem of Learning Long-Term Dependencies in Recurrent Networks", +author = "Bengio, Y. and Simard, P. and Frasconi P.", +howpublished = "1994 Neural Networks for Computing Conference, Snowbird", +location = "Utah", +year = "1993", +} +@MISC{Bengio-1992, +title = "Representations Based on Articulatory Dynamics for Speech Recognition", +author = "Bengio, Y.", +howpublished = "1992 Neural Networks for Computing Conference, Snowbird", +location = "Utah", +year = "1992", +} + +@MISC{Bengio+al-1991, +title = "Learning a Synaptic Learning Rule", +author = "Bengio, Y. and Bengio, S. and Cloutier, J.", +howpublished = "1991 Neural Networks for Computing Conference, Snowbird", +location = "Utah", +year = "1991", +} + +@MISC{Bengio+DeMori-1990, +title = "Recurrent networks with Radial Basis Functions for speech recognition", +author = "Bengio, Y. and De Mori, R.", +howpublished = "1990 Neural Networks for Computing Conference, Snowbird", +location = "Utah", +year = "1991", +} + + +%%tech repport +@TechReport{Bardou+Bengio-TR2002, + author = "O. Bardou and Yoshua Bengio", + title = "Régularisation du prix des option : Stacking", + institution = "Cahier Scientifique Cirano 2002s-44", + year = "2002", +} + +@TechReport{Dugas+Bengio-TR2002, + author = "O. Bardou and Yoshua Bengio", + title = "Étude du biais dans le prix des options", + institution = "Cahier Scientifique Cirano 2002s-45", + year = "2002", +} + +@TechReport{Dugas+al-TR2002, + author = "C. Dugas and Y. Bengio and F. Bélisle and C. Nadeau and R. Garcia", + title = "Incorporating Second-Order Functional Knowledge for Better Option Pricing", + institution = "Cahier Scientifique Cirano 2002s-46", + year = "2002", +} + +@TechReport{Bengio+al-TR2002, + author = "Y. Bengio and V.-P. Lauzon and R. Ducharme", + title = "Experiments on the Application of IOHMMs to Model Financial Returns Series", + institution = "Cahier Scientifique Cirano 2002s-47", + year = "2002", +} + +@TechReport{Bengio+al-TR2002b, + author = "Y. Bengio and R. Ducharme and O. Bardou and N. Chapados", + title = "Valorisation d'options par optimisation du Sharpe Ratio", + institution = "Cahier Scientifique Cirano 2002s-48", + year = "2002", +} + +@TechReport{Chapados+Bengio-TR2002, + author = "N. Chapados and Y. Bengio", + title = "Cost Functions and Model Combination for VaR-based Asset Allocation using + Neural Networks", + institution = "Cahier Scientifique Cirano 2002s-49", + year = "2002", +} + +@TechReport{Bengio+Dugas-TR2002, + author = "Y. Bengio and C. Dugas", + title = "Forecasting Non-Stationary Volatility with Hyper-Parameters", + institution = "Cahier Scientifique Cirano 2002s-50", + year = "2002", +} + +@TechReport{Gingras+al-TR2002, + author = "F. Gingras and Y. Bengio and C. Nadeau", + title = "On Out-of-Sample Statistics for Time-Series", + institution = "Cahier Scientifique Cirano 2002s-51", + year = "2002", +} + +@TechReport{Chapados+Bengio-TR2002b, + author = "N. Chapados and Y. Bengio", + title = "Input Decay : Simple and Effective Soft Variable Selection", + institution = "Cahier Scientifique Cirano 2002s-52", + year = "2002", +} + +@TechReport{Ghosn+Bengio-TR2002, + author = "J. Ghosn and Y. Bengio", + title = "Multi-Task Learning For Option Pricing", + institution = "Cahier Scientifique Cirano 2002s-53", + year = "2002", +} + +@TechReport{Collobert+al-TR2001, + author = "J. Ghosn and Y. Bengio", + title = "A Parallel Mixture of {SVM}s for Very Large Scale Problems", + institution = "IDIAP", + location = "Switzerland", + number = "IDIAP-RR-01-12", + year = "2001", +} + +@TechReport{Vincent+Bengio-TR2001, + author = "Vincent, P. and Bengio, Y.", + title = "K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms", + institution = DIRO, + location = "Switzerland", + number = "1197", + year = "2001", +} + +@TechReport{Chapados+al-TR2001, + author = "Chapados, N. and Bengio, Y. and Vincent, P. and Ghosn, J. and Dugas, C. and Takeuchi, I. and Meng, L.", + title = "Estimating Car Insurance Premia : a Case Study in High-Dimensional Data Inference", + institution = DIRO, + number = "1199", + year = "2001", +} + +@TechReport{Bengio+Chapados-TR2001, + author = "Chapados, N. and Bengio, Y. and Vincent, P. and Ghosn, J. and Dugas, C. and Takeuchi, I. and Meng, L.", + title = "Extending Metric-Based Model Selection and Regularization in the Absence of Unlabeled Data", + institution = DIRO, + number = "1200", + year = "2001", +} + +@TechReport{Nadeau+Bengio-TR1999, + author = "Nadeau, C. and Bengio, Y.", + title = "Inference and the Generalization Error", + institution = "Cahier Scientifique Cirano 99s-25", + year = "2002", +} + +@TechReport{Gingras+al-TR1999, + author = "Gingras, F. and Bengio, Y. and Nadeau, C.", + title = "On Out-of-Sample Statistics for Financial Time-Series", + institution = "Centre de Recherches Mathématiques, Université de Montreal", + number = "2585", + year = "1999", +} + +@TechReport{Bengio-1998-TR, + author = "Bengio, Y.", + title = "Using a financial training criterion rather than a prediction criterion", + institution = "Cahier Scientifique Cirano 98s-21", + year = "1998", +} + +@TechReport{Bengio+DeMori-1990-TR, + author = "Bengio, Y. and De Mori, R.", + title = "Some connectionist models and their application to speech recognition", + institution = "School of Computer Science, McGill University", + number = "TR-SOCS-90-12", + year = "1990", +} + +@article{becker+hinton:1993, + author = {Becker, S. and Hinton, G. E.}, + title= {Learning Mixture Models of Spatial Coherence}, + journal={Neural Computation}, + volume={5}, + pages={267--277}, + year={1993} +} +@article{berkes:2005, + author = {Berkes, Pietro and Wiskott, Laurenz}, + title = {Slow Feature Analysis Yields a Rich Repertoire of Complex Cell Properties}, + journal = {Journal of Vision}, + ISSN = {1534-7362}, + volume = {5}, + number = {6}, + pages = {579-602}, + year = {2005}, + month = {7}, + URL = {http://journalofvision.org/5/6/9/}, + eprint = {http://journalofvision.org/5/6/9/Berkes-2005-jov-5-6-9.pdf}, +} +@inproceedings{hurri+hyvarinen:2003, + author={Hurri, J. and Hyv{\"a}rinen, A.}, + title={Temporal Coherence, Natural Image Sequences, and the Visual Cortex.}, + booktitle={Advances in Neural Information Processing Systems 15 + ({NIPS*02})}, + year={2003}, + pages={141--148}, +} +@article{wiskott:2002, + author = "Laurenz Wiskott and Terrence Sejnowski", + year = "2002", + title = {Slow Feature Analysis: Unsupervised Learning of Invariances}, + journal = "Neural Computation", + volume = "14", + number = "4", + pages = "715--770", + url= {http://itb.biologie.hu-berlin.de/~wiskott/Publications/WisSej2002-LearningInvariances-NC.ps.gz}, +} + +@article{KouhPoggio2008, + author={Minjoon M. Kouh and Tomaso T. Poggio}, + title={A Canonical Neural Circuit for Cortical Nonlinear Operations}, + journal={Neural Computation}, + volume={20}, + number={6}, + year={2008}, + pages={1427-51}, +} +@article{NykampRingach2002, + author={D. Q. Nykamp and D. L. Ringach}, + title ={Full Identification of a Linear-Nonlinear System via Cross-Correlation Analysis}, + journal = {Journal of Vision}, + volume={2}, + pages={1-11}, + year={2002}, +} +@incollection{cadieu+olshausen:2009, + title = {Learning Transformational Invariants from Natural Movies}, + author = {Charles Cadieu and Bruno Olshausen}, + booktitle = {Advances in Neural Information Processing Systems 21}, + editor = {D. Koller and D. Schuurmans and Y. Bengio and L. Bottou}, + pages = {209--216}, + year = {2009}, + publisher = {MIT Press} +} +@book{DayanAbbott2001, + author={Peter Dayan and L. F. Abbott}, + title = {Theoretical Neuroscience}, + publisher = {The {MIT} Press}, + year = 2001, +} + +@inproceedings{Chechik-MIR2008, + author = {G. Chechik and E. Ie and M. Rehn and S. Bengio and D. Lyon}, + title = {Large-scale content-based audio retrieval from text queries}, + booktitle = {ACM International Conference on Multimedia Information Retrieval (MIR'08)}, + year = 2008, +} + +@inproceedings{Bai-ECIR2009, + author = {B. Bai and J. Weston and R. Collobert and D. Grangier}, + title = {Supervised Semantic Indexing}, + booktitle = { European Conference on Information Retrieval (ECIR'09)}, + year = 2009, +} + +@article{Attwell+Laughlin-2001, + author = {David Attwell and Simon B. Laughlin}, + title = {An energy budget for signaling in the grey matter of the brain}, + journal = {Journal of Cerebral Blood Flow And Metabolism}, + year =2001, + volume = 21, + pages = {1133--1145}, +} + +@article{Lennie-2003, + author = {Peter Lennie}, + title = {The cost of cortical computation}, + journal = {Current Biology}, + year = 2003, + month = {Mar 18}, + volume = {13}, + number = 6, + pages = {493--497}, +} + +@inproceedings{LowdD2005, + author = {Lowd, Daniel and Domingos, Pedro}, + title = {Naive Bayes models for probability estimation}, + booktitle = ICML05, + editor = ICML05ed, + year = {2005}, + pages = {529--536}, + location = {Bonn, Germany}, + publisher = ICML05publ, + address = {New York, NY, USA}, + } + +@incollection{NairV2009, + title = {Implicit Mixtures of Restricted Boltzmann Machines}, + author = {Vinod Nair and Geoffrey E Hinton}, + booktitle = NIPS21, + editor = NIPS21ed, + publisher = NIPS21publ, + pages = {1145--1152}, + year = {2009} +} + +@incollection{Goodfellow2009, + title = {Measuring Invariances in Deep Networks}, + author = {Ian Goodfellow and Quoc Le and Andrew Saxe and Andrew Ng}, + booktitle = NIPS22, + editor = NIPS22ed, + pages = {646--654}, + year = {2009} +} + +@incollection{Xiao2009, + title = {Dual Averaging Method for Regularized Stochastic Learning and Online Optimization}, + author = {Lin Xiao}, + booktitle = {Advances in Neural Information Processing Systems 22}, + editor = {Y. Bengio and D. Schuurmans and J. Lafferty and C. K. I. Williams and A. Culotta}, + pages = {2116--2124}, + year = {2009} +} + +@incollection{Kwok2009, + title = {Accelerated Gradient Methods for Stochastic Optimization and Online Learning}, + author = {Chonghai Hu and James Kwok and Weike Pan}, + booktitle = {Advances in Neural Information Processing Systems 22}, + editor = {Y. Bengio and D. Schuurmans and J. Lafferty and C. K. I. Williams and A. Culotta}, + pages = {781--789}, + year = {2009} +} + +@article{Nesterov83, + author = {Yu Nesterov}, + title = {A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$}, + journal = {Doklady AN SSSR (translated as Soviet. Math. Docl.)}, + volume = 269, + pages = {543--547}, + year = 1983, +} + +@incollection{Bai2009, + title = {Polynomial Semantic Indexing}, + author = {Bing Bai and Jason Weston and David Grangier and Ronan Collobert and Kunihiko Sadamasa and Yanjun Qi and Corinna Cortes and Mehryar Mohri}, + booktitle = {Advances in Neural Information Processing Systems 22}, + editor = {Y. Bengio and D. Schuurmans and J. Lafferty and C.K.I. Williams and A. Culotta}, + pages = {64--72}, + year = {2009} +} + +@incollection{Chechik2009, + title = {An Online Algorithm for Large Scale Image Similarity Learning}, + author = {Gal Chechik and Uri Shalit and Varun Sharma and Samy Bengio}, + booktitle = {Advances in Neural Information Processing Systems 22}, + editor = {Y. Bengio and D. Schuurmans and J. Lafferty and C. K. I. Williams and A. Culotta}, + pages = {306--314}, + year = {2009} +} + +@incollection{Klampfl+Maass-2009, + title = {Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks}, + author = {Stefan Klampfl and Wolfgang Maass}, + booktitle = NIPS22, + editor = NIPS22ed, + pages = {988--996}, + year = {2009} +} + + + +@Article{GrandvaletCanuBoucheron97, + author = "Yves Grandvalet and Stéphane Canu and Stéphane Boucheron", + title = "Noise Injection: Theoretical Prospects", + journal = "Neural Computation", + volume = "9", + number = "5", + pages = "1093--1108", + year = "1997", +} + +@Article{SietsmaDow91, + author = "J. Sietsma and R. Dow", + title = "Creating artificial neural networks that generalize", + journal = "Neural Networks", + volume = "4", + number = "1", + pages = "67--79", + year = "1991", +} + +@Article{HolmstromKoistinen92, + author = "Lasse Holmström and Petri Koistinen", + title = "Using additive noise in back-propagation training", + journal = "{IEEE} Transactions on Neural Networks", + volume = "3", + number = "1", + pages = "24--38", + year = "1992", +} + +@inproceedings{Baird90, + author = "H. Baird", + title = {Document image defect models}, + year = 1990, + booktitle = "IAPR Workshop on Syntactic and Structural Pattern Recognition", + pages = "38--46", + address = "Murray Hill, NJ." +} + +@TechReport{Poggio+Vetter92, + author = "T. Poggio and T. Vetter", + title = "Recognition and structure from one 2D model view: Observations on prototypes, object classes and symmetries", + number = "A.I. Memo No. 1347", + institution = "Artificial Intelligence Laboratory, Massachusetts Institute of Technology", + year = "1992", +} + +@INPROCEEDINGS{Scholkopf96invariances, + author = {Bernhard Sch{\"o}lkopf and Chris Burges and Vladimir Vapnik}, + title = {Incorporating Invariances in Support Vector Learning Machines}, + booktitle = {Lecture Notes in Computer Science (Vol 112), Artificial Neural Netowrks ICANN'96}, + year = {1996}, + editor = {C. von der Malsburg and W. von Seelen and J. C. Vorbrüggen and B. Sendhoff}, + pages = {47--52}, + publisher = {Springer} +} + +@inproceedings{Cho+Saul09, + title = {Kernel Methods for Deep Learning}, + author = {Youngmin Cho and Lawrence Saul}, + booktitle = NIPS22, + editor = NIPS22ed, + pages = {342--350}, + year = {2010}, + publisher = {NIPS Foundation}, +} + + +@InProceedings{Linsker89, + author = "R. Linsker", + editor = NIPS1ed, + booktitle = NIPS1, + title = "An application of the principle of maximum information +preservation to linear systems", + publisher = NIPS1publ, + year = "1989", +} + +@Article{An96AddingNoise, + author = "Guozhong An", + title = "The effects of adding noise during backpropagation training on a generalization performance", + journal = "Neural Computation", + volume = "8", + number = "3", + pages = "643--674", + year = "1996", +} + +@article{DruckerLeCun92, + author = {Harris Drucker and Yann LeCun}, + title = {Improving generalisation performance using double back-propagation.}, + journal = {IEEE Transactions on Neural Networks}, + number = {6}, + pages = {991--997}, + volume = {3}, + year = {1992} +} + +@Article{BellSejnowski-97, + author = "A. Bell and T. J. Sejnowski", + title = "The independent components of natural scenes are edge filters", + journal = "Vision Research", + volume = "37", + pages = "3327--3338", + year = "1997", +} + + +@Article{Dokur1997, + author = {Z\:{u}mray Dokur, Tamer \:{O}lmez, Ertugrul Yazgan, Okan K. Ersoy}, + title = {Detection of {ECG} waveforms by neural networks}, + journal = {Medical engineering & physics}, + year = {1997}, + volume = {19}, + number = {8}, + pages = {738--741}, + month = {October}, +} + +@Article{Hu1993, + author = {Y. H. Hu and W. J. Tompkins and J. L. Urrusti and V. X. Afonso}, + title = {Applications of artificial neural networks for {ECG} signal detection and classification}, + journal = JEC, + year = {1993}, + volume = {26s}, + pages = {66--73}, +} + +@Article{Unser1996, +author = {M. Unser and A. Aldroubi}, +title = {A Review of Wavelets in Biomedical Applications}, +journal = {Proceedings of the {IEEE}}, +year = {1996}, +volume= {84}, +number= {4}, +pages = {626--638}, +month = {April}, +} + +@inproceedings{Povey+Woodland-2002, + author = {D. Povley and P.C. Woodland}, + title = {Minimum error and {I}-smoothing for improved discriminative training}, + booktile = {Proceedings of the International Conference on Acoustics, +Speech, and Signal Processing (ICASSP'2002)}, + publisher = {IEEE}, + volume = 1, + pages = {I-105--I-108}, + address = {Orlando, Florida, USA}, +} + +@incollection{Susskind2008, + author = {Joshua M. Susskind and Geoffrey E. and Javier R. Movellan and Adam K. Anderson}, + title = {Generating Facial Expressions with Deep Belief Nets}, + editor = {V. Kordic}, + booktitle = {Affective Computing, Emotion Modelling, Synthesis and Recognition}, + publisher = {ARS Publishers}, + year = 2008, + pages = {421--440}, +} + +@InCollection{Li2005, + author = {Peng Li and Kap Luk Chan and Sheng Fu and S.M. Krishnan}, + title = {An Abnormal {ECG} Beat Detection Approach for Long-Term Monitoring of Heart Patients Based on Hybrid Kernel Machine Ensemble}, + booktitle = {Multiple Classifier Systems}, + pages = {346-355}, + publisher = {Springer}, + year = {2005}, + volume = {3541/2005}, + series = {Lecture Notes in Computer Science}, + address = {Berlin / Heidelberg}, +} + +@incollection {Hughes_NIPS2003, + author = " Nicholas P. Hughes and Lionel Tarassenko and Stephen J. Roberts", + title = " Markov Models for Automated {ECG} Interval Analysis", + booktitle = NIPS16, + editor = NIPS16ed, + publisher = NIPS16publ, + address = NIPS16addr, + year = "2004", + keywords = "hidden Markov models, Markov models, wavelets, segmentation, probabilistic models, biomedical signal processing, time series", + } + +@inproceedings{Salem2009, + author = {Abdel-Badeeh M. Salem and Kenneth Revett and El-Sayed A. El-Dahshan}, + title = {Machine Learning in Electrocardiogram Diagnosis}, + booktitle = {Proceedings of the International Multiconference on Computer Science and Information Technology}, + volume = 4, + pages = {429--433}, + year = 2009, + publisher = {IEEE}, +} + +@book{Clifford2006, + author = {G.D. Clifford and F. Azuaje and P.E. McSharry}, + title = {Advanced Methods and Tools for {ECG} Analysis}, + publisher = {Artech House Publishing}, + year = 2006, +} + +@inproceedings{Lin2009, + author = {Lin, Jessica and Li, Yuan}, + title = {Finding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation}, + booktitle = {SSDBM 2009: Proceedings of the 21st International Conference on Scientific and Statistical Database Management}, + year = {2009}, + isbn = {978-3-642-02278-4}, + pages = {461--477}, + location = {New Orleans, LA, USA}, + doi = {http://dx.doi.org/10.1007/978-3-642-02279-1_33}, + publisher = {Springer-Verlag}, + address = {Berlin, Heidelberg}, + } + +@article{Froese2006, + author = {Froese, Tom and Hadjiloucas, Sillas and Galv\, +{a}o, Roberto K. H. and Becerra, Victor M. and Coelho, Clarimar Jos\'{e}}, + title = {Comparison of extrasystolic {ECG} signal classifiers using discrete wavelet transforms}, + journal = {Pattern Recogn. Lett.}, + volume = {27}, + number = {5}, + year = {2006}, + issn = {0167-8655}, + pages = {393--407}, + doi = {http://dx.doi.org/10.1016/j.patrec.2005.09.002}, + publisher = {Elsevier Science Inc.}, + address = {New York, NY, USA}, + } + +@Article{Crowe1992, + author = {J. A. Crowe and N. M. Gibson and M. S. Woolfson and M. G. Somekh}, + title = {Wavelet transform as a potential tool for {ECG} analysis and compression}, + journal = {Journal of Biomedical Engineering}, + year = {1992}, + volume = {14}, + number = {3}, + pages = {268--272}, + month = {May}, +} + +@ARTICLE{Hilton1997, + author = {Michael Hilton}, + title = {Wavelet and Wavelet Packet Compression of Electrocardiograms}, + journal = IEEE_trans_biomed, + year = {1997}, + volume = {44}, + pages = {394--402} +} + +@Article{Li1995, + author = {C. Li and C. Zheng and C. Tai}, + title = {Detection of {ECG} characteristic points using wavelet transforms}, + journal = IEEE_trans_biomed, + year = {1995}, + volume = {42}, + number = {1}, + pages = {21--28}, + month = {January}, +} + +@article{Polat2007, +title = {Detection of {ECG} Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine}, +journal = {Applied Mathematics and Computation}, +volume = {186}, +number = {1}, +pages = {898--906}, +year = {2007}, +issn = {0096-3003}, +doi = {DOI: 10.1016/j.amc.2006.08.020}, +url = {http://www.sciencedirect.com/science/article/B6TY8-4KXDWBF-5/2/a9e1d7e2dfc4c88935386ea04ca9cb94}, +author = {Kemal Polat and Salih G\"{u}nes}, +keywords = {ECG Arrhythmia}, +keywords = {Principal component analysis (PCA)}, +keywords = {Least square support vector machine (LSSVM)}, +keywords = {ROC curves}, +} + +@article{Song2005, + author = {Mi Hye Song and Jeon Lee and Sung Pil Cho and Kyoung Joung Lee and Sun Kook Yoo}, + title = {Support Vector Machine Based Arrhythmia Classification +Using Reduced Features}, + journal = IJCAS, + year = {2005}, + volume = {3}, + number = {4}, + pages = {571--579}, + month = {December}, +} + +@article{Ubeyli2009, + author = {Elif Derya \"{U}beyli}, + title = {Combining recurrent neural networks with eigenvector methods for classification of {ECG} beats}, + journal = DSP, + volume = {19}, + number = {2}, + year = {2009}, + issn = {1051-2004}, + pages = {320--329}, + doi = {http://dx.doi.org/10.1016/j.dsp.2008.09.002}, + publisher = {Academic Press, Inc.}, + address = {Orlando, FL, USA}, + } + +@article{Ubeyli2007, + author = {Elif Derya \"{U}beyli}, + title = {{ECG} beats classification using multiclass support vector machines with error correcting output codes}, + journal = DSP, + year = {2007}, + volume = {17}, + pages = {675--684}, +} + +@Article{Soman2005, + author = {T. Soman and P. O. Bobbie}, + title = {Classification of Arrhythmia Using Machine Learning Techniques}, + journal = {WSEAS Transactions on Computers}, + year = {2005}, + volume = {4}, + number = {6}, + pages = {548--552}, + month = {June}, +} + +@InProceedings{Chengwei2006, + author = {Li Chengwei and Wang Shoubin and Xu Aijun and Peng Hui}, + title = {Clinical Diagnosis of Cardiac Disease Based on Support Vector Machine}, + booktitle = {World Congress on Medical Physics and Biomedical Engineering}, + pages = {1273--1276}, + year = {2006}, + editor = {R. Magjarevic and J. H. Nagel}, + volume = {14}, + series = {IFMBE Proceedings}, + publisher = {Springer Berlin Heidelberg}, +} + +@Article{Chiu2005, + author = {Chuang-Chien Chiu and Tong-Hong Lin and Ben-Yi Liau}, + title = {Using correlation coefficient in {ECG} waveform for arrhythmia detection}, + journal = BME, + year = {2005}, + volume = {17}, + number = {3}, + pages = {147--152}, + month = {June}, +} + +@Article{Silipo1998, + author = {Rosaria Silipo and Carlo Marchesi}, + title = {Artificial Neural Networks for Automatic {ECG} Analysis}, + journal = IEEE_trans_SP, + year = {1998}, + volume = {46}, + number = {5}, + pages = {1417--1425}, + month = {May}, +} + +@Article{Osowski2004, + author = {Stanislaw Osowski and Linh Tran Hoai and Tomasz Markiewicz}, + title = {Support Vector Machine-Based Expert System for +Reliable Heartbeat Recognition}, + journal = IEEE_trans_biomed, + year = {2004}, + volume = {51}, + number = {4}, + pages = {582--589}, + month = {April}, +} + +@article{PhysioNet, + author = PhysioNetAuthors, + title = "{PhysioBank, PhysioToolkit, and PhysioNet}: Components of a New + Research Resource for Complex Physiologic Signals", + journal = "Circulation", + year = PhysioNetYear, + volume = "101", + number = "23", + pages = "e215--e220", + note = PhysioNetNote, +} + +@article{Lin2007, + author = {Lin, Jessica and Keogh, Eamonn and Wei, Li and Lonardi, Stefano}, + citeulike-article-id = {2821475}, + citeulike-linkout-0 = {http://dblp.uni-trier.de/rec/bibtex/journals/datamine/LinKWL07}, + citeulike-linkout-1 = {http://dx.doi.org/10.1007/s10618-007-0064-z}, + citeulike-linkout-2 = {http://www.springerlink.com/content/g69808822l82t325}, + day = {18}, + doi = {10.1007/s10618-007-0064-z}, + journal = DMKD, + keywords = {simulation}, + month = {October}, + number = {2}, + pages = {107--144}, + posted-at = {2008-05-21 23:56:04}, + priority = {2}, + title = {Experiencing SAX: a novel symbolic representation of time series}, + url = {http://dx.doi.org/10.1007/s10618-007-0064-z}, + volume = {15}, + year = {2007} +} + +@inproceedings{Lin2010, + author = {Lin, Jessica and Li, Yuan}, + title = {Finding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation}, + booktitle = SSDBM2009, + year = {2009}, + isbn = {978-3-642-02278-4}, + pages = {461--477}, + location = {New Orleans, LA, USA}, + doi = {http://dx.doi.org/10.1007/978-3-642-02279-1_33}, + publisher = {Springer-Verlag}, + address = {Berlin, Heidelberg}, + } + +@Article{Ham1996, + author = {F. M. Ham and Soowhan Han}, + title = {Classification of cardiac arrhythmias using fuzzy ARTMAP}, + journal = IEEE_trans_biomed, + year = {1996}, + volume = {43}, + number = {4}, + pages = {425--429}, + month = {April}, +} +@article{Engin2004, + title = "ECG beat classification using neuro-fuzzy network", + journal = PRL, + volume = "25", + number = "15", + pages = "1715 - 1722", + year = "2004", + issn = "0167-8655", + doi = "DOI: 10.1016/j.patrec.2004.06.014", + url = "http://www.sciencedirect.com/science/article/B6V15-4D0Y5TH-2/2/b83f364f61d79f96abeb1bc1b1898ab9", + author = "Mehmet Engin", + keywords = "ECG beat classification", + keywords = "MIT/BIH database", + keywords = "Neuro-fuzzy networks", + keywords = "Higher-order statistics", + keywords = "Wavelet transform", + keywords = "AR modelling", + keywords = "Pattern recognition" +} + +@article{Turaga2010, + author = {S. C. Turaga and J. F. Murray and V. Jain and F. Roth and M. Helmstaedter and K. Briggman and W. Denk and H. S. Seung}, + title = {Convolutional networks can learn to generate affinity graphs for image segmentation}, + journal = {Neural Computation}, + volume = 22, + pages = {511--538}, + year = 2010, +} + +@article{Hahnloser-2003, + author = {Richard H.R. Hahnloser and H. Sebastian Seung and J.J. Slotine}, + title = {Permitted and forbidden sets in symmetric threshold-linear networks}, + journal = {Neural Computation}, + volume = 15, + pages = {621--638}, + year = 2003, +} + +@techreport{Jenatton-2009, + title={Structured Variable Selection with Sparsity-Inducing Norms}, + author={Jenatton, R. and Audibert, J.-Y. and Bach, F.}, + institution={arXiv:0904.3523}, + year={2009} +} + +@ARTICLE{Erhan2010, + author = {Erhan, Dumitru and Bengio, Yoshua and Courville, Aaron and Manzagol, Pierre-Antoine and Vincent, Pascal and Bengio, Samy}, + month = feb, + title = {Why Does Unsupervised Pre-training Help Deep Learning?}, + journal = jmlr, + volume = {11}, + year = {2010}, + pages = {625--660}, + abstract = {Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several areas, mostly on vision and language datasets. The best results obtained on supervised learning tasks involve an unsupervised learning component, usually in an unsupervised pre-training phase. Even though these new algorithms have enabled training deep models, many questions remain as to the nature of this difficult learning problem. The main question investigated here is the following: why does unsupervised pre-training work and why does it work so well? Answering these questions is important if learning in deep architectures is to be further improved. We propose several explanatory hypotheses and test them through extensive simulations. We empirically show the influence of pre-training with respect to architecture depth, model capacity, and number of training examples. The experiments confirm and clarify the advantage of unsupervised pre-training. The results suggest that unsupervised pre-training guides the learning towards basins of attraction of minima that are better in terms of the underlying data distribution; the evidence from these results supports a regularization explanation for the effect of pre-training.} +} + +@ARTICLE{Bengio2009FTML, + author = {Bengio, Yoshua}, + title = {Learning deep architectures for {AI}}, + journal = FTML, + volume = {2}, + number = {1}, + year = {2009}, + pages = {1--127}, + note = Bengio2009FTML_note, + abstract = {Theoretical results suggest that in order to learn the kind of +complicated functions that can represent high-level abstractions (e.g. in +vision, language, and other AI-level tasks), one may need {\insist deep +architectures}. Deep architectures are composed of multiple levels of non-linear +operations, such as in neural nets with many hidden layers or in complicated +propositional formulae re-using many sub-formulae. Searching the +parameter space of deep architectures is a difficult task, but +learning algorithms such as those for Deep Belief Networks have recently been proposed +to tackle this problem with notable success, beating the state-of-the-art +in certain areas. This paper discusses the motivations and principles regarding +learning algorithms for deep architectures, in particular those exploiting as +building blocks unsupervised learning of single-layer models such as Restricted {Boltzmann} Machines, +used to construct deeper models such as Deep Belief Networks.} +} + +@ARTICLE{Bengio1994ITNN, + author = {Bengio, Yoshua and Simard, Patrice and Frasconi, Paolo}, + title = {Learning Long-Term Dependencies with Gradient Descent is Difficult}, + journal = IEEE_trans_NN, + volume = {5}, + number = {2}, + year = {1994}, + pages = {157--166}, + abstract = {Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in the input/output sequences span long intervals. We show why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captures increases. These results expose a trade-off between efficient learning by gradient descent and latching on information for long periods. Based on an understanding of this problem, alternatives to standard gradient descent are considered.}, +optnote={(Special Issue on Recurrent Neural Networks)},topics={LongTerm},cat={J}, +} + +@article{Kohler1992, + abstract = {The QRS complex is the most striking waveform within the electrocardiogram (ECG). Since it reflects the electrical activity within the heart during the ventricular contraction, the time of its occurrence as well as its shape provide much information about the current state of the heart. Due to its characteristic shape it serves as the basis for the automated determination of the heart rate, as an entry point for classification schemes of the cardiac cycle, and often it is also used in ECG data compression algorithms. In that sense, QRS detection provides the fundamentals for almost all automated ECG analysis algorithms. Software QRS detection has been a research topic for more than 30 years. The evolution of these algorithms clearly reflects the great advances in computer technology. Within the last decade many new approaches to QRS detection have been proposed; for example, algorithms from the field of artificial neural networks genetic algorithms wavelet transforms, filter banks as well as heuristic methods mostly based on nonlinear transforms. The authors provide an overview of these recent developments as well as of formerly proposed algorithms}, + author = {Kohler, B. U. and Hennig, C. and Orglmeister, R.}, + citeulike-article-id = {546409}, + citeulike-linkout-0 = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=993193}, + journal = eng_med_bio, + keywords = {detector, ecg\_processing, qrs, qt\_interval, review\_article, rr\_interval}, + number = {1}, + pages = {42--57}, + posted-at = {2007-11-25 20:38:19}, + priority = {2}, + title = {The principles of software QRS detection}, + url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=993193}, + volume = {21}, + year = {2002} +} + +@article{Thomas2006, +author = {Julien Thomas and Cedric Rose and Francois Charpillet}, +title = {A Multi-HMM Approach to ECG Segmentation}, +journal = ICTAI06, +volume = {0}, +issn = {1082-3409}, +year = {2006}, +pages = {609-616}, +doi = {http://doi.ieeecomputersociety.org/10.1109/ICTAI.2006.17}, +publisher = {IEEE Computer Society}, +address = {Los Alamitos, CA, USA}, +} + +@inproceedings{Cortes+al-2000, + author = {Juan Carlos P\'{e}rez-Cortes and Rafael Llobet and Joaquim Arlandis}, + title = {Fast and Accurate Handwritten Character Recognition Using Approximate Nearest Neighbours Search on Large Databases}, + booktitle = iapr, + year = {2000}, + isbn = {3-540-67946-4}, + pages = {767--776}, + publisher = {Springer-Verlag}, + address = {London, UK}, + } + + +@Article{Oliveira+al-2002, + author = "Oliveira, L.S. and Sabourin, R. and Bortolozzi, F. and Suen, C.Y.", + title = "Automatic recognition of handwritten numerical strings: a recognition and verification strategy", + journal = ieeetpami, + volume = "24", + number = "11", + pages = "1438-1454", + month = nov, + year = "2002", + doi = "10.1109/TPAMI.2002.1046154", + issn = "0162-8828", +} + +@Article{Oliveira+al-2002-short, + author = "Oliveira, L.S. and Sabourin, R. and Bortolozzi, F. and Suen, C.Y.", + title = "Automatic recognition of handwritten numerical strings: a recognition and verification strategy", + journal = ieeetpami, + volume = "24", + number = "11", + pages = "1438-1454", + year = "2002", +} + +@inproceedings{SimardSP03, + author = {Patrice Simard and + David Steinkraus and + John C. Platt}, + title = {Best Practices for Convolutional Neural Networks Applied + to Visual Document Analysis}, + booktitle = {ICDAR}, + year = {2003}, + pages = {958-962}, + ee = {http://csdl.computer.org/comp/proceedings/icdar/2003/1960/02/196020958abs.htm}, + crossref = {DBLP:conf/icdar/2003}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + +@inproceedings{SimardSP03-short, + author = {Patrice Simard and + David Steinkraus and + John C. Platt}, + title = {Best Practices for Convolutional Neural Networks Applied + to Visual Document Analysis}, + booktitle = {ICDAR}, + year = {2003}, + pages = {958-962}, +} + +@inproceedings{Milgram+al-2005, + author = {Milgram, J. and Cheriet, M. and Sabourin, R.}, + title = {Estimating accurate multi-class probabilities with support vector machines}, + booktitle = {Int. Joint Conf. on Neural Networks}, + year = {2005}, + pages = {906--1911}, + location = {Montreal, Canada}, + } + +@proceedings{DBLP:conf/icdar/2003, + title = {7th International Conference on Document Analysis and Recognition + (ICDAR 2003), 2-Volume Set, 3-6 August 2003, Edinburgh, + Scotland, UK}, + booktitle = {ICDAR}, + publisher = {IEEE Computer Society}, + year = {2003}, + isbn = {0-7695-1960-1}, + bibsource = {DBLP, http://dblp.uni-trier.de} +} + + +@article{Granger+al-2007, + author = {Eric Granger and Robert Sabourin and Luiz S. Oliveira and Catolica Parana}, + title = {Supervised Learning of Fuzzy ARTMAP Neural Networks Through Particle Swarm Optimization}, + journal = jprr, + year = {2007}, + volume = "2", + number = "1", + pages = "27-60", +} + +@inproceedings{SnowEtAl2008, + author = {Snow, R. and O'Connor, B. and Jurafsky, D. and Ng, A.}, + booktitle = {Proc. Empirical Methods in NLP}, + pages = {254--263}, + title = {Cheap and Fast -- But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks}, + year = {2008} +} + +@TECHREPORT{Garris94+al-1994, + author = {Michael D. Garris and James L. Blue and Gerald T. Candela and Gerald T. C and Darrin L. Dimmick and Jon Geist and Patrick J. Grother and Stanley A. Janet and Charles L. Wilson}, + title = {NIST Form-Based Handprint Recognition System}, + institution = {Technical Report NISTIR 5469 and CD-ROM, National Institute of Standards and Technology}, + year = {1994}, + doi = {10.1.1.45.1560}, +} + +@inproceedings{SorokinAndForsyth2008, + author = {Sorokin, A. and Forsyth, D.}, + booktitle = {CVPR Workshops}, + pages = {1--8}, + title = {Utility data annotation with Amazon Mechanical Turk}, + year = {2008} +} + +@inproceedings{Grother-1995, + AUTHOR = "Grother, P.J.", + TITLE = "Handprinted Forms and Character Database, {NIST} Special Database 19", + BOOKTITLE = "National Institute of Standards and Technology (NIST) Intelligent Systems Division (NISTIR)", + YEAR = "1995", + BIBSOURCE = "http://www.visionbib.com/bibliography/char1015.html#TT105853"} +} + +@inproceedings{ whitehill09, + title = {Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise}, + author = {J. Whitehill and P. Ruvolo and T. Wu and J. Bergsma and J. Movellan}, + booktitle = {NIPS 22}, + pages = {2035--2043}, + year = 2009 +} + +@techreport{ift6266-tr-anonymous, + author = "Anonymous authors", + title = "Anonymous title", + institution = "University X.", + year = 2010, +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/improvements_charts.eps Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,2217 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%BoundingBox: -1 6 561 239 +%%HiResBoundingBox: -0.011 6.810 560.580 238.200 +%%Pages: 0 +%%Creator: Sun Microsystems, Inc. +%%Title: none +%%CreationDate: none +%%LanguageLevel: 2 +%%EndComments +%%BeginProlog +%%BeginResource: procset SDRes-Prolog 1.0 0 +/b4_inc_state save def +/dict_count countdictstack def +/op_count count 1 sub def +userdict begin +0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit[] 0 setdash newpath +/languagelevel where {pop languagelevel 1 ne {false setstrokeadjust false setoverprint} if} if +/bdef {bind def} bind def +/c {setgray} bdef +/l {neg lineto} bdef +/rl {neg rlineto} bdef +/lc {setlinecap} bdef +/lj {setlinejoin} bdef +/lw {setlinewidth} bdef +/ml {setmiterlimit} bdef +/ld {setdash} bdef +/m {neg moveto} bdef +/ct {6 2 roll neg 6 2 roll neg 6 2 roll neg curveto} bdef +/r {rotate} bdef +/t {neg translate} bdef +/s {scale} bdef +/sw {show} bdef +/gs {gsave} bdef +/gr {grestore} bdef +/f {findfont dup length dict begin +{1 index /FID ne {def} {pop pop} ifelse} forall /Encoding ISOLatin1Encoding def +currentdict end /NFont exch definefont pop /NFont findfont} bdef +/p {closepath} bdef +/sf {scalefont setfont} bdef +/ef {eofill}bdef +/pc {closepath stroke}bdef +/ps {stroke}bdef +/pum {matrix currentmatrix}bdef +/pom {setmatrix}bdef +/bs {/aString exch def /nXOfs exch def /nWidth exch def currentpoint nXOfs 0 rmoveto pum nWidth aString stringwidth pop div 1 scale aString show pom moveto} bdef +%%EndResource +%%EndProlog +%%BeginSetup +%%EndSetup +%%Page: 1 1 +%%BeginPageSetup +%%EndPageSetup +pum +0.02833 0.02839 s +0 -8628 t +/tm matrix currentmatrix def +gs +tm setmatrix +-579 -233 t +1 1 s +579 233 m 20945 233 l 20945 8860 l 579 8860 l 579 233 l eoclip newpath +gs +0 0 m 20366 0 l 20366 8627 l 0 8627 l 0 0 l eoclip newpath + +gs +tm setmatrix +0 238 t +1 1 s +gs +gs +0 0 m 10876 0 l 10876 8071 l 0 8071 l 0 0 l eoclip newpath +gs +0 0 m 10876 0 l 10876 8071 l 0 8071 l 0 0 l eoclip newpath +0.996 c 5439 8072 m 0 8072 l 0 0 l 10877 0 l 10877 8072 l 5439 8072 l +p ef + + +0.699 c 4425 6092 m 943 6092 l 943 1598 l 7907 1598 l 7907 6092 l 4425 6092 l +pc +0 lw 1 lj 7907 6091 m 943 6091 l ps +7907 5449 m 943 5449 l ps +7907 4807 m 943 4807 l ps +7907 4165 m 943 4165 l ps +7907 3523 m 943 3523 l ps +7907 2881 m 943 2881 l ps +7907 2239 m 943 2239 l ps +7907 1597 m 943 1597 l ps + +943 6241 m 943 6091 l ps +943 4957 m 943 4807 l ps +2684 6241 m 2684 6091 l ps +2684 4957 m 2684 4807 l ps +4425 6241 m 4425 6091 l ps +4425 4957 m 4425 4807 l ps +6166 6241 m 6166 6091 l ps +6166 4957 m 6166 4807 l ps +7907 6241 m 7907 6091 l ps +7907 4957 m 7907 4807 l ps +943 4807 m 7907 4807 l ps +793 6091 m 943 6091 l ps +793 6091 m 943 6091 l ps +793 5449 m 943 5449 l ps +793 5449 m 943 5449 l ps +793 4807 m 943 4807 l ps +793 4807 m 943 4807 l ps +793 4165 m 943 4165 l ps +793 4165 m 943 4165 l ps +793 3523 m 943 3523 l ps +793 3523 m 943 3523 l ps +793 2881 m 943 2881 l ps +793 2881 m 943 2881 l ps +793 2239 m 943 2239 l ps +793 2239 m 943 2239 l ps +793 1597 m 943 1597 l ps +793 1597 m 943 1597 l ps +943 6091 m 943 1597 l ps +0.996 c 6456 4819 m 6456 4807 l 7036 4807 l 7036 4819 l 6456 4819 l +p ef +0.000 c 6456 4819 m 7036 4819 l 7036 4807 l 6456 4807 l 6456 4819 l +pc +0.996 c 4715 4807 m 4715 4640 l 5295 4640 l 5295 4807 l 4715 4807 l +p ef +0.000 c 4715 4807 m 5295 4807 l 5295 4640 l 4715 4640 l 4715 4807 l +pc +0.996 c 2974 4807 m 2974 3940 l 3554 3940 l 3554 4807 l 2974 4807 l +p ef +0.000 c 2974 4807 m 3554 4807 l 3554 3940 l 2974 3940 l 2974 4807 l +pc +0.996 c 1233 4807 m 1233 3587 l 1813 3587 l 1813 4807 l 1233 4807 l +p ef +0.000 c 1233 4807 m 1813 4807 l 1813 3587 l 1233 3587 l 1233 4807 l +pc +0.597 c 7036 5737 m 7036 4807 l 7616 4807 l 7616 5737 l 7036 5737 l +p ef +0.000 c 7036 5737 m 7616 5737 l 7616 4807 l 7036 4807 l 7036 5737 l +pc +0.597 c 5295 5128 m 5295 4807 l 5875 4807 l 5875 5128 l 5295 5128 l +p ef +0.000 c 5295 5128 m 5875 5128 l 5875 4807 l 5295 4807 l 5295 5128 l +pc +0.597 c 3554 4807 m 3554 2913 l 4134 2913 l 4134 4807 l 3554 4807 l +p ef +0.000 c 3554 4807 m 4134 4807 l 4134 2913 l 3554 2913 l 3554 4807 l +pc +0.597 c 1813 4807 m 1813 1821 l 2393 1821 l 2393 4807 l 1813 4807 l +p ef +0.000 c 1813 4807 m 2393 4807 l 2393 1821 l 1813 1821 l 1813 4807 l +pc + +pum +557 7057 t +0.101 c 16 -81 m 47 -84 l 49 -72 52 -61 58 -53 ct 63 -45 72 -38 83 -33 ct 95 -28 108 -26 122 -26 ct +135 -26 146 -28 156 -32 ct 166 -35 173 -41 178 -47 ct 182 -54 185 -61 185 -69 ct +185 -77 182 -84 178 -90 ct 173 -96 166 -100 155 -104 ct 148 -107 133 -111 110 -117 ct +87 -122 71 -128 61 -133 ct 49 -139 40 -147 34 -156 ct 28 -165 26 -176 26 -187 ct +26 -200 29 -212 36 -223 ct 44 -234 54 -243 68 -248 ct 82 -254 97 -257 114 -257 ct +133 -257 150 -254 164 -248 ct 178 -242 189 -233 197 -221 ct 205 -210 209 -196 209 -182 ct +177 -179 l 176 -195 170 -207 160 -215 ct 150 -223 135 -228 116 -228 ct 96 -228 81 -224 72 -216 ct +62 -209 58 -200 58 -190 ct 58 -181 61 -173 68 -167 ct 74 -161 91 -155 118 -149 ct +145 -143 164 -138 174 -133 ct 189 -126 199 -118 206 -107 ct 214 -97 217 -85 217 -72 ct +217 -58 213 -46 205 -34 ct 198 -22 187 -13 172 -6 ct 158 1 142 4 124 4 ct 101 4 82 1 66 -6 ct +51 -13 39 -23 30 -36 ct 21 -49 16 -65 16 -81 ct p ef +265 0 m 265 -253 l 352 -253 l 372 -253 387 -252 397 -249 ct 412 -246 424 -240 434 -231 ct +448 -220 458 -205 464 -188 ct 471 -170 474 -150 474 -128 ct 474 -109 472 -92 467 -77 ct +463 -62 457 -50 450 -40 ct 443 -30 436 -23 427 -17 ct 419 -11 409 -7 397 -4 ct +385 -1 372 0 356 0 ct 265 0 l p +299 -30 m 353 -30 l 369 -30 382 -31 392 -34 ct 401 -38 409 -42 415 -48 ct +422 -56 429 -66 433 -80 ct 437 -93 440 -109 440 -128 ct 440 -155 435 -175 427 -189 ct +418 -203 407 -213 395 -218 ct 386 -221 372 -223 352 -223 ct 299 -223 l 299 -30 l +p ef +475 1 m 573 -252 l 609 -252 l 712 1 l 674 1 l 644 -76 l 539 -76 l +511 1 l 475 1 l p +548 -103 m 634 -103 l 608 -173 l 600 -194 594 -212 590 -225 ct 587 -209 582 -193 576 -177 ct +548 -103 l p ef +729 -125 m 729 -155 732 -179 738 -197 ct 744 -215 753 -229 765 -239 ct 777 -249 793 -254 811 -254 ct +825 -254 836 -251 847 -245 ct 857 -240 865 -232 872 -222 ct 879 -212 884 -199 888 -184 ct +892 -170 893 -150 893 -125 ct 893 -95 890 -71 884 -53 ct 878 -35 869 -21 857 -11 ct +845 -1 830 4 811 4 ct 787 4 768 -5 754 -22 ct 737 -43 729 -77 729 -125 ct p +761 -125 m 761 -83 765 -56 775 -42 ct 785 -28 797 -21 811 -21 ct 825 -21 837 -28 847 -42 ct +857 -56 862 -83 862 -125 ct 862 -166 857 -194 847 -208 ct 837 -221 825 -228 811 -228 ct +796 -228 785 -222 777 -210 ct 766 -195 761 -166 761 -125 ct p ef +900 4 m 973 -257 l 998 -257 l 925 4 l 900 4 l p ef +1021 -81 m 1052 -84 l 1054 -72 1057 -61 1063 -53 ct 1068 -45 1077 -38 1088 -33 ct +1100 -28 1113 -26 1127 -26 ct 1140 -26 1151 -28 1161 -32 ct 1171 -35 1178 -41 1183 -47 ct +1187 -54 1190 -61 1190 -69 ct 1190 -77 1187 -84 1183 -90 ct 1178 -96 1171 -100 1160 -104 ct +1153 -107 1138 -111 1115 -117 ct 1092 -122 1076 -128 1066 -133 ct 1054 -139 1045 -147 1039 -156 ct +1033 -165 1031 -176 1031 -187 ct 1031 -200 1034 -212 1041 -223 ct 1049 -234 1059 -243 1073 -248 ct +1087 -254 1102 -257 1119 -257 ct 1138 -257 1155 -254 1169 -248 ct 1183 -242 1194 -233 1202 -221 ct +1210 -210 1214 -196 1214 -182 ct 1182 -179 l 1181 -195 1175 -207 1165 -215 ct +1155 -223 1140 -228 1121 -228 ct 1101 -228 1086 -224 1077 -216 ct 1067 -209 1063 -200 1063 -190 ct +1063 -181 1066 -173 1073 -167 ct 1079 -161 1096 -155 1123 -149 ct 1150 -143 1169 -138 1179 -133 ct +1194 -126 1204 -118 1211 -107 ct 1219 -97 1222 -85 1222 -72 ct 1222 -58 1218 -46 1210 -34 ct +1203 -22 1192 -13 1177 -6 ct 1163 1 1147 4 1129 4 ct 1106 4 1087 1 1071 -6 ct 1056 -13 1044 -23 1035 -36 ct +1026 -49 1021 -65 1021 -81 ct p ef +1271 0 m 1271 -253 l 1358 -253 l 1378 -253 1393 -252 1403 -249 ct 1418 -246 1430 -240 1440 -231 ct +1454 -220 1464 -205 1470 -188 ct 1477 -170 1480 -150 1480 -128 ct 1480 -109 1478 -92 1473 -77 ct +1469 -62 1463 -50 1456 -40 ct 1449 -30 1442 -23 1433 -17 ct 1425 -11 1415 -7 1403 -4 ct +1391 -1 1378 0 1362 0 ct 1271 0 l p +1305 -30 m 1359 -30 l 1375 -30 1388 -31 1398 -34 ct 1407 -38 1415 -42 1421 -48 ct +1428 -56 1435 -66 1439 -80 ct 1443 -93 1446 -109 1446 -128 ct 1446 -155 1441 -175 1433 -189 ct +1424 -203 1413 -213 1401 -218 ct 1392 -221 1378 -223 1358 -223 ct 1305 -223 l +1305 -30 l p ef +1481 1 m 1579 -252 l 1615 -252 l 1718 1 l 1680 1 l 1650 -76 l 1545 -76 l +1517 1 l 1481 1 l p +1554 -103 m 1640 -103 l 1614 -173 l 1606 -194 1600 -212 1596 -225 ct 1593 -209 1588 -193 1582 -177 ct +1554 -103 l p ef +1852 0 m 1820 0 l 1820 -198 l 1813 -190 1803 -183 1791 -176 ct 1779 -169 1768 -164 1758 -160 ct +1758 -190 l 1776 -198 1791 -208 1804 -220 ct 1817 -231 1826 -243 1832 -253 ct +1852 -253 l 1852 0 l p ef +1916 -76 m 1916 -107 l 2012 -107 l 2012 -76 l 1916 -76 l p ef +2143 0 m 2111 0 l 2111 -198 l 2104 -190 2094 -183 2082 -176 ct 2070 -169 2059 -164 2049 -160 ct +2049 -190 l 2067 -198 2082 -208 2095 -220 ct 2108 -231 2117 -243 2123 -253 ct +2143 -253 l 2143 0 l p ef +pom + +pum +2298 6659 t +16 -81 m 47 -84 l 49 -72 52 -61 58 -53 ct 63 -45 72 -38 83 -33 ct 95 -28 108 -26 122 -26 ct +135 -26 146 -28 156 -32 ct 166 -35 173 -41 178 -47 ct 182 -54 185 -61 185 -69 ct +185 -77 182 -84 178 -90 ct 173 -96 166 -100 155 -104 ct 148 -107 133 -111 110 -117 ct +87 -122 71 -128 61 -133 ct 49 -139 40 -147 34 -156 ct 28 -165 26 -176 26 -187 ct +26 -200 29 -212 36 -223 ct 44 -234 54 -243 68 -248 ct 82 -254 97 -257 114 -257 ct +133 -257 150 -254 164 -248 ct 178 -242 189 -233 197 -221 ct 205 -210 209 -196 209 -182 ct +177 -179 l 176 -195 170 -207 160 -215 ct 150 -223 135 -228 116 -228 ct 96 -228 81 -224 72 -216 ct +62 -209 58 -200 58 -190 ct 58 -181 61 -173 68 -167 ct 74 -161 91 -155 118 -149 ct +145 -143 164 -138 174 -133 ct 189 -126 199 -118 206 -107 ct 214 -97 217 -85 217 -72 ct +217 -58 213 -46 205 -34 ct 198 -22 187 -13 172 -6 ct 158 1 142 4 124 4 ct 101 4 82 1 66 -6 ct +51 -13 39 -23 30 -36 ct 21 -49 16 -65 16 -81 ct p ef +265 0 m 265 -253 l 352 -253 l 372 -253 387 -252 397 -249 ct 412 -246 424 -240 434 -231 ct +448 -220 458 -205 464 -188 ct 471 -170 474 -150 474 -128 ct 474 -109 472 -92 467 -77 ct +463 -62 457 -50 450 -40 ct 443 -30 436 -23 427 -17 ct 419 -11 409 -7 397 -4 ct +385 -1 372 0 356 0 ct 265 0 l p +299 -30 m 353 -30 l 369 -30 382 -31 392 -34 ct 401 -38 409 -42 415 -48 ct +422 -56 429 -66 433 -80 ct 437 -93 440 -109 440 -128 ct 440 -155 435 -175 427 -189 ct +418 -203 407 -213 395 -218 ct 386 -221 372 -223 352 -223 ct 299 -223 l 299 -30 l +p ef +475 1 m 573 -252 l 609 -252 l 712 1 l 674 1 l 644 -76 l 539 -76 l +511 1 l 475 1 l p +548 -103 m 634 -103 l 608 -173 l 600 -194 594 -212 590 -225 ct 587 -209 582 -193 576 -177 ct +548 -103 l p ef +729 -125 m 729 -155 732 -179 738 -197 ct 744 -215 753 -229 765 -239 ct 777 -249 793 -254 811 -254 ct +825 -254 836 -251 847 -245 ct 857 -240 865 -232 872 -222 ct 879 -212 884 -199 888 -184 ct +892 -170 893 -150 893 -125 ct 893 -95 890 -71 884 -53 ct 878 -35 869 -21 857 -11 ct +845 -1 830 4 811 4 ct 787 4 768 -5 754 -22 ct 737 -43 729 -77 729 -125 ct p +761 -125 m 761 -83 765 -56 775 -42 ct 785 -28 797 -21 811 -21 ct 825 -21 837 -28 847 -42 ct +857 -56 862 -83 862 -125 ct 862 -166 857 -194 847 -208 ct 837 -221 825 -228 811 -228 ct +796 -228 785 -222 777 -210 ct 766 -195 761 -166 761 -125 ct p ef +900 4 m 973 -257 l 998 -257 l 925 4 l 900 4 l p ef +1021 -81 m 1052 -84 l 1054 -72 1057 -61 1063 -53 ct 1068 -45 1077 -38 1088 -33 ct +1100 -28 1113 -26 1127 -26 ct 1140 -26 1151 -28 1161 -32 ct 1171 -35 1178 -41 1183 -47 ct +1187 -54 1190 -61 1190 -69 ct 1190 -77 1187 -84 1183 -90 ct 1178 -96 1171 -100 1160 -104 ct +1153 -107 1138 -111 1115 -117 ct 1092 -122 1076 -128 1066 -133 ct 1054 -139 1045 -147 1039 -156 ct +1033 -165 1031 -176 1031 -187 ct 1031 -200 1034 -212 1041 -223 ct 1049 -234 1059 -243 1073 -248 ct +1087 -254 1102 -257 1119 -257 ct 1138 -257 1155 -254 1169 -248 ct 1183 -242 1194 -233 1202 -221 ct +1210 -210 1214 -196 1214 -182 ct 1182 -179 l 1181 -195 1175 -207 1165 -215 ct +1155 -223 1140 -228 1121 -228 ct 1101 -228 1086 -224 1077 -216 ct 1067 -209 1063 -200 1063 -190 ct +1063 -181 1066 -173 1073 -167 ct 1079 -161 1096 -155 1123 -149 ct 1150 -143 1169 -138 1179 -133 ct +1194 -126 1204 -118 1211 -107 ct 1219 -97 1222 -85 1222 -72 ct 1222 -58 1218 -46 1210 -34 ct +1203 -22 1192 -13 1177 -6 ct 1163 1 1147 4 1129 4 ct 1106 4 1087 1 1071 -6 ct 1056 -13 1044 -23 1035 -36 ct +1026 -49 1021 -65 1021 -81 ct p ef +1271 0 m 1271 -253 l 1358 -253 l 1378 -253 1393 -252 1403 -249 ct 1418 -246 1430 -240 1440 -231 ct +1454 -220 1464 -205 1470 -188 ct 1477 -170 1480 -150 1480 -128 ct 1480 -109 1478 -92 1473 -77 ct +1469 -62 1463 -50 1456 -40 ct 1449 -30 1442 -23 1433 -17 ct 1425 -11 1415 -7 1403 -4 ct +1391 -1 1378 0 1362 0 ct 1271 0 l p +1305 -30 m 1359 -30 l 1375 -30 1388 -31 1398 -34 ct 1407 -38 1415 -42 1421 -48 ct +1428 -56 1435 -66 1439 -80 ct 1443 -93 1446 -109 1446 -128 ct 1446 -155 1441 -175 1433 -189 ct +1424 -203 1413 -213 1401 -218 ct 1392 -221 1378 -223 1358 -223 ct 1305 -223 l +1305 -30 l p ef +1481 1 m 1579 -252 l 1615 -252 l 1718 1 l 1680 1 l 1650 -76 l 1545 -76 l +1517 1 l 1481 1 l p +1554 -103 m 1640 -103 l 1614 -173 l 1606 -194 1600 -212 1596 -225 ct 1593 -209 1588 -193 1582 -177 ct +1554 -103 l p ef +1898 -30 m 1898 0 l 1731 0 l 1730 -7 1732 -15 1734 -22 ct 1739 -33 1745 -44 1755 -55 ct +1764 -66 1778 -79 1795 -93 ct 1823 -116 1841 -134 1851 -147 ct 1861 -160 1865 -173 1865 -184 ct +1865 -197 1861 -207 1852 -215 ct 1844 -224 1832 -228 1818 -228 ct 1803 -228 1791 -224 1782 -215 ct +1773 -206 1769 -193 1768 -177 ct 1737 -181 l 1739 -204 1747 -222 1761 -235 ct +1775 -247 1795 -254 1819 -254 ct 1843 -254 1862 -247 1876 -233 ct 1890 -220 1897 -203 1897 -184 ct +1897 -173 1895 -163 1891 -154 ct 1887 -144 1880 -134 1871 -123 ct 1861 -112 1845 -97 1823 -78 ct +1804 -63 1792 -52 1787 -47 ct 1782 -41 1777 -35 1774 -30 ct 1898 -30 l p ef +1916 -76 m 1916 -107 l 2012 -107 l 2012 -76 l 1916 -76 l p ef +2143 0 m 2111 0 l 2111 -198 l 2104 -190 2094 -183 2082 -176 ct 2070 -169 2059 -164 2049 -160 ct +2049 -190 l 2067 -198 2082 -208 2095 -220 ct 2108 -231 2117 -243 2123 -253 ct +2143 -253 l 2143 0 l p ef +pom + +pum +4039 7057 t +26 0 m 26 -252 l 77 -252 l 136 -74 l 142 -57 146 -45 148 -36 ct 151 -46 156 -59 162 -77 ct +222 -252 l 267 -252 l 267 0 l 235 0 l 235 -211 l 162 0 l 132 0 l +58 -215 l 58 0 l 26 0 l p ef +317 0 m 317 -253 l 350 -253 l 350 -30 l 475 -30 l 475 0 l 317 0 l +p ef +503 -1 m 503 -253 l 599 -253 l 615 -253 628 -252 637 -250 ct 649 -248 660 -244 668 -239 ct +677 -233 683 -225 688 -214 ct 694 -204 696 -192 696 -180 ct 696 -158 689 -140 676 -125 ct +662 -110 637 -103 601 -103 ct 537 -103 l 537 -1 l 503 -1 l p +537 -133 m 602 -133 l 624 -133 639 -137 648 -145 ct 657 -153 662 -164 662 -179 ct +662 -189 659 -198 654 -206 ct 648 -213 641 -218 633 -221 ct 627 -222 616 -223 601 -223 ct +537 -223 l 537 -133 l p ef +729 -125 m 729 -155 732 -179 738 -197 ct 744 -215 753 -229 765 -239 ct 777 -249 793 -254 811 -254 ct +825 -254 836 -251 847 -245 ct 857 -240 865 -232 872 -222 ct 879 -212 884 -199 888 -184 ct +892 -170 893 -150 893 -125 ct 893 -95 890 -71 884 -53 ct 878 -35 869 -21 857 -11 ct +845 -1 830 4 811 4 ct 787 4 768 -5 754 -22 ct 737 -43 729 -77 729 -125 ct p +761 -125 m 761 -83 765 -56 775 -42 ct 785 -28 797 -21 811 -21 ct 825 -21 837 -28 847 -42 ct +857 -56 862 -83 862 -125 ct 862 -166 857 -194 847 -208 ct 837 -221 825 -228 811 -228 ct +796 -228 785 -222 777 -210 ct 766 -195 761 -166 761 -125 ct p ef +900 4 m 973 -257 l 998 -257 l 925 4 l 900 4 l p ef +1031 0 m 1031 -252 l 1082 -252 l 1141 -74 l 1147 -57 1151 -45 1153 -36 ct +1156 -46 1161 -59 1167 -77 ct 1227 -252 l 1272 -252 l 1272 0 l 1240 0 l +1240 -211 l 1167 0 l 1137 0 l 1063 -215 l 1063 0 l 1031 0 l p ef +1322 0 m 1322 -253 l 1355 -253 l 1355 -30 l 1480 -30 l 1480 0 l 1322 0 l +p ef +1509 -1 m 1509 -253 l 1605 -253 l 1621 -253 1634 -252 1643 -250 ct 1655 -248 1666 -244 1674 -239 ct +1683 -233 1689 -225 1694 -214 ct 1700 -204 1702 -192 1702 -180 ct 1702 -158 1695 -140 1682 -125 ct +1668 -110 1643 -103 1607 -103 ct 1543 -103 l 1543 -1 l 1509 -1 l p +1543 -133 m 1608 -133 l 1630 -133 1645 -137 1654 -145 ct 1663 -153 1668 -164 1668 -179 ct +1668 -189 1665 -198 1660 -206 ct 1654 -213 1647 -218 1639 -221 ct 1633 -222 1622 -223 1607 -223 ct +1543 -223 l 1543 -133 l p ef +1852 0 m 1820 0 l 1820 -198 l 1813 -190 1803 -183 1791 -176 ct 1779 -169 1768 -164 1758 -160 ct +1758 -190 l 1776 -198 1791 -208 1804 -220 ct 1817 -231 1826 -243 1832 -253 ct +1852 -253 l 1852 0 l p ef +1916 -76 m 1916 -107 l 2012 -107 l 2012 -76 l 1916 -76 l p ef +2143 0 m 2111 0 l 2111 -198 l 2104 -190 2094 -183 2082 -176 ct 2070 -169 2059 -164 2049 -160 ct +2049 -190 l 2067 -198 2082 -208 2095 -220 ct 2108 -231 2117 -243 2123 -253 ct +2143 -253 l 2143 0 l p ef +pom + +pum +5780 6659 t +26 0 m 26 -252 l 77 -252 l 136 -74 l 142 -57 146 -45 148 -36 ct 151 -46 156 -59 162 -77 ct +222 -252 l 267 -252 l 267 0 l 235 0 l 235 -211 l 162 0 l 132 0 l +58 -215 l 58 0 l 26 0 l p ef +317 0 m 317 -253 l 350 -253 l 350 -30 l 475 -30 l 475 0 l 317 0 l +p ef +503 -1 m 503 -253 l 599 -253 l 615 -253 628 -252 637 -250 ct 649 -248 660 -244 668 -239 ct +677 -233 683 -225 688 -214 ct 694 -204 696 -192 696 -180 ct 696 -158 689 -140 676 -125 ct +662 -110 637 -103 601 -103 ct 537 -103 l 537 -1 l 503 -1 l p +537 -133 m 602 -133 l 624 -133 639 -137 648 -145 ct 657 -153 662 -164 662 -179 ct +662 -189 659 -198 654 -206 ct 648 -213 641 -218 633 -221 ct 627 -222 616 -223 601 -223 ct +537 -223 l 537 -133 l p ef +729 -125 m 729 -155 732 -179 738 -197 ct 744 -215 753 -229 765 -239 ct 777 -249 793 -254 811 -254 ct +825 -254 836 -251 847 -245 ct 857 -240 865 -232 872 -222 ct 879 -212 884 -199 888 -184 ct +892 -170 893 -150 893 -125 ct 893 -95 890 -71 884 -53 ct 878 -35 869 -21 857 -11 ct +845 -1 830 4 811 4 ct 787 4 768 -5 754 -22 ct 737 -43 729 -77 729 -125 ct p +761 -125 m 761 -83 765 -56 775 -42 ct 785 -28 797 -21 811 -21 ct 825 -21 837 -28 847 -42 ct +857 -56 862 -83 862 -125 ct 862 -166 857 -194 847 -208 ct 837 -221 825 -228 811 -228 ct +796 -228 785 -222 777 -210 ct 766 -195 761 -166 761 -125 ct p ef +900 4 m 973 -257 l 998 -257 l 925 4 l 900 4 l p ef +1031 0 m 1031 -252 l 1082 -252 l 1141 -74 l 1147 -57 1151 -45 1153 -36 ct +1156 -46 1161 -59 1167 -77 ct 1227 -252 l 1272 -252 l 1272 0 l 1240 0 l +1240 -211 l 1167 0 l 1137 0 l 1063 -215 l 1063 0 l 1031 0 l p ef +1322 0 m 1322 -253 l 1355 -253 l 1355 -30 l 1480 -30 l 1480 0 l 1322 0 l +p ef +1509 -1 m 1509 -253 l 1605 -253 l 1621 -253 1634 -252 1643 -250 ct 1655 -248 1666 -244 1674 -239 ct +1683 -233 1689 -225 1694 -214 ct 1700 -204 1702 -192 1702 -180 ct 1702 -158 1695 -140 1682 -125 ct +1668 -110 1643 -103 1607 -103 ct 1543 -103 l 1543 -1 l 1509 -1 l p +1543 -133 m 1608 -133 l 1630 -133 1645 -137 1654 -145 ct 1663 -153 1668 -164 1668 -179 ct +1668 -189 1665 -198 1660 -206 ct 1654 -213 1647 -218 1639 -221 ct 1633 -222 1622 -223 1607 -223 ct +1543 -223 l 1543 -133 l p ef +1898 -30 m 1898 0 l 1731 0 l 1730 -7 1732 -15 1734 -22 ct 1739 -33 1745 -44 1755 -55 ct +1764 -66 1778 -79 1795 -93 ct 1823 -116 1841 -134 1851 -147 ct 1861 -160 1865 -173 1865 -184 ct +1865 -197 1861 -207 1852 -215 ct 1844 -224 1832 -228 1818 -228 ct 1803 -228 1791 -224 1782 -215 ct +1773 -206 1769 -193 1768 -177 ct 1737 -181 l 1739 -204 1747 -222 1761 -235 ct +1775 -247 1795 -254 1819 -254 ct 1843 -254 1862 -247 1876 -233 ct 1890 -220 1897 -203 1897 -184 ct +1897 -173 1895 -163 1891 -154 ct 1887 -144 1880 -134 1871 -123 ct 1861 -112 1845 -97 1823 -78 ct +1804 -63 1792 -52 1787 -47 ct 1782 -41 1777 -35 1774 -30 ct 1898 -30 l p ef +1916 -76 m 1916 -107 l 2012 -107 l 2012 -76 l 1916 -76 l p ef +2143 0 m 2111 0 l 2111 -198 l 2104 -190 2094 -183 2082 -176 ct 2070 -169 2059 -164 2049 -160 ct +2049 -190 l 2067 -198 2082 -208 2095 -220 ct 2108 -231 2117 -243 2123 -253 ct +2143 -253 l 2143 0 l p ef +pom + +pum +270 6198 t +9 -61 m 9 -86 l 85 -86 l 85 -61 l 9 -61 l p ef +197 0 m 197 -48 l 110 -48 l 110 -71 l 202 -203 l 222 -203 l 222 -71 l +249 -71 l 249 -48 l 222 -48 l 222 0 l 197 0 l p +197 -71 m 197 -163 l 134 -71 l 197 -71 l p ef +277 -100 m 277 -124 279 -143 284 -158 ct 289 -173 296 -184 306 -192 ct 316 -200 328 -204 343 -204 ct +353 -204 363 -201 371 -197 ct 379 -193 386 -186 391 -178 ct 397 -170 401 -160 404 -148 ct +407 -136 408 -120 408 -100 ct 408 -76 406 -57 401 -43 ct 396 -28 389 -17 379 -9 ct +370 -1 357 3 343 3 ct 323 3 308 -4 297 -18 ct 283 -35 277 -62 277 -100 ct p +302 -100 m 302 -67 306 -45 314 -34 ct 322 -23 331 -17 343 -17 ct 354 -17 363 -23 371 -34 ct +379 -45 383 -67 383 -100 ct 383 -134 379 -156 371 -167 ct 363 -178 354 -183 342 -183 ct +331 -183 322 -178 315 -169 ct 306 -156 302 -133 302 -100 ct p ef +pom + +pum +270 5556 t +9 -61 m 9 -86 l 85 -86 l 85 -61 l 9 -61 l p ef +248 -24 m 248 0 l 115 0 l 114 -6 115 -12 117 -17 ct 121 -26 126 -35 134 -44 ct +141 -53 152 -63 166 -75 ct 188 -93 203 -107 211 -118 ct 218 -128 222 -138 222 -148 ct +222 -158 219 -166 212 -173 ct 205 -180 196 -183 184 -183 ct 172 -183 163 -179 156 -172 ct +148 -165 145 -155 145 -142 ct 119 -145 l 121 -164 128 -179 139 -189 ct 150 -199 166 -204 185 -204 ct +204 -204 219 -198 231 -187 ct 242 -177 248 -163 248 -147 ct 248 -139 246 -131 243 -123 ct +239 -116 234 -107 226 -99 ct 219 -90 206 -78 188 -63 ct 173 -50 164 -42 159 -37 ct +155 -33 152 -28 149 -24 ct 248 -24 l p ef +277 -100 m 277 -124 279 -143 284 -158 ct 289 -173 296 -184 306 -192 ct 316 -200 328 -204 343 -204 ct +353 -204 363 -201 371 -197 ct 379 -193 386 -186 391 -178 ct 397 -170 401 -160 404 -148 ct +407 -136 408 -120 408 -100 ct 408 -76 406 -57 401 -43 ct 396 -28 389 -17 379 -9 ct +370 -1 357 3 343 3 ct 323 3 308 -4 297 -18 ct 283 -35 277 -62 277 -100 ct p +302 -100 m 302 -67 306 -45 314 -34 ct 322 -23 331 -17 343 -17 ct 354 -17 363 -23 371 -34 ct +379 -45 383 -67 383 -100 ct 383 -134 379 -156 371 -167 ct 363 -178 354 -183 342 -183 ct +331 -183 322 -178 315 -169 ct 306 -156 302 -133 302 -100 ct p ef +pom + +pum +534 4914 t +12 -100 m 12 -124 14 -143 19 -158 ct 24 -173 31 -184 41 -192 ct 51 -200 63 -204 78 -204 ct +88 -204 98 -201 106 -197 ct 114 -193 121 -186 126 -178 ct 132 -170 136 -160 139 -148 ct +142 -136 143 -120 143 -100 ct 143 -76 141 -57 136 -43 ct 131 -28 124 -17 114 -9 ct +105 -1 92 3 78 3 ct 58 3 43 -4 32 -18 ct 18 -35 12 -62 12 -100 ct p +37 -100 m 37 -67 41 -45 49 -34 ct 57 -23 66 -17 78 -17 ct 89 -17 98 -23 106 -34 ct +114 -45 118 -67 118 -100 ct 118 -134 114 -156 106 -167 ct 98 -178 89 -183 77 -183 ct +66 -183 57 -178 50 -169 ct 41 -156 37 -133 37 -100 ct p ef +pom + +pum +375 4272 t +142 -24 m 142 0 l 9 0 l 8 -6 9 -12 11 -17 ct 15 -26 20 -35 28 -44 ct 35 -53 46 -63 60 -75 ct +82 -93 97 -107 105 -118 ct 112 -128 116 -138 116 -148 ct 116 -158 113 -166 106 -173 ct +99 -180 90 -183 78 -183 ct 66 -183 57 -179 50 -172 ct 42 -165 39 -155 39 -142 ct +13 -145 l 15 -164 22 -179 33 -189 ct 44 -199 60 -204 79 -204 ct 98 -204 113 -198 125 -187 ct +136 -177 142 -163 142 -147 ct 142 -139 140 -131 137 -123 ct 133 -116 128 -107 120 -99 ct +113 -90 100 -78 82 -63 ct 67 -50 58 -42 53 -37 ct 49 -33 46 -28 43 -24 ct 142 -24 l +p ef +171 -100 m 171 -124 173 -143 178 -158 ct 183 -173 190 -184 200 -192 ct 210 -200 222 -204 237 -204 ct +247 -204 257 -201 265 -197 ct 273 -193 280 -186 285 -178 ct 291 -170 295 -160 298 -148 ct +301 -136 302 -120 302 -100 ct 302 -76 300 -57 295 -43 ct 290 -28 283 -17 273 -9 ct +264 -1 251 3 237 3 ct 217 3 202 -4 191 -18 ct 177 -35 171 -62 171 -100 ct p +196 -100 m 196 -67 200 -45 208 -34 ct 216 -23 225 -17 237 -17 ct 248 -17 257 -23 265 -34 ct +273 -45 277 -67 277 -100 ct 277 -134 273 -156 265 -167 ct 257 -178 248 -183 236 -183 ct +225 -183 216 -178 209 -169 ct 200 -156 196 -133 196 -100 ct p ef +pom + +pum +375 3630 t +91 0 m 91 -48 l 4 -48 l 4 -71 l 96 -203 l 116 -203 l 116 -71 l 143 -71 l +143 -48 l 116 -48 l 116 0 l 91 0 l p +91 -71 m 91 -163 l 28 -71 l 91 -71 l p ef +171 -100 m 171 -124 173 -143 178 -158 ct 183 -173 190 -184 200 -192 ct 210 -200 222 -204 237 -204 ct +247 -204 257 -201 265 -197 ct 273 -193 280 -186 285 -178 ct 291 -170 295 -160 298 -148 ct +301 -136 302 -120 302 -100 ct 302 -76 300 -57 295 -43 ct 290 -28 283 -17 273 -9 ct +264 -1 251 3 237 3 ct 217 3 202 -4 191 -18 ct 177 -35 171 -62 171 -100 ct p +196 -100 m 196 -67 200 -45 208 -34 ct 216 -23 225 -17 237 -17 ct 248 -17 257 -23 265 -34 ct +273 -45 277 -67 277 -100 ct 277 -134 273 -156 265 -167 ct 257 -178 248 -183 236 -183 ct +225 -183 216 -178 209 -169 ct 200 -156 196 -133 196 -100 ct p ef +pom + +pum +375 2988 t +140 -154 m 116 -152 l 113 -161 110 -168 106 -173 ct 100 -180 91 -184 82 -184 ct +74 -184 67 -181 61 -177 ct 53 -171 47 -163 42 -152 ct 38 -141 35 -125 35 -105 ct +41 -114 49 -121 57 -125 ct 66 -130 75 -132 84 -132 ct 101 -132 115 -126 126 -114 ct +138 -101 144 -86 144 -66 ct 144 -54 141 -42 136 -31 ct 130 -20 123 -12 113 -6 ct +104 0 93 3 81 3 ct 60 3 43 -5 30 -20 ct 17 -35 11 -60 11 -95 ct 11 -134 18 -163 32 -181 ct +45 -196 62 -204 83 -204 ct 99 -204 112 -200 122 -191 ct 132 -182 138 -169 140 -154 ct +p +39 -66 m 39 -58 41 -49 45 -42 ct 48 -34 53 -28 60 -24 ct 66 -19 73 -17 80 -17 ct +91 -17 100 -22 107 -30 ct 115 -39 119 -50 119 -65 ct 119 -79 115 -90 107 -98 ct +100 -106 91 -110 79 -110 ct 68 -110 59 -106 51 -98 ct 43 -90 39 -79 39 -66 ct p ef +171 -100 m 171 -124 173 -143 178 -158 ct 183 -173 190 -184 200 -192 ct 210 -200 222 -204 237 -204 ct +247 -204 257 -201 265 -197 ct 273 -193 280 -186 285 -178 ct 291 -170 295 -160 298 -148 ct +301 -136 302 -120 302 -100 ct 302 -76 300 -57 295 -43 ct 290 -28 283 -17 273 -9 ct +264 -1 251 3 237 3 ct 217 3 202 -4 191 -18 ct 177 -35 171 -62 171 -100 ct p +196 -100 m 196 -67 200 -45 208 -34 ct 216 -23 225 -17 237 -17 ct 248 -17 257 -23 265 -34 ct +273 -45 277 -67 277 -100 ct 277 -134 273 -156 265 -167 ct 257 -178 248 -183 236 -183 ct +225 -183 216 -178 209 -169 ct 200 -156 196 -133 196 -100 ct p ef +pom + +pum +375 2346 t +50 -110 m 40 -114 32 -120 27 -127 ct 22 -134 20 -142 20 -152 ct 20 -167 25 -179 35 -189 ct +46 -199 60 -204 78 -204 ct 95 -204 109 -199 120 -189 ct 131 -178 136 -166 136 -151 ct +136 -142 134 -134 129 -127 ct 124 -120 116 -114 106 -110 ct 119 -106 128 -100 135 -91 ct +141 -82 144 -71 144 -58 ct 144 -41 138 -27 126 -15 ct 114 -3 98 3 78 3 ct 58 3 42 -3 30 -15 ct +18 -27 11 -41 11 -59 ct 11 -72 15 -83 21 -92 ct 28 -101 38 -107 50 -110 ct p +45 -153 m 45 -143 48 -135 54 -129 ct 60 -123 68 -120 78 -120 ct 88 -120 95 -123 102 -129 ct +108 -135 111 -142 111 -151 ct 111 -160 108 -168 101 -174 ct 95 -180 87 -184 78 -184 ct +68 -184 60 -181 54 -174 ct 48 -168 45 -161 45 -153 ct p +37 -59 m 37 -52 39 -45 42 -38 ct 45 -32 50 -27 57 -23 ct 63 -19 71 -17 78 -17 ct +90 -17 100 -21 108 -29 ct 115 -37 119 -46 119 -58 ct 119 -70 115 -80 107 -88 ct +99 -96 89 -100 77 -100 ct 66 -100 56 -96 48 -88 ct 41 -80 37 -71 37 -59 ct p ef +171 -100 m 171 -124 173 -143 178 -158 ct 183 -173 190 -184 200 -192 ct 210 -200 222 -204 237 -204 ct +247 -204 257 -201 265 -197 ct 273 -193 280 -186 285 -178 ct 291 -170 295 -160 298 -148 ct +301 -136 302 -120 302 -100 ct 302 -76 300 -57 295 -43 ct 290 -28 283 -17 273 -9 ct +264 -1 251 3 237 3 ct 217 3 202 -4 191 -18 ct 177 -35 171 -62 171 -100 ct p +196 -100 m 196 -67 200 -45 208 -34 ct 216 -23 225 -17 237 -17 ct 248 -17 257 -23 265 -34 ct +273 -45 277 -67 277 -100 ct 277 -134 273 -156 265 -167 ct 257 -178 248 -183 236 -183 ct +225 -183 216 -178 209 -169 ct 200 -156 196 -133 196 -100 ct p ef +pom + +pum +217 1704 t +105 0 m 80 0 l 80 -158 l 74 -153 66 -147 57 -141 ct 47 -136 38 -131 31 -128 ct +31 -153 l 45 -159 57 -167 67 -176 ct 77 -186 85 -195 89 -203 ct 105 -203 l +105 0 l p ef +171 -100 m 171 -124 173 -143 178 -158 ct 183 -173 190 -184 200 -192 ct 210 -200 222 -204 237 -204 ct +247 -204 257 -201 265 -197 ct 273 -193 280 -186 285 -178 ct 291 -170 295 -160 298 -148 ct +301 -136 302 -120 302 -100 ct 302 -76 300 -57 295 -43 ct 290 -28 283 -17 273 -9 ct +264 -1 251 3 237 3 ct 217 3 202 -4 191 -18 ct 177 -35 171 -62 171 -100 ct p +196 -100 m 196 -67 200 -45 208 -34 ct 216 -23 225 -17 237 -17 ct 248 -17 257 -23 265 -34 ct +273 -45 277 -67 277 -100 ct 277 -134 273 -156 265 -167 ct 257 -178 248 -183 236 -183 ct +225 -183 216 -178 209 -169 ct 200 -156 196 -133 196 -100 ct p ef +330 -100 m 330 -124 332 -143 337 -158 ct 342 -173 349 -184 359 -192 ct 369 -200 381 -204 396 -204 ct +406 -204 416 -201 424 -197 ct 432 -193 439 -186 444 -178 ct 450 -170 454 -160 457 -148 ct +460 -136 461 -120 461 -100 ct 461 -76 459 -57 454 -43 ct 449 -28 442 -17 432 -9 ct +423 -1 410 3 396 3 ct 376 3 361 -4 350 -18 ct 336 -35 330 -62 330 -100 ct p +355 -100 m 355 -67 359 -45 367 -34 ct 375 -23 384 -17 396 -17 ct 407 -17 416 -23 424 -34 ct +432 -45 436 -67 436 -100 ct 436 -134 432 -156 424 -167 ct 416 -178 407 -183 395 -183 ct +384 -183 375 -178 368 -169 ct 359 -156 355 -133 355 -100 ct p ef +pom + +pum +2621 560 t +36 1 m 36 -329 l 182 -329 l 211 -329 233 -326 249 -320 ct 264 -314 276 -304 285 -289 ct +294 -274 299 -257 299 -239 ct 299 -216 291 -196 276 -180 ct 261 -164 238 -154 206 -150 ct +218 -144 226 -139 232 -133 ct 245 -121 257 -107 269 -89 ct 326 1 l 271 1 l +227 -68 l 215 -88 204 -103 196 -114 ct 188 -124 181 -131 174 -136 ct 168 -140 161 -143 154 -144 ct +149 -145 141 -146 130 -146 ct 80 -146 l 80 1 l 36 1 l p +80 -184 m 173 -184 l 193 -184 208 -186 220 -190 ct 231 -194 239 -201 245 -210 ct +251 -219 254 -229 254 -239 ct 254 -255 248 -268 237 -278 ct 226 -288 208 -293 184 -293 ct +80 -293 l 80 -184 l p ef +511 -77 m 553 -72 l 546 -48 534 -29 516 -15 ct 499 -2 476 5 448 5 ct 413 5 386 -6 365 -27 ct +345 -49 335 -79 335 -118 ct 335 -158 345 -189 366 -211 ct 386 -233 413 -244 446 -244 ct +478 -244 504 -233 524 -212 ct 544 -190 554 -159 554 -120 ct 554 -117 554 -114 554 -109 ct +377 -109 l 378 -83 385 -63 399 -49 ct 412 -35 429 -28 448 -28 ct 463 -28 476 -32 486 -40 ct +497 -48 505 -60 511 -77 ct p +379 -142 m 512 -142 l 510 -162 505 -177 496 -188 ct 484 -203 467 -211 446 -211 ct +428 -211 412 -205 400 -192 ct 387 -180 380 -163 379 -142 ct p ef +585 0 m 585 -329 l 626 -329 l 626 0 l 585 0 l p ef +847 -30 m 832 -17 817 -8 803 -3 ct 790 2 775 5 759 5 ct 733 5 713 -1 699 -14 ct +685 -27 678 -43 678 -63 ct 678 -75 680 -86 686 -95 ct 691 -105 698 -113 706 -119 ct +715 -124 725 -129 735 -132 ct 743 -134 755 -136 771 -138 ct 804 -142 828 -146 843 -152 ct +843 -157 843 -161 843 -162 ct 843 -179 840 -191 832 -197 ct 822 -206 806 -211 786 -211 ct +767 -211 753 -208 744 -201 ct 735 -194 728 -183 724 -166 ct 685 -171 l 688 -188 694 -202 702 -212 ct +710 -222 722 -230 738 -236 ct 753 -242 771 -244 792 -244 ct 812 -244 829 -242 841 -237 ct +854 -232 863 -226 869 -219 ct 875 -212 880 -203 882 -192 ct 883 -185 884 -172 884 -154 ct +884 -100 l 884 -63 885 -39 887 -29 ct 888 -19 892 -10 897 0 ct 855 0 l 850 -9 848 -19 847 -30 ct +p +843 -120 m 829 -114 807 -109 777 -105 ct 761 -103 749 -100 742 -97 ct 735 -94 730 -89 726 -84 ct +722 -78 721 -71 721 -64 ct 721 -54 725 -45 733 -37 ct 741 -30 753 -27 769 -27 ct +784 -27 798 -30 810 -37 ct 822 -44 831 -53 837 -65 ct 841 -74 843 -88 843 -105 ct +843 -120 l p ef +1018 -36 m 1024 -1 l 1013 2 1003 3 994 3 ct 979 3 968 1 960 -4 ct 952 -9 946 -15 943 -22 ct +939 -30 938 -46 938 -70 ct 938 -208 l 908 -208 l 908 -239 l 938 -239 l +938 -298 l 978 -322 l 978 -239 l 1018 -239 l 1018 -208 l 978 -208 l +978 -68 l 978 -56 978 -49 980 -46 ct 981 -42 984 -40 987 -38 ct 990 -36 995 -35 1001 -35 ct +1005 -35 1011 -35 1018 -36 ct p ef +1062 -283 m 1062 -330 l 1103 -330 l 1103 -283 l 1062 -283 l p +1062 0 m 1062 -239 l 1103 -239 l 1103 0 l 1062 0 l p ef +1234 0 m 1144 -239 l 1186 -239 l 1238 -96 l 1243 -80 1248 -64 1253 -48 ct +1256 -60 1261 -75 1268 -93 ct 1321 -239 l 1362 -239 l 1272 0 l 1234 0 l +p ef +1569 -77 m 1611 -72 l 1604 -48 1592 -29 1574 -15 ct 1557 -2 1534 5 1506 5 ct +1471 5 1444 -6 1423 -27 ct 1403 -49 1393 -79 1393 -118 ct 1393 -158 1403 -189 1424 -211 ct +1444 -233 1471 -244 1504 -244 ct 1536 -244 1562 -233 1582 -212 ct 1602 -190 1612 -159 1612 -120 ct +1612 -117 1612 -114 1612 -109 ct 1435 -109 l 1436 -83 1443 -63 1457 -49 ct +1470 -35 1487 -28 1506 -28 ct 1521 -28 1534 -32 1544 -40 ct 1555 -48 1563 -60 1569 -77 ct +p +1437 -142 m 1570 -142 l 1568 -162 1563 -177 1554 -188 ct 1542 -203 1525 -211 1504 -211 ct +1486 -211 1470 -205 1458 -192 ct 1445 -180 1438 -163 1437 -142 ct p ef +1932 -88 m 1971 -83 l 1967 -55 1956 -34 1938 -18 ct 1920 -3 1898 5 1872 5 ct +1840 5 1813 -6 1794 -27 ct 1774 -48 1764 -79 1764 -119 ct 1764 -144 1768 -167 1777 -186 ct +1785 -206 1798 -220 1816 -230 ct 1833 -239 1852 -244 1872 -244 ct 1898 -244 1919 -238 1936 -225 ct +1952 -212 1963 -193 1967 -169 ct 1928 -163 l 1924 -179 1918 -191 1908 -199 ct +1899 -207 1887 -211 1874 -211 ct 1854 -211 1837 -204 1824 -189 ct 1812 -175 1805 -151 1805 -120 ct +1805 -88 1812 -65 1824 -50 ct 1836 -36 1852 -28 1872 -28 ct 1888 -28 1901 -33 1911 -43 ct +1922 -53 1929 -68 1932 -88 ct p ef +2014 0 m 2014 -329 l 2055 -329 l 2055 -211 l 2073 -233 2097 -244 2126 -244 ct +2144 -244 2159 -241 2172 -234 ct 2185 -227 2194 -217 2200 -205 ct 2205 -192 2208 -175 2208 -151 ct +2208 0 l 2168 0 l 2168 -151 l 2168 -171 2163 -186 2155 -195 ct 2146 -205 2134 -209 2118 -209 ct +2106 -209 2094 -206 2084 -200 ct 2073 -194 2066 -185 2061 -175 ct 2057 -164 2055 -149 2055 -131 ct +2055 0 l 2014 0 l p ef +2409 -30 m 2394 -17 2379 -8 2365 -3 ct 2352 2 2337 5 2321 5 ct 2295 5 2275 -1 2261 -14 ct +2247 -27 2240 -43 2240 -63 ct 2240 -75 2242 -86 2248 -95 ct 2253 -105 2260 -113 2268 -119 ct +2277 -124 2287 -129 2297 -132 ct 2305 -134 2317 -136 2333 -138 ct 2366 -142 2390 -146 2405 -152 ct +2405 -157 2405 -161 2405 -162 ct 2405 -179 2402 -191 2394 -197 ct 2384 -206 2368 -211 2348 -211 ct +2329 -211 2315 -208 2306 -201 ct 2297 -194 2290 -183 2286 -166 ct 2247 -171 l +2250 -188 2256 -202 2264 -212 ct 2272 -222 2284 -230 2300 -236 ct 2315 -242 2333 -244 2354 -244 ct +2374 -244 2391 -242 2403 -237 ct 2416 -232 2425 -226 2431 -219 ct 2437 -212 2442 -203 2444 -192 ct +2445 -185 2446 -172 2446 -154 ct 2446 -100 l 2446 -63 2447 -39 2449 -29 ct +2450 -19 2454 -10 2459 0 ct 2417 0 l 2412 -9 2410 -19 2409 -30 ct p +2405 -120 m 2391 -114 2369 -109 2339 -105 ct 2323 -103 2311 -100 2304 -97 ct +2297 -94 2292 -89 2288 -84 ct 2284 -78 2283 -71 2283 -64 ct 2283 -54 2287 -45 2295 -37 ct +2303 -30 2315 -27 2331 -27 ct 2346 -27 2360 -30 2372 -37 ct 2384 -44 2393 -53 2399 -65 ct +2403 -74 2405 -88 2405 -105 ct 2405 -120 l p ef +2491 0 m 2491 -239 l 2528 -239 l 2528 -205 l 2545 -231 2570 -244 2603 -244 ct +2618 -244 2631 -241 2643 -236 ct 2655 -231 2664 -224 2670 -216 ct 2676 -208 2680 -198 2682 -186 ct +2684 -179 2685 -165 2685 -147 ct 2685 0 l 2644 0 l 2644 -145 l 2644 -162 2643 -174 2640 -182 ct +2636 -190 2631 -197 2623 -202 ct 2615 -207 2606 -209 2595 -209 ct 2578 -209 2563 -203 2550 -193 ct +2538 -182 2532 -161 2532 -130 ct 2532 0 l 2491 0 l p ef +2722 20 m 2761 26 l 2763 38 2767 47 2775 52 ct 2785 60 2798 64 2816 64 ct +2834 64 2849 60 2859 52 ct 2869 45 2876 34 2880 21 ct 2882 12 2883 -5 2883 -31 ct +2865 -10 2843 0 2817 0 ct 2784 0 2759 -12 2741 -36 ct 2723 -59 2714 -88 2714 -121 ct +2714 -143 2718 -164 2726 -184 ct 2734 -203 2746 -218 2762 -228 ct 2777 -239 2796 -244 2817 -244 ct +2845 -244 2868 -233 2886 -210 ct 2886 -239 l 2924 -239 l 2924 -32 l 2924 5 2920 31 2912 47 ct +2905 62 2893 75 2876 84 ct 2860 92 2840 97 2816 97 ct 2788 97 2765 91 2747 78 ct +2730 65 2721 46 2722 20 ct p +2755 -124 m 2755 -92 2761 -69 2774 -55 ct 2786 -41 2802 -33 2820 -33 ct 2839 -33 2855 -41 2867 -55 ct +2880 -69 2886 -92 2886 -122 ct 2886 -151 2879 -173 2867 -188 ct 2854 -203 2838 -211 2820 -211 ct +2802 -211 2787 -203 2774 -189 ct 2762 -174 2755 -152 2755 -124 ct p ef +3130 -77 m 3172 -72 l 3165 -48 3153 -29 3135 -15 ct 3118 -2 3095 5 3067 5 ct +3032 5 3005 -6 2984 -27 ct 2964 -49 2954 -79 2954 -118 ct 2954 -158 2964 -189 2985 -211 ct +3005 -233 3032 -244 3065 -244 ct 3097 -244 3123 -233 3143 -212 ct 3163 -190 3173 -159 3173 -120 ct +3173 -117 3173 -114 3173 -109 ct 2996 -109 l 2997 -83 3004 -63 3018 -49 ct +3031 -35 3048 -28 3067 -28 ct 3082 -28 3095 -32 3105 -40 ct 3116 -48 3124 -60 3130 -77 ct +p +2998 -142 m 3131 -142 l 3129 -162 3124 -177 3115 -188 ct 3103 -203 3086 -211 3065 -211 ct +3047 -211 3031 -205 3019 -192 ct 3006 -180 2999 -163 2998 -142 ct p ef +3337 -283 m 3337 -330 l 3378 -330 l 3378 -283 l 3337 -283 l p +3337 0 m 3337 -239 l 3378 -239 l 3378 0 l 3337 0 l p ef +3443 0 m 3443 -239 l 3480 -239 l 3480 -205 l 3497 -231 3522 -244 3555 -244 ct +3570 -244 3583 -241 3595 -236 ct 3607 -231 3616 -224 3622 -216 ct 3628 -208 3632 -198 3634 -186 ct +3636 -179 3637 -165 3637 -147 ct 3637 0 l 3596 0 l 3596 -145 l 3596 -162 3595 -174 3592 -182 ct +3588 -190 3583 -197 3575 -202 ct 3567 -207 3558 -209 3547 -209 ct 3530 -209 3515 -203 3502 -193 ct +3490 -182 3484 -161 3484 -130 ct 3484 0 l 3443 0 l p ef +3977 -77 m 4019 -72 l 4012 -48 4000 -29 3982 -15 ct 3965 -2 3942 5 3914 5 ct +3879 5 3852 -6 3831 -27 ct 3811 -49 3801 -79 3801 -118 ct 3801 -158 3811 -189 3832 -211 ct +3852 -233 3879 -244 3912 -244 ct 3944 -244 3970 -233 3990 -212 ct 4010 -190 4020 -159 4020 -120 ct +4020 -117 4020 -114 4020 -109 ct 3843 -109 l 3844 -83 3851 -63 3865 -49 ct +3878 -35 3895 -28 3914 -28 ct 3929 -28 3942 -32 3952 -40 ct 3963 -48 3971 -60 3977 -77 ct +p +3845 -142 m 3978 -142 l 3976 -162 3971 -177 3962 -188 ct 3950 -203 3933 -211 3912 -211 ct +3894 -211 3878 -205 3866 -192 ct 3853 -180 3846 -163 3845 -142 ct p ef +4052 0 m 4052 -239 l 4088 -239 l 4088 -202 l 4097 -219 4106 -231 4114 -236 ct +4122 -241 4130 -244 4140 -244 ct 4153 -244 4167 -240 4181 -231 ct 4167 -193 l +4157 -199 4148 -202 4138 -202 ct 4129 -202 4121 -200 4114 -194 ct 4107 -189 4102 -182 4099 -172 ct +4094 -158 4092 -142 4092 -125 ct 4092 0 l 4052 0 l p ef +4210 0 m 4210 -239 l 4246 -239 l 4246 -202 l 4255 -219 4264 -231 4272 -236 ct +4280 -241 4288 -244 4298 -244 ct 4311 -244 4325 -240 4339 -231 ct 4325 -193 l +4315 -199 4306 -202 4296 -202 ct 4287 -202 4279 -200 4272 -194 ct 4265 -189 4260 -182 4257 -172 ct +4252 -158 4250 -142 4250 -125 ct 4250 0 l 4210 0 l p ef +4354 -120 m 4354 -164 4366 -197 4391 -218 ct 4411 -236 4436 -244 4466 -244 ct +4499 -244 4525 -234 4546 -212 ct 4567 -191 4577 -161 4577 -123 ct 4577 -92 4573 -68 4563 -51 ct +4554 -33 4541 -19 4523 -10 ct 4506 0 4487 5 4466 5 ct 4433 5 4406 -6 4385 -27 ct +4365 -49 4354 -79 4354 -120 ct p +4396 -120 m 4396 -89 4402 -66 4416 -51 ct 4429 -36 4446 -28 4466 -28 ct 4486 -28 4503 -36 4516 -51 ct +4529 -66 4536 -90 4536 -121 ct 4536 -151 4529 -173 4516 -188 ct 4502 -203 4486 -211 4466 -211 ct +4446 -211 4429 -203 4416 -188 ct 4402 -173 4396 -150 4396 -120 ct p ef +4607 0 m 4607 -239 l 4643 -239 l 4643 -202 l 4652 -219 4661 -231 4669 -236 ct +4677 -241 4685 -244 4695 -244 ct 4708 -244 4722 -240 4736 -231 ct 4722 -193 l +4712 -199 4703 -202 4693 -202 ct 4684 -202 4676 -200 4669 -194 ct 4662 -189 4657 -182 4654 -172 ct +4649 -158 4647 -142 4647 -125 ct 4647 0 l 4607 0 l p ef +4898 0 m 4898 -239 l 4934 -239 l 4934 -202 l 4943 -219 4952 -231 4960 -236 ct +4968 -241 4976 -244 4986 -244 ct 4999 -244 5013 -240 5027 -231 ct 5013 -193 l +5003 -199 4994 -202 4984 -202 ct 4975 -202 4967 -200 4960 -194 ct 4953 -189 4948 -182 4945 -172 ct +4940 -158 4938 -142 4938 -125 ct 4938 0 l 4898 0 l p ef +5213 -30 m 5198 -17 5183 -8 5169 -3 ct 5156 2 5141 5 5125 5 ct 5099 5 5079 -1 5065 -14 ct +5051 -27 5044 -43 5044 -63 ct 5044 -75 5046 -86 5052 -95 ct 5057 -105 5064 -113 5072 -119 ct +5081 -124 5091 -129 5101 -132 ct 5109 -134 5121 -136 5137 -138 ct 5170 -142 5194 -146 5209 -152 ct +5209 -157 5209 -161 5209 -162 ct 5209 -179 5206 -191 5198 -197 ct 5188 -206 5172 -211 5152 -211 ct +5133 -211 5119 -208 5110 -201 ct 5101 -194 5094 -183 5090 -166 ct 5051 -171 l +5054 -188 5060 -202 5068 -212 ct 5076 -222 5088 -230 5104 -236 ct 5119 -242 5137 -244 5158 -244 ct +5178 -244 5195 -242 5207 -237 ct 5220 -232 5229 -226 5235 -219 ct 5241 -212 5246 -203 5248 -192 ct +5249 -185 5250 -172 5250 -154 ct 5250 -100 l 5250 -63 5251 -39 5253 -29 ct +5254 -19 5258 -10 5263 0 ct 5221 0 l 5216 -9 5214 -19 5213 -30 ct p +5209 -120 m 5195 -114 5173 -109 5143 -105 ct 5127 -103 5115 -100 5108 -97 ct +5101 -94 5096 -89 5092 -84 ct 5088 -78 5087 -71 5087 -64 ct 5087 -54 5091 -45 5099 -37 ct +5107 -30 5119 -27 5135 -27 ct 5150 -27 5164 -30 5176 -37 ct 5188 -44 5197 -53 5203 -65 ct +5207 -74 5209 -88 5209 -105 ct 5209 -120 l p ef +5383 -36 m 5389 -1 l 5378 2 5368 3 5359 3 ct 5344 3 5333 1 5325 -4 ct 5317 -9 5311 -15 5308 -22 ct +5304 -30 5303 -46 5303 -70 ct 5303 -208 l 5273 -208 l 5273 -239 l 5303 -239 l +5303 -298 l 5343 -322 l 5343 -239 l 5383 -239 l 5383 -208 l 5343 -208 l +5343 -68 l 5343 -56 5343 -49 5345 -46 ct 5346 -42 5349 -40 5352 -38 ct 5355 -36 5360 -35 5366 -35 ct +5370 -35 5376 -35 5383 -36 ct p ef +5591 -77 m 5633 -72 l 5626 -48 5614 -29 5596 -15 ct 5579 -2 5556 5 5528 5 ct +5493 5 5466 -6 5445 -27 ct 5425 -49 5415 -79 5415 -118 ct 5415 -158 5425 -189 5446 -211 ct +5466 -233 5493 -244 5526 -244 ct 5558 -244 5584 -233 5604 -212 ct 5624 -190 5634 -159 5634 -120 ct +5634 -117 5634 -114 5634 -109 ct 5457 -109 l 5458 -83 5465 -63 5479 -49 ct +5492 -35 5509 -28 5528 -28 ct 5543 -28 5556 -32 5566 -40 ct 5577 -48 5585 -60 5591 -77 ct +p +5459 -142 m 5592 -142 l 5590 -162 5585 -177 5576 -188 ct 5564 -203 5547 -211 5526 -211 ct +5508 -211 5492 -205 5480 -192 ct 5467 -180 5460 -163 5459 -142 ct p ef +pom + +pum +2674 1197 t +30 0 m 30 -278 l 126 -278 l 147 -278 164 -277 175 -274 ct 191 -270 205 -264 216 -254 ct +230 -242 241 -226 249 -207 ct 256 -187 260 -165 260 -141 ct 260 -119 257 -101 252 -84 ct +247 -68 241 -55 233 -44 ct 226 -33 217 -25 208 -19 ct 199 -13 188 -8 175 -5 ct +162 -2 147 0 130 0 ct 30 0 l p +67 -33 m 126 -33 l 144 -33 159 -35 169 -38 ct 180 -41 188 -46 194 -52 ct 203 -61 210 -73 214 -88 ct +219 -102 222 -120 222 -141 ct 222 -170 217 -193 207 -208 ct 198 -224 186 -234 173 -239 ct +163 -243 147 -245 125 -245 ct 67 -245 l 67 -33 l p ef +448 0 m 448 -29 l 433 -6 411 5 385 5 ct 373 5 362 3 351 -2 ct 341 -6 333 -12 328 -19 ct +323 -26 320 -34 318 -44 ct 317 -51 316 -62 316 -76 ct 316 -201 l 350 -201 l +350 -89 l 350 -71 351 -59 352 -53 ct 354 -44 359 -37 366 -32 ct 373 -27 381 -24 391 -24 ct +402 -24 411 -27 420 -32 ct 429 -38 436 -45 439 -54 ct 443 -63 445 -76 445 -93 ct +445 -201 l 479 -201 l 479 0 l 448 0 l p ef +666 -65 m 702 -60 l 696 -40 686 -24 671 -12 ct 656 -1 636 5 613 5 ct 584 5 560 -4 543 -22 ct +526 -40 517 -66 517 -99 ct 517 -133 526 -159 543 -178 ct 561 -197 583 -206 611 -206 ct +638 -206 660 -197 677 -178 ct 694 -160 703 -134 703 -101 ct 703 -99 703 -96 703 -92 ct +552 -92 l 554 -70 560 -53 571 -41 ct 582 -29 596 -23 613 -23 ct 626 -23 636 -26 645 -33 ct +654 -40 661 -50 666 -65 ct p +554 -120 m 667 -120 l 665 -137 661 -150 654 -158 ct 643 -171 629 -178 612 -178 ct +596 -178 583 -173 572 -162 ct 561 -152 555 -138 554 -120 ct p ef +920 -30 m 925 0 l 915 2 907 3 899 3 ct 887 3 877 1 870 -3 ct 864 -7 859 -12 856 -18 ct +853 -25 852 -38 852 -59 ct 852 -174 l 827 -174 l 827 -201 l 852 -201 l +852 -251 l 886 -271 l 886 -201 l 920 -201 l 920 -174 l 886 -174 l +886 -57 l 886 -47 886 -41 888 -38 ct 889 -35 891 -33 893 -31 ct 896 -30 900 -29 905 -29 ct +909 -29 914 -29 920 -30 ct p ef +939 -100 m 939 -137 949 -165 970 -183 ct 987 -198 1008 -205 1033 -205 ct 1061 -205 1084 -196 1101 -178 ct +1119 -160 1127 -135 1127 -103 ct 1127 -77 1124 -57 1116 -42 ct 1108 -27 1097 -16 1082 -7 ct +1067 1 1051 5 1033 5 ct 1005 5 982 -4 965 -22 ct 948 -40 939 -66 939 -100 ct p +974 -100 m 974 -74 980 -55 991 -42 ct 1002 -29 1016 -23 1033 -23 ct 1050 -23 1064 -30 1075 -42 ct +1087 -55 1092 -75 1092 -101 ct 1092 -126 1087 -145 1075 -158 ct 1064 -171 1050 -177 1033 -177 ct +1016 -177 1002 -171 991 -158 ct 980 -145 974 -126 974 -100 ct p ef +1344 -30 m 1349 0 l 1339 2 1331 3 1323 3 ct 1311 3 1301 1 1294 -3 ct 1288 -7 1283 -12 1280 -18 ct +1277 -25 1276 -38 1276 -59 ct 1276 -174 l 1251 -174 l 1251 -201 l 1276 -201 l +1276 -251 l 1310 -271 l 1310 -201 l 1344 -201 l 1344 -174 l 1310 -174 l +1310 -57 l 1310 -47 1310 -41 1312 -38 ct 1313 -35 1315 -33 1317 -31 ct 1320 -30 1324 -29 1329 -29 ct +1333 -29 1338 -29 1344 -30 ct p ef +1375 0 m 1375 -278 l 1409 -278 l 1409 -178 l 1425 -197 1445 -206 1469 -206 ct +1484 -206 1497 -203 1508 -197 ct 1519 -191 1527 -183 1531 -173 ct 1536 -162 1538 -147 1538 -128 ct +1538 0 l 1504 0 l 1504 -128 l 1504 -145 1501 -157 1493 -165 ct 1486 -173 1475 -177 1462 -177 ct +1452 -177 1442 -174 1433 -169 ct 1425 -163 1418 -156 1414 -147 ct 1411 -138 1409 -126 1409 -110 ct +1409 0 l 1375 0 l p ef +1724 -65 m 1760 -60 l 1754 -40 1744 -24 1729 -12 ct 1714 -1 1694 5 1671 5 ct +1642 5 1618 -4 1601 -22 ct 1584 -40 1575 -66 1575 -99 ct 1575 -133 1584 -159 1601 -178 ct +1619 -197 1641 -206 1669 -206 ct 1696 -206 1718 -197 1735 -178 ct 1752 -160 1761 -134 1761 -101 ct +1761 -99 1761 -96 1761 -92 ct 1610 -92 l 1612 -70 1618 -53 1629 -41 ct 1640 -29 1654 -23 1671 -23 ct +1684 -23 1694 -26 1703 -33 ct 1712 -40 1719 -50 1724 -65 ct p +1612 -120 m 1725 -120 l 1723 -137 1719 -150 1712 -158 ct 1701 -171 1687 -178 1670 -178 ct +1654 -178 1641 -173 1630 -162 ct 1619 -152 1613 -138 1612 -120 ct p ef +2036 0 m 2036 -29 l 2021 -6 1999 5 1973 5 ct 1961 5 1950 3 1939 -2 ct 1929 -6 1921 -12 1916 -19 ct +1911 -26 1908 -34 1906 -44 ct 1905 -51 1904 -62 1904 -76 ct 1904 -201 l 1938 -201 l +1938 -89 l 1938 -71 1939 -59 1940 -53 ct 1942 -44 1947 -37 1954 -32 ct 1961 -27 1969 -24 1979 -24 ct +1990 -24 1999 -27 2008 -32 ct 2017 -38 2024 -45 2027 -54 ct 2031 -63 2033 -76 2033 -93 ct +2033 -201 l 2067 -201 l 2067 0 l 2036 0 l p ef +2102 -60 m 2136 -65 l 2138 -52 2143 -41 2151 -34 ct 2160 -27 2172 -23 2188 -23 ct +2203 -23 2215 -26 2223 -33 ct 2230 -39 2234 -47 2234 -55 ct 2234 -63 2231 -69 2224 -73 ct +2219 -77 2208 -80 2189 -85 ct 2164 -91 2147 -97 2137 -102 ct 2127 -106 2120 -113 2115 -121 ct +2110 -129 2108 -138 2108 -148 ct 2108 -157 2110 -165 2114 -173 ct 2118 -180 2123 -187 2131 -192 ct +2136 -196 2143 -199 2152 -202 ct 2161 -205 2171 -206 2182 -206 ct 2197 -206 2211 -204 2223 -199 ct +2235 -195 2244 -188 2250 -181 ct 2255 -173 2259 -162 2261 -149 ct 2228 -145 l +2227 -155 2222 -163 2215 -169 ct 2208 -175 2197 -178 2184 -178 ct 2169 -178 2157 -175 2151 -170 ct +2144 -165 2141 -159 2141 -152 ct 2141 -147 2142 -143 2145 -140 ct 2148 -136 2152 -133 2158 -131 ct +2161 -130 2171 -127 2188 -122 ct 2212 -116 2229 -110 2238 -106 ct 2248 -102 2255 -96 2261 -88 ct +2266 -80 2269 -71 2269 -59 ct 2269 -47 2266 -37 2259 -27 ct 2252 -17 2243 -9 2230 -3 ct +2218 2 2204 5 2188 5 ct 2162 5 2142 0 2128 -11 ct 2114 -22 2106 -38 2102 -60 ct +p ef +2465 -65 m 2501 -60 l 2495 -40 2485 -24 2470 -12 ct 2455 -1 2435 5 2412 5 ct +2383 5 2359 -4 2342 -22 ct 2325 -40 2316 -66 2316 -99 ct 2316 -133 2325 -159 2342 -178 ct +2360 -197 2382 -206 2410 -206 ct 2437 -206 2459 -197 2476 -178 ct 2493 -160 2502 -134 2502 -101 ct +2502 -99 2502 -96 2502 -92 ct 2351 -92 l 2353 -70 2359 -53 2370 -41 ct 2381 -29 2395 -23 2412 -23 ct +2425 -23 2435 -26 2444 -33 ct 2453 -40 2460 -50 2465 -65 ct p +2353 -120 m 2466 -120 l 2464 -137 2460 -150 2453 -158 ct 2442 -171 2428 -178 2411 -178 ct +2395 -178 2382 -173 2371 -162 ct 2360 -152 2354 -138 2353 -120 ct p ef +2632 -100 m 2632 -137 2642 -165 2663 -183 ct 2680 -198 2701 -205 2726 -205 ct +2754 -205 2777 -196 2794 -178 ct 2812 -160 2820 -135 2820 -103 ct 2820 -77 2817 -57 2809 -42 ct +2801 -27 2790 -16 2775 -7 ct 2760 1 2744 5 2726 5 ct 2698 5 2675 -4 2658 -22 ct +2641 -40 2632 -66 2632 -100 ct p +2667 -100 m 2667 -74 2673 -55 2684 -42 ct 2695 -29 2709 -23 2726 -23 ct 2743 -23 2757 -30 2768 -42 ct +2780 -55 2785 -75 2785 -101 ct 2785 -126 2780 -145 2768 -158 ct 2757 -171 2743 -177 2726 -177 ct +2709 -177 2695 -171 2684 -158 ct 2673 -145 2667 -126 2667 -100 ct p ef +2865 0 m 2865 -175 l 2835 -175 l 2835 -202 l 2865 -202 l 2865 -223 l +2865 -237 2866 -247 2868 -253 ct 2872 -262 2877 -269 2886 -275 ct 2894 -280 2906 -283 2920 -283 ct +2930 -283 2941 -282 2952 -280 ct 2947 -250 l 2940 -251 2933 -252 2927 -252 ct +2917 -252 2909 -249 2905 -245 ct 2901 -241 2899 -232 2899 -220 ct 2899 -202 l +2938 -202 l 2938 -175 l 2899 -175 l 2899 0 l 2865 0 l p ef +3069 77 m 3069 -202 l 3100 -202 l 3100 -175 l 3107 -186 3115 -193 3124 -198 ct +3134 -203 3145 -206 3158 -206 ct 3175 -206 3190 -202 3203 -193 ct 3217 -184 3227 -171 3233 -155 ct +3240 -139 3243 -122 3243 -102 ct 3243 -82 3240 -63 3232 -47 ct 3225 -30 3214 -18 3200 -9 ct +3186 0 3171 4 3156 4 ct 3144 4 3134 2 3125 -3 ct 3116 -8 3108 -14 3103 -21 ct 3103 77 l +3069 77 l p +3099 -100 m 3099 -74 3105 -55 3115 -43 ct 3126 -30 3138 -24 3153 -24 ct 3168 -24 3181 -30 3192 -43 ct +3203 -56 3208 -76 3208 -103 ct 3208 -128 3203 -147 3193 -160 ct 3182 -173 3169 -179 3155 -179 ct +3140 -179 3127 -172 3116 -159 ct 3105 -145 3099 -126 3099 -100 ct p ef +3417 -65 m 3453 -60 l 3447 -40 3437 -24 3422 -12 ct 3407 -1 3387 5 3364 5 ct +3335 5 3311 -4 3294 -22 ct 3277 -40 3268 -66 3268 -99 ct 3268 -133 3277 -159 3294 -178 ct +3312 -197 3334 -206 3362 -206 ct 3389 -206 3411 -197 3428 -178 ct 3445 -160 3454 -134 3454 -101 ct +3454 -99 3454 -96 3454 -92 ct 3303 -92 l 3305 -70 3311 -53 3322 -41 ct 3333 -29 3347 -23 3364 -23 ct +3377 -23 3387 -26 3396 -33 ct 3405 -40 3412 -50 3417 -65 ct p +3305 -120 m 3418 -120 l 3416 -137 3412 -150 3405 -158 ct 3394 -171 3380 -178 3363 -178 ct +3347 -178 3334 -173 3323 -162 ct 3312 -152 3306 -138 3305 -120 ct p ef +3491 0 m 3491 -201 l 3522 -201 l 3522 -171 l 3530 -185 3537 -195 3544 -199 ct +3550 -204 3558 -206 3565 -206 ct 3577 -206 3589 -202 3601 -195 ct 3589 -163 l +3580 -168 3572 -171 3564 -171 ct 3556 -171 3550 -168 3544 -164 ct 3538 -160 3534 -153 3531 -145 ct +3527 -133 3525 -120 3525 -105 ct 3525 0 l 3491 0 l p ef +3698 -30 m 3703 0 l 3693 2 3685 3 3677 3 ct 3665 3 3655 1 3648 -3 ct 3642 -7 3637 -12 3634 -18 ct +3631 -25 3630 -38 3630 -59 ct 3630 -174 l 3605 -174 l 3605 -201 l 3630 -201 l +3630 -251 l 3664 -271 l 3664 -201 l 3698 -201 l 3698 -174 l 3664 -174 l +3664 -57 l 3664 -47 3664 -41 3666 -38 ct 3667 -35 3669 -33 3671 -31 ct 3674 -30 3678 -29 3683 -29 ct +3687 -29 3692 -29 3698 -30 ct p ef +3861 0 m 3861 -29 l 3846 -6 3824 5 3798 5 ct 3786 5 3775 3 3764 -2 ct 3754 -6 3746 -12 3741 -19 ct +3736 -26 3733 -34 3731 -44 ct 3730 -51 3729 -62 3729 -76 ct 3729 -201 l 3763 -201 l +3763 -89 l 3763 -71 3764 -59 3765 -53 ct 3767 -44 3772 -37 3779 -32 ct 3786 -27 3794 -24 3804 -24 ct +3815 -24 3824 -27 3833 -32 ct 3842 -38 3849 -45 3852 -54 ct 3856 -63 3858 -76 3858 -93 ct +3858 -201 l 3892 -201 l 3892 0 l 3861 0 l p ef +3941 0 m 3941 -201 l 3972 -201 l 3972 -171 l 3980 -185 3987 -195 3994 -199 ct +4000 -204 4008 -206 4015 -206 ct 4027 -206 4039 -202 4051 -195 ct 4039 -163 l +4030 -168 4022 -171 4014 -171 ct 4006 -171 4000 -168 3994 -164 ct 3988 -160 3984 -153 3981 -145 ct +3977 -133 3975 -120 3975 -105 ct 3975 0 l 3941 0 l p ef +4105 0 m 4073 0 l 4073 -278 l 4107 -278 l 4107 -179 l 4122 -197 4140 -206 4163 -206 ct +4175 -206 4187 -204 4198 -198 ct 4209 -193 4218 -186 4225 -177 ct 4232 -168 4238 -157 4242 -145 ct +4246 -132 4248 -118 4248 -104 ct 4248 -69 4239 -42 4222 -23 ct 4205 -4 4185 5 4161 5 ct +4137 5 4119 -5 4105 -25 ct 4105 0 l p +4105 -102 m 4105 -78 4108 -60 4115 -50 ct 4125 -32 4140 -23 4158 -23 ct 4173 -23 4186 -30 4197 -43 ct +4208 -56 4213 -75 4213 -101 ct 4213 -127 4208 -147 4197 -159 ct 4187 -172 4174 -178 4160 -178 ct +4145 -178 4132 -171 4121 -158 ct 4110 -145 4105 -127 4105 -102 ct p ef +4423 -65 m 4459 -60 l 4453 -40 4443 -24 4428 -12 ct 4413 -1 4393 5 4370 5 ct +4341 5 4317 -4 4300 -22 ct 4283 -40 4274 -66 4274 -99 ct 4274 -133 4283 -159 4300 -178 ct +4318 -197 4340 -206 4368 -206 ct 4395 -206 4417 -197 4434 -178 ct 4451 -160 4460 -134 4460 -101 ct +4460 -99 4460 -96 4460 -92 ct 4309 -92 l 4311 -70 4317 -53 4328 -41 ct 4339 -29 4353 -23 4370 -23 ct +4383 -23 4393 -26 4402 -33 ct 4411 -40 4418 -50 4423 -65 ct p +4311 -120 m 4424 -120 l 4422 -137 4418 -150 4411 -158 ct 4400 -171 4386 -178 4369 -178 ct +4353 -178 4340 -173 4329 -162 ct 4318 -152 4312 -138 4311 -120 ct p ef +4627 0 m 4627 -25 l 4614 -5 4596 5 4571 5 ct 4555 5 4540 1 4527 -8 ct 4513 -17 4503 -29 4495 -45 ct +4488 -61 4484 -79 4484 -100 ct 4484 -120 4488 -138 4494 -155 ct 4501 -171 4511 -183 4524 -192 ct +4538 -201 4553 -205 4569 -205 ct 4581 -205 4592 -203 4602 -198 ct 4611 -192 4619 -186 4625 -178 ct +4625 -278 l 4659 -278 l 4659 0 l 4627 0 l p +4519 -100 m 4519 -74 4525 -55 4536 -42 ct 4546 -29 4559 -23 4574 -23 ct 4589 -23 4602 -29 4612 -41 ct +4622 -54 4628 -72 4628 -97 ct 4628 -125 4622 -145 4612 -158 ct 4601 -171 4588 -177 4573 -177 ct +4557 -177 4545 -171 4535 -158 ct 4524 -146 4519 -127 4519 -100 ct p ef +4945 0 m 4945 -25 l 4932 -5 4914 5 4889 5 ct 4873 5 4858 1 4845 -8 ct 4831 -17 4821 -29 4813 -45 ct +4806 -61 4802 -79 4802 -100 ct 4802 -120 4806 -138 4812 -155 ct 4819 -171 4829 -183 4842 -192 ct +4856 -201 4871 -205 4887 -205 ct 4899 -205 4910 -203 4920 -198 ct 4929 -192 4937 -186 4943 -178 ct +4943 -278 l 4977 -278 l 4977 0 l 4945 0 l p +4837 -100 m 4837 -74 4843 -55 4854 -42 ct 4864 -29 4877 -23 4892 -23 ct 4907 -23 4920 -29 4930 -41 ct +4940 -54 4946 -72 4946 -97 ct 4946 -125 4940 -145 4930 -158 ct 4919 -171 4906 -177 4891 -177 ct +4875 -177 4863 -171 4853 -158 ct 4842 -146 4837 -127 4837 -100 ct p ef +5158 -24 m 5145 -14 5133 -6 5121 -2 ct 5110 3 5097 5 5084 5 ct 5062 5 5045 0 5033 -11 ct +5021 -22 5015 -36 5015 -53 ct 5015 -62 5017 -71 5022 -80 ct 5026 -88 5032 -94 5039 -99 ct +5047 -104 5055 -108 5064 -110 ct 5071 -112 5081 -114 5094 -115 ct 5122 -119 5142 -123 5155 -127 ct +5155 -132 5155 -135 5155 -136 ct 5155 -150 5152 -160 5146 -165 ct 5137 -173 5124 -177 5107 -177 ct +5091 -177 5079 -174 5071 -169 ct 5064 -163 5058 -153 5054 -139 ct 5021 -143 l +5024 -158 5029 -169 5036 -178 ct 5043 -187 5053 -193 5066 -198 ct 5079 -203 5094 -205 5112 -205 ct +5129 -205 5143 -203 5154 -199 ct 5164 -195 5172 -190 5177 -184 ct 5182 -178 5186 -170 5188 -161 ct +5189 -155 5190 -144 5190 -129 ct 5190 -84 l 5190 -52 5190 -32 5192 -24 ct 5193 -15 5196 -7 5200 0 ct +5165 0 l 5161 -7 5159 -15 5158 -24 ct p +5155 -101 m 5143 -95 5124 -91 5099 -88 ct 5085 -86 5075 -83 5070 -81 ct 5064 -78 5059 -75 5056 -70 ct +5053 -65 5051 -59 5051 -54 ct 5051 -44 5055 -37 5062 -31 ct 5069 -25 5079 -22 5092 -22 ct +5105 -22 5117 -25 5127 -30 ct 5137 -36 5145 -44 5150 -54 ct 5153 -62 5155 -73 5155 -88 ct +5155 -101 l p ef +5312 -30 m 5317 0 l 5307 2 5299 3 5291 3 ct 5279 3 5269 1 5262 -3 ct 5256 -7 5251 -12 5248 -18 ct +5245 -25 5244 -38 5244 -59 ct 5244 -174 l 5219 -174 l 5219 -201 l 5244 -201 l +5244 -251 l 5278 -271 l 5278 -201 l 5312 -201 l 5312 -174 l 5278 -174 l +5278 -57 l 5278 -47 5278 -41 5280 -38 ct 5281 -35 5283 -33 5285 -31 ct 5288 -30 5292 -29 5297 -29 ct +5301 -29 5306 -29 5312 -30 ct p ef +5475 -24 m 5462 -14 5450 -6 5438 -2 ct 5427 3 5414 5 5401 5 ct 5379 5 5362 0 5350 -11 ct +5338 -22 5332 -36 5332 -53 ct 5332 -62 5334 -71 5339 -80 ct 5343 -88 5349 -94 5356 -99 ct +5364 -104 5372 -108 5381 -110 ct 5388 -112 5398 -114 5411 -115 ct 5439 -119 5459 -123 5472 -127 ct +5472 -132 5472 -135 5472 -136 ct 5472 -150 5469 -160 5463 -165 ct 5454 -173 5441 -177 5424 -177 ct +5408 -177 5396 -174 5388 -169 ct 5381 -163 5375 -153 5371 -139 ct 5338 -143 l +5341 -158 5346 -169 5353 -178 ct 5360 -187 5370 -193 5383 -198 ct 5396 -203 5411 -205 5429 -205 ct +5446 -205 5460 -203 5471 -199 ct 5481 -195 5489 -190 5494 -184 ct 5499 -178 5503 -170 5505 -161 ct +5506 -155 5507 -144 5507 -129 ct 5507 -84 l 5507 -52 5507 -32 5509 -24 ct 5510 -15 5513 -7 5517 0 ct +5482 0 l 5478 -7 5476 -15 5475 -24 ct p +5472 -101 m 5460 -95 5441 -91 5416 -88 ct 5402 -86 5392 -83 5387 -81 ct 5381 -78 5376 -75 5373 -70 ct +5370 -65 5368 -59 5368 -54 ct 5368 -44 5372 -37 5379 -31 ct 5386 -25 5396 -22 5409 -22 ct +5422 -22 5434 -25 5444 -30 ct 5454 -36 5462 -44 5467 -54 ct 5470 -62 5472 -73 5472 -88 ct +5472 -101 l p ef +pom + + +0.996 c 8318 3826 m 8212 3826 l 8212 3615 l 8423 3615 l 8423 3826 l +8318 3826 l p ef +0.000 c 8318 3826 m 8212 3826 l 8212 3615 l 8423 3615 l 8423 3826 l +8318 3826 l pc + +0.597 c 8318 4201 m 8212 4201 l 8212 3990 l 8423 3990 l 8423 4201 l +8318 4201 l p ef +0.000 c 8318 4201 m 8212 4201 l 8212 3990 l 8423 3990 l 8423 4201 l +8318 4201 l pc + +pum +8529 3845 t +0.101 c 21 0 m 21 -203 l 49 -203 l 155 -44 l 155 -203 l 181 -203 l +181 0 l 153 0 l 47 -159 l 47 0 l 21 0 l p ef +238 0 m 238 -203 l 265 -203 l 265 0 l 238 0 l p ef +304 -66 m 329 -68 l 330 -58 333 -49 337 -43 ct 342 -36 348 -31 358 -27 ct +367 -23 377 -21 388 -21 ct 399 -21 408 -23 415 -26 ct 423 -29 429 -33 433 -38 ct +437 -43 439 -49 439 -55 ct 439 -62 437 -67 433 -72 ct 429 -77 423 -81 415 -84 ct +410 -86 398 -90 379 -94 ct 360 -98 347 -103 340 -107 ct 330 -112 323 -118 318 -126 ct +314 -133 311 -141 311 -151 ct 311 -161 314 -171 320 -179 ct 326 -188 334 -195 345 -200 ct +357 -204 369 -207 382 -207 ct 397 -207 411 -204 422 -199 ct 433 -195 442 -187 448 -178 ct +455 -169 458 -158 458 -146 ct 433 -144 l 431 -157 427 -167 419 -173 ct 411 -180 399 -183 384 -183 ct +367 -183 356 -180 348 -174 ct 341 -168 337 -161 337 -153 ct 337 -145 340 -139 345 -135 ct +350 -130 364 -125 385 -120 ct 407 -115 422 -111 430 -107 ct 442 -102 450 -95 456 -87 ct +462 -78 464 -69 464 -58 ct 464 -47 461 -37 455 -27 ct 449 -18 440 -10 429 -5 ct +417 0 404 3 390 3 ct 371 3 356 0 344 -5 ct 331 -10 322 -18 315 -29 ct 308 -40 304 -52 304 -66 ct +p ef +549 -1 m 549 -179 l 483 -179 l 483 -203 l 643 -203 l 643 -179 l 576 -179 l +576 -1 l 549 -1 l p ef +814 -22 m 817 0 l 810 1 804 2 799 2 ct 790 2 783 1 778 -2 ct 773 -5 769 -9 767 -14 ct +765 -18 764 -28 764 -43 ct 764 -127 l 746 -127 l 746 -146 l 764 -146 l +764 -183 l 789 -198 l 789 -146 l 814 -146 l 814 -127 l 789 -127 l +789 -41 l 789 -34 789 -30 790 -28 ct 791 -26 792 -24 794 -23 ct 796 -22 799 -21 803 -21 ct +806 -21 809 -22 814 -22 ct p ef +939 -48 m 964 -45 l 960 -29 953 -18 942 -9 ct 931 -1 917 3 900 3 ct 879 3 862 -4 849 -17 ct +837 -30 830 -49 830 -72 ct 830 -97 837 -116 849 -130 ct 862 -144 878 -150 899 -150 ct +918 -150 934 -144 947 -130 ct 959 -117 965 -98 965 -74 ct 965 -73 965 -71 965 -68 ct +856 -68 l 857 -51 861 -39 870 -30 ct 878 -22 888 -17 900 -17 ct 909 -17 917 -20 923 -25 ct +930 -29 935 -37 939 -48 ct p +857 -88 m 939 -88 l 938 -100 935 -110 930 -116 ct 922 -125 911 -130 899 -130 ct +888 -130 878 -126 870 -119 ct 862 -111 858 -101 857 -88 ct p ef +988 -44 m 1012 -48 l 1014 -38 1017 -31 1024 -25 ct 1030 -20 1039 -17 1050 -17 ct +1061 -17 1070 -20 1075 -24 ct 1081 -29 1084 -35 1084 -41 ct 1084 -46 1081 -51 1076 -54 ct +1073 -56 1065 -59 1051 -63 ct 1033 -67 1020 -71 1013 -74 ct 1006 -78 1001 -82 997 -88 ct +994 -94 992 -101 992 -108 ct 992 -115 993 -121 996 -126 ct 999 -132 1003 -137 1008 -140 ct +1012 -143 1018 -145 1024 -147 ct 1031 -149 1038 -150 1046 -150 ct 1057 -150 1067 -149 1076 -145 ct +1085 -142 1091 -138 1095 -132 ct 1099 -126 1102 -119 1104 -109 ct 1079 -106 l +1078 -114 1075 -119 1070 -124 ct 1065 -128 1057 -130 1047 -130 ct 1036 -130 1028 -128 1023 -124 ct +1018 -121 1016 -116 1016 -111 ct 1016 -108 1017 -105 1019 -102 ct 1021 -100 1024 -97 1028 -96 ct +1031 -95 1038 -93 1050 -89 ct 1068 -85 1080 -81 1087 -78 ct 1094 -75 1099 -70 1103 -65 ct +1107 -59 1109 -52 1109 -43 ct 1109 -35 1107 -27 1102 -20 ct 1097 -13 1090 -7 1081 -3 ct +1072 1 1062 3 1050 3 ct 1031 3 1017 -1 1007 -9 ct 997 -17 990 -29 988 -44 ct p ef +1211 -22 m 1214 0 l 1207 1 1201 2 1196 2 ct 1187 2 1180 1 1175 -2 ct 1170 -5 1166 -9 1164 -14 ct +1162 -18 1161 -28 1161 -43 ct 1161 -127 l 1143 -127 l 1143 -146 l 1161 -146 l +1161 -183 l 1186 -198 l 1186 -146 l 1211 -146 l 1211 -127 l 1186 -127 l +1186 -41 l 1186 -34 1186 -30 1187 -28 ct 1188 -26 1189 -24 1191 -23 ct 1193 -22 1196 -21 1200 -21 ct +1203 -21 1206 -22 1211 -22 ct p ef +pom + +pum +8529 4220 t +21 0 m 21 -203 l 49 -203 l 155 -44 l 155 -203 l 181 -203 l 181 0 l +153 0 l 47 -159 l 47 0 l 21 0 l p ef +238 0 m 238 -203 l 265 -203 l 265 0 l 238 0 l p ef +304 -66 m 329 -68 l 330 -58 333 -49 337 -43 ct 342 -36 348 -31 358 -27 ct +367 -23 377 -21 388 -21 ct 399 -21 408 -23 415 -26 ct 423 -29 429 -33 433 -38 ct +437 -43 439 -49 439 -55 ct 439 -62 437 -67 433 -72 ct 429 -77 423 -81 415 -84 ct +410 -86 398 -90 379 -94 ct 360 -98 347 -103 340 -107 ct 330 -112 323 -118 318 -126 ct +314 -133 311 -141 311 -151 ct 311 -161 314 -171 320 -179 ct 326 -188 334 -195 345 -200 ct +357 -204 369 -207 382 -207 ct 397 -207 411 -204 422 -199 ct 433 -195 442 -187 448 -178 ct +455 -169 458 -158 458 -146 ct 433 -144 l 431 -157 427 -167 419 -173 ct 411 -180 399 -183 384 -183 ct +367 -183 356 -180 348 -174 ct 341 -168 337 -161 337 -153 ct 337 -145 340 -139 345 -135 ct +350 -130 364 -125 385 -120 ct 407 -115 422 -111 430 -107 ct 442 -102 450 -95 456 -87 ct +462 -78 464 -69 464 -58 ct 464 -47 461 -37 455 -27 ct 449 -18 440 -10 429 -5 ct +417 0 404 3 390 3 ct 371 3 356 0 344 -5 ct 331 -10 322 -18 315 -29 ct 308 -40 304 -52 304 -66 ct +p ef +549 -1 m 549 -179 l 483 -179 l 483 -203 l 643 -203 l 643 -179 l 576 -179 l +576 -1 l 549 -1 l p ef +814 -22 m 817 0 l 810 1 804 2 799 2 ct 790 2 783 1 778 -2 ct 773 -5 769 -9 767 -14 ct +765 -18 764 -28 764 -43 ct 764 -127 l 746 -127 l 746 -146 l 764 -146 l +764 -183 l 789 -198 l 789 -146 l 814 -146 l 814 -127 l 789 -127 l +789 -41 l 789 -34 789 -30 790 -28 ct 791 -26 792 -24 794 -23 ct 796 -22 799 -21 803 -21 ct +806 -21 809 -22 814 -22 ct p ef +939 -48 m 964 -45 l 960 -29 953 -18 942 -9 ct 931 -1 917 3 900 3 ct 879 3 862 -4 849 -17 ct +837 -30 830 -49 830 -72 ct 830 -97 837 -116 849 -130 ct 862 -144 878 -150 899 -150 ct +918 -150 934 -144 947 -130 ct 959 -117 965 -98 965 -74 ct 965 -73 965 -71 965 -68 ct +856 -68 l 857 -51 861 -39 870 -30 ct 878 -22 888 -17 900 -17 ct 909 -17 917 -20 923 -25 ct +930 -29 935 -37 939 -48 ct p +857 -88 m 939 -88 l 938 -100 935 -110 930 -116 ct 922 -125 911 -130 899 -130 ct +888 -130 878 -126 870 -119 ct 862 -111 858 -101 857 -88 ct p ef +988 -44 m 1012 -48 l 1014 -38 1017 -31 1024 -25 ct 1030 -20 1039 -17 1050 -17 ct +1061 -17 1070 -20 1075 -24 ct 1081 -29 1084 -35 1084 -41 ct 1084 -46 1081 -51 1076 -54 ct +1073 -56 1065 -59 1051 -63 ct 1033 -67 1020 -71 1013 -74 ct 1006 -78 1001 -82 997 -88 ct +994 -94 992 -101 992 -108 ct 992 -115 993 -121 996 -126 ct 999 -132 1003 -137 1008 -140 ct +1012 -143 1018 -145 1024 -147 ct 1031 -149 1038 -150 1046 -150 ct 1057 -150 1067 -149 1076 -145 ct +1085 -142 1091 -138 1095 -132 ct 1099 -126 1102 -119 1104 -109 ct 1079 -106 l +1078 -114 1075 -119 1070 -124 ct 1065 -128 1057 -130 1047 -130 ct 1036 -130 1028 -128 1023 -124 ct +1018 -121 1016 -116 1016 -111 ct 1016 -108 1017 -105 1019 -102 ct 1021 -100 1024 -97 1028 -96 ct +1031 -95 1038 -93 1050 -89 ct 1068 -85 1080 -81 1087 -78 ct 1094 -75 1099 -70 1103 -65 ct +1107 -59 1109 -52 1109 -43 ct 1109 -35 1107 -27 1102 -20 ct 1097 -13 1090 -7 1081 -3 ct +1072 1 1062 3 1050 3 ct 1031 3 1017 -1 1007 -9 ct 997 -17 990 -29 988 -44 ct p ef +1211 -22 m 1214 0 l 1207 1 1201 2 1196 2 ct 1187 2 1180 1 1175 -2 ct 1170 -5 1166 -9 1164 -14 ct +1162 -18 1161 -28 1161 -43 ct 1161 -127 l 1143 -127 l 1143 -146 l 1161 -146 l +1161 -183 l 1186 -198 l 1186 -146 l 1211 -146 l 1211 -127 l 1186 -127 l +1186 -41 l 1186 -34 1186 -30 1187 -28 ct 1188 -26 1189 -24 1191 -23 ct 1193 -22 1196 -21 1200 -21 ct +1203 -21 1206 -22 1211 -22 ct p ef +1409 -1 m 1409 -19 l 1400 -4 1387 3 1369 3 ct 1357 3 1346 0 1336 -7 ct 1327 -13 1319 -22 1314 -34 ct +1308 -45 1306 -59 1306 -74 ct 1306 -88 1308 -102 1313 -114 ct 1318 -126 1325 -135 1335 -141 ct +1345 -147 1355 -151 1367 -151 ct 1376 -151 1384 -149 1391 -145 ct 1398 -141 1404 -136 1408 -130 ct +1408 -203 l 1432 -203 l 1432 -1 l 1409 -1 l p +1331 -74 m 1331 -55 1335 -41 1343 -31 ct 1351 -22 1360 -17 1371 -17 ct 1382 -17 1391 -22 1399 -31 ct +1406 -40 1410 -53 1410 -72 ct 1410 -92 1406 -106 1398 -116 ct 1391 -125 1381 -130 1370 -130 ct +1359 -130 1350 -125 1342 -116 ct 1335 -107 1331 -93 1331 -74 ct p ef +1474 -174 m 1474 -203 l 1499 -203 l 1499 -174 l 1474 -174 l p +1474 0 m 1474 -147 l 1499 -147 l 1499 0 l 1474 0 l p ef +1522 13 m 1546 16 l 1547 24 1550 29 1555 33 ct 1561 37 1569 39 1580 39 ct +1591 39 1600 37 1606 33 ct 1613 28 1617 21 1619 13 ct 1620 8 1621 -2 1621 -19 ct +1610 -6 1596 1 1580 1 ct 1560 1 1545 -7 1534 -21 ct 1523 -36 1517 -53 1517 -74 ct +1517 -88 1520 -101 1525 -112 ct 1530 -124 1537 -133 1547 -140 ct 1556 -146 1567 -150 1580 -150 ct +1598 -150 1612 -143 1623 -129 ct 1623 -146 l 1646 -146 l 1646 -19 l 1646 3 1644 20 1639 29 ct +1634 39 1627 46 1617 52 ct 1607 57 1595 60 1580 60 ct 1562 60 1548 56 1538 48 ct +1527 40 1522 28 1522 13 ct p +1543 -75 m 1543 -56 1546 -42 1554 -33 ct 1562 -24 1571 -20 1583 -20 ct 1594 -20 1604 -24 1611 -33 ct +1619 -42 1623 -56 1623 -75 ct 1623 -93 1619 -106 1611 -115 ct 1603 -124 1593 -129 1582 -129 ct +1571 -129 1562 -125 1554 -116 ct 1546 -107 1543 -93 1543 -75 ct p ef +1686 -174 m 1686 -203 l 1711 -203 l 1711 -174 l 1686 -174 l p +1686 0 m 1686 -147 l 1711 -147 l 1711 0 l 1686 0 l p ef +1793 -22 m 1796 0 l 1789 1 1783 2 1778 2 ct 1769 2 1762 1 1757 -2 ct 1752 -5 1748 -9 1746 -14 ct +1744 -18 1743 -28 1743 -43 ct 1743 -127 l 1725 -127 l 1725 -146 l 1743 -146 l +1743 -183 l 1768 -198 l 1768 -146 l 1793 -146 l 1793 -127 l 1768 -127 l +1768 -41 l 1768 -34 1768 -30 1769 -28 ct 1770 -26 1771 -24 1773 -23 ct 1775 -22 1778 -21 1782 -21 ct +1785 -21 1788 -22 1793 -22 ct p ef +1808 -44 m 1832 -48 l 1834 -38 1837 -31 1844 -25 ct 1850 -20 1859 -17 1870 -17 ct +1881 -17 1890 -20 1895 -24 ct 1901 -29 1904 -35 1904 -41 ct 1904 -46 1901 -51 1896 -54 ct +1893 -56 1885 -59 1871 -63 ct 1853 -67 1840 -71 1833 -74 ct 1826 -78 1821 -82 1817 -88 ct +1814 -94 1812 -101 1812 -108 ct 1812 -115 1813 -121 1816 -126 ct 1819 -132 1823 -137 1828 -140 ct +1832 -143 1838 -145 1844 -147 ct 1851 -149 1858 -150 1866 -150 ct 1877 -150 1887 -149 1896 -145 ct +1905 -142 1911 -138 1915 -132 ct 1919 -126 1922 -119 1924 -109 ct 1899 -106 l +1898 -114 1895 -119 1890 -124 ct 1885 -128 1877 -130 1867 -130 ct 1856 -130 1848 -128 1843 -124 ct +1838 -121 1836 -116 1836 -111 ct 1836 -108 1837 -105 1839 -102 ct 1841 -100 1844 -97 1848 -96 ct +1851 -95 1858 -93 1870 -89 ct 1888 -85 1900 -81 1907 -78 ct 1914 -75 1919 -70 1923 -65 ct +1927 -59 1929 -52 1929 -43 ct 1929 -35 1927 -27 1922 -20 ct 1917 -13 1910 -7 1901 -3 ct +1892 1 1882 3 1870 3 ct 1851 3 1837 -1 1827 -9 ct 1817 -17 1810 -29 1808 -44 ct +p ef +pom + +pum +436 7768 t +20 -147 m 20 -198 34 -237 61 -265 ct 88 -294 123 -308 165 -308 ct 193 -308 219 -301 241 -288 ct +263 -275 281 -256 292 -232 ct 304 -208 310 -181 310 -151 ct 310 -120 304 -93 291 -69 ct +279 -44 261 -26 239 -14 ct 216 -1 192 5 165 5 ct 137 5 111 -2 89 -16 ct 66 -29 49 -48 38 -72 ct +26 -96 20 -121 20 -147 ct p +62 -147 m 62 -110 72 -82 91 -61 ct 111 -40 135 -29 165 -29 ct 195 -29 220 -40 239 -61 ct +259 -82 269 -112 269 -151 ct 269 -176 265 -197 256 -216 ct 248 -234 236 -248 220 -258 ct +204 -268 186 -274 166 -274 ct 137 -274 113 -264 92 -244 ct 72 -225 62 -192 62 -147 ct +p ef +345 0 m 345 -219 l 379 -219 l 379 -186 l 387 -201 395 -212 403 -217 ct +410 -222 418 -224 426 -224 ct 439 -224 452 -220 465 -212 ct 452 -178 l 443 -183 434 -186 425 -186 ct +416 -186 409 -183 403 -178 ct 396 -173 392 -167 389 -158 ct 385 -145 383 -130 383 -115 ct +383 0 l 345 0 l p ef +478 -260 m 478 -303 l 515 -303 l 515 -260 l 478 -260 l p +478 0 m 478 -219 l 515 -219 l 515 0 l 478 0 l p ef +577 18 m 613 24 l 615 35 619 43 626 48 ct 635 55 648 58 664 58 ct 681 58 694 55 703 48 ct +713 41 719 31 722 19 ct 724 11 725 -4 725 -29 ct 709 -10 689 0 664 0 ct 634 0 611 -11 594 -33 ct +578 -54 570 -80 570 -111 ct 570 -132 573 -151 581 -169 ct 589 -186 600 -200 614 -210 ct +628 -219 645 -224 665 -224 ct 691 -224 712 -214 729 -193 ct 729 -219 l 763 -219 l +763 -30 l 763 4 759 29 753 43 ct 746 57 735 68 719 77 ct 704 85 686 89 664 89 ct +638 89 617 83 600 71 ct 584 60 577 42 577 18 ct p +608 -113 m 608 -85 614 -64 625 -51 ct 636 -37 651 -31 668 -31 ct 685 -31 699 -37 711 -50 ct +722 -64 728 -84 728 -112 ct 728 -139 722 -159 710 -173 ct 698 -186 684 -193 667 -193 ct +651 -193 637 -187 625 -173 ct 614 -160 608 -140 608 -113 ct p ef +822 -260 m 822 -303 l 859 -303 l 859 -260 l 822 -260 l p +822 0 m 822 -219 l 859 -219 l 859 0 l 822 0 l p ef +928 0 m 928 -219 l 961 -219 l 961 -188 l 977 -212 1001 -224 1031 -224 ct +1044 -224 1057 -222 1068 -217 ct 1079 -212 1087 -206 1093 -198 ct 1098 -191 1102 -181 1104 -171 ct +1105 -164 1106 -152 1106 -135 ct 1106 0 l 1069 0 l 1069 -133 l 1069 -148 1068 -160 1065 -167 ct +1062 -175 1057 -181 1049 -185 ct 1042 -190 1033 -192 1023 -192 ct 1007 -192 994 -187 982 -177 ct +971 -167 965 -148 965 -120 ct 965 0 l 928 0 l p ef +1309 -27 m 1295 -15 1282 -7 1269 -2 ct 1257 3 1243 5 1228 5 ct 1204 5 1186 -1 1173 -13 ct +1160 -24 1153 -39 1153 -58 ct 1153 -68 1156 -78 1161 -87 ct 1166 -96 1172 -103 1180 -108 ct +1188 -114 1197 -118 1207 -121 ct 1214 -123 1225 -124 1240 -126 ct 1270 -130 1292 -134 1306 -139 ct +1306 -144 1306 -147 1306 -149 ct 1306 -164 1303 -174 1296 -181 ct 1286 -189 1272 -193 1253 -193 ct +1236 -193 1223 -190 1215 -184 ct 1206 -178 1200 -167 1196 -152 ct 1160 -157 l +1163 -172 1168 -185 1176 -194 ct 1184 -204 1195 -211 1209 -216 ct 1223 -221 1240 -224 1259 -224 ct +1277 -224 1293 -222 1304 -217 ct 1316 -213 1325 -207 1330 -201 ct 1336 -194 1339 -186 1342 -176 ct +1343 -169 1344 -158 1344 -141 ct 1344 -92 l 1344 -57 1344 -35 1346 -26 ct 1347 -17 1351 -8 1355 0 ct +1316 0 l 1313 -8 1310 -17 1309 -27 ct p +1306 -110 m 1292 -104 1272 -100 1245 -96 ct 1230 -94 1219 -91 1213 -88 ct 1206 -86 1202 -82 1198 -76 ct +1195 -71 1193 -65 1193 -59 ct 1193 -49 1197 -41 1204 -34 ct 1212 -27 1223 -24 1237 -24 ct +1251 -24 1264 -27 1275 -33 ct 1287 -40 1295 -48 1300 -59 ct 1304 -68 1306 -80 1306 -96 ct +1306 -110 l p ef +1403 0 m 1403 -302 l 1440 -302 l 1440 0 l 1403 0 l p ef +1616 0 m 1616 -219 l 1649 -219 l 1649 -188 l 1656 -199 1665 -208 1677 -214 ct +1688 -221 1701 -224 1716 -224 ct 1732 -224 1745 -221 1756 -214 ct 1766 -207 1773 -198 1778 -186 ct +1795 -211 1818 -224 1845 -224 ct 1867 -224 1884 -218 1896 -206 ct 1907 -194 1913 -175 1913 -150 ct +1913 0 l 1876 0 l 1876 -138 l 1876 -153 1875 -164 1873 -170 ct 1870 -177 1866 -182 1859 -186 ct +1853 -190 1846 -192 1837 -192 ct 1822 -192 1809 -187 1799 -176 ct 1788 -166 1783 -150 1783 -127 ct +1783 0 l 1746 0 l 1746 -142 l 1746 -159 1743 -171 1737 -179 ct 1731 -188 1721 -192 1707 -192 ct +1697 -192 1687 -189 1678 -184 ct 1669 -178 1663 -170 1659 -159 ct 1655 -149 1653 -134 1653 -114 ct +1653 0 l 1616 0 l p ef +1945 -109 m 1945 -150 1956 -180 1979 -200 ct 1998 -216 2021 -224 2048 -224 ct +2078 -224 2103 -214 2122 -194 ct 2141 -175 2151 -147 2151 -113 ct 2151 -84 2146 -62 2138 -46 ct +2129 -30 2117 -17 2101 -8 ct 2085 1 2067 5 2048 5 ct 2017 5 1992 -5 1973 -25 ct +1955 -44 1945 -73 1945 -109 ct p +1983 -110 m 1983 -81 1989 -60 2002 -46 ct 2014 -33 2029 -26 2048 -26 ct 2066 -26 2082 -33 2094 -47 ct +2106 -61 2112 -82 2112 -111 ct 2112 -138 2106 -158 2094 -172 ct 2082 -186 2066 -193 2048 -193 ct +2029 -193 2014 -186 2002 -172 ct 1989 -159 1983 -138 1983 -110 ct p ef +2340 0 m 2340 -28 l 2326 -6 2306 5 2279 5 ct 2261 5 2245 0 2231 -9 ct 2216 -19 2205 -33 2197 -50 ct +2188 -67 2184 -87 2184 -109 ct 2184 -131 2188 -151 2195 -169 ct 2203 -187 2214 -200 2228 -210 ct +2243 -219 2259 -224 2277 -224 ct 2290 -224 2302 -221 2313 -216 ct 2323 -210 2331 -203 2338 -194 ct +2338 -302 l 2375 -302 l 2375 0 l 2340 0 l p +2223 -109 m 2223 -81 2229 -60 2240 -46 ct 2252 -32 2266 -26 2282 -26 ct 2299 -26 2312 -32 2324 -45 ct +2335 -59 2341 -79 2341 -106 ct 2341 -136 2335 -158 2323 -172 ct 2312 -186 2298 -193 2281 -193 ct +2264 -193 2250 -187 2239 -173 ct 2228 -160 2223 -138 2223 -109 ct p ef +2586 -71 m 2624 -66 l 2618 -43 2607 -26 2591 -14 ct 2574 -1 2553 5 2528 5 ct +2496 5 2470 -5 2452 -25 ct 2433 -44 2423 -72 2423 -108 ct 2423 -145 2433 -173 2452 -193 ct +2471 -214 2496 -224 2526 -224 ct 2555 -224 2579 -214 2598 -194 ct 2616 -174 2626 -146 2626 -110 ct +2626 -108 2626 -104 2625 -100 ct 2462 -100 l 2463 -76 2470 -58 2482 -45 ct +2495 -32 2510 -26 2528 -26 ct 2542 -26 2553 -29 2563 -36 ct 2573 -43 2580 -55 2586 -71 ct +p +2464 -131 m 2586 -131 l 2585 -149 2580 -163 2572 -172 ct 2561 -186 2545 -193 2526 -193 ct +2509 -193 2495 -188 2483 -176 ct 2472 -165 2465 -150 2464 -131 ct p ef +2673 0 m 2673 -302 l 2710 -302 l 2710 0 l 2673 0 l p ef +2752 5 m 2840 -308 l 2870 -308 l 2782 5 l 2752 5 l p ef +2886 0 m 2886 -219 l 2919 -219 l 2919 -188 l 2926 -199 2935 -208 2947 -214 ct +2958 -221 2971 -224 2986 -224 ct 3002 -224 3015 -221 3026 -214 ct 3036 -207 3043 -198 3048 -186 ct +3065 -211 3088 -224 3115 -224 ct 3137 -224 3154 -218 3166 -206 ct 3177 -194 3183 -175 3183 -150 ct +3183 0 l 3146 0 l 3146 -138 l 3146 -153 3145 -164 3143 -170 ct 3140 -177 3136 -182 3129 -186 ct +3123 -190 3116 -192 3107 -192 ct 3092 -192 3079 -187 3069 -176 ct 3058 -166 3053 -150 3053 -127 ct +3053 0 l 3016 0 l 3016 -142 l 3016 -159 3013 -171 3007 -179 ct 3001 -188 2991 -192 2977 -192 ct +2967 -192 2957 -189 2948 -184 ct 2939 -178 2933 -170 2929 -159 ct 2925 -149 2923 -134 2923 -114 ct +2923 0 l 2886 0 l p ef +3215 -109 m 3215 -150 3226 -180 3249 -200 ct 3268 -216 3291 -224 3318 -224 ct +3348 -224 3373 -214 3392 -194 ct 3411 -175 3421 -147 3421 -113 ct 3421 -84 3416 -62 3408 -46 ct +3399 -30 3387 -17 3371 -8 ct 3355 1 3337 5 3318 5 ct 3287 5 3262 -5 3243 -25 ct +3225 -44 3215 -73 3215 -109 ct p +3253 -110 m 3253 -81 3259 -60 3272 -46 ct 3284 -33 3299 -26 3318 -26 ct 3336 -26 3352 -33 3364 -47 ct +3376 -61 3382 -82 3382 -111 ct 3382 -138 3376 -158 3364 -172 ct 3352 -186 3336 -193 3318 -193 ct +3299 -193 3284 -186 3272 -172 ct 3259 -159 3253 -138 3253 -110 ct p ef +3610 0 m 3610 -28 l 3596 -6 3576 5 3549 5 ct 3531 5 3515 0 3501 -9 ct 3486 -19 3475 -33 3467 -50 ct +3458 -67 3454 -87 3454 -109 ct 3454 -131 3458 -151 3465 -169 ct 3473 -187 3484 -200 3498 -210 ct +3513 -219 3529 -224 3547 -224 ct 3560 -224 3572 -221 3583 -216 ct 3593 -210 3601 -203 3608 -194 ct +3608 -302 l 3645 -302 l 3645 0 l 3610 0 l p +3493 -109 m 3493 -81 3499 -60 3510 -46 ct 3522 -32 3536 -26 3552 -26 ct 3569 -26 3582 -32 3594 -45 ct +3605 -59 3611 -79 3611 -106 ct 3611 -136 3605 -158 3593 -172 ct 3582 -186 3568 -193 3551 -193 ct +3534 -193 3520 -187 3509 -173 ct 3498 -160 3493 -138 3493 -109 ct p ef +3856 -71 m 3894 -66 l 3888 -43 3877 -26 3861 -14 ct 3844 -1 3823 5 3798 5 ct +3766 5 3740 -5 3722 -25 ct 3703 -44 3693 -72 3693 -108 ct 3693 -145 3703 -173 3722 -193 ct +3741 -214 3766 -224 3796 -224 ct 3825 -224 3849 -214 3868 -194 ct 3886 -174 3896 -146 3896 -110 ct +3896 -108 3896 -104 3895 -100 ct 3732 -100 l 3733 -76 3740 -58 3752 -45 ct +3765 -32 3780 -26 3798 -26 ct 3812 -26 3823 -29 3833 -36 ct 3843 -43 3850 -55 3856 -71 ct +p +3734 -131 m 3856 -131 l 3855 -149 3850 -163 3842 -172 ct 3831 -186 3815 -193 3796 -193 ct +3779 -193 3765 -188 3753 -176 ct 3742 -165 3735 -150 3734 -131 ct p ef +3943 0 m 3943 -302 l 3980 -302 l 3980 0 l 3943 0 l p ef +4196 0 m 4129 -219 l 4168 -219 l 4203 -93 l 4216 -46 l 4216 -48 4220 -63 4227 -91 ct +4262 -219 l 4300 -219 l 4333 -92 l 4344 -50 l 4356 -92 l 4394 -219 l +4430 -219 l 4362 0 l 4323 0 l 4288 -131 l 4280 -168 l 4235 0 l 4196 0 l +p ef +4473 -260 m 4473 -303 l 4510 -303 l 4510 -260 l 4473 -260 l p +4473 0 m 4473 -219 l 4510 -219 l 4510 0 l 4473 0 l p ef +4660 -33 m 4665 0 l 4655 2 4646 3 4637 3 ct 4624 3 4613 1 4606 -3 ct 4599 -8 4593 -13 4590 -20 ct +4587 -27 4586 -42 4586 -64 ct 4586 -190 l 4558 -190 l 4558 -219 l 4586 -219 l +4586 -273 l 4623 -296 l 4623 -219 l 4660 -219 l 4660 -190 l 4623 -190 l +4623 -62 l 4623 -51 4623 -45 4625 -42 ct 4626 -39 4628 -36 4631 -34 ct 4634 -33 4638 -32 4644 -32 ct +4648 -32 4653 -32 4660 -33 ct p ef +4685 0 m 4685 -302 l 4722 -302 l 4722 -194 l 4739 -214 4761 -224 4788 -224 ct +4804 -224 4818 -221 4830 -214 ct 4842 -208 4851 -199 4856 -188 ct 4861 -177 4864 -160 4864 -139 ct +4864 0 l 4826 0 l 4826 -139 l 4826 -157 4822 -171 4814 -179 ct 4806 -188 4795 -192 4780 -192 ct +4769 -192 4759 -189 4749 -183 ct 4739 -178 4732 -170 4728 -160 ct 4724 -150 4722 -137 4722 -120 ct +4722 0 l 4685 0 l p ef +5029 84 m 5029 -219 l 5063 -219 l 5063 -191 l 5071 -202 5080 -210 5090 -216 ct +5100 -221 5112 -224 5126 -224 ct 5145 -224 5162 -219 5176 -210 ct 5190 -200 5201 -186 5208 -169 ct +5216 -151 5219 -132 5219 -111 ct 5219 -89 5215 -69 5207 -51 ct 5199 -33 5187 -19 5172 -9 ct +5157 0 5141 5 5124 5 ct 5111 5 5100 2 5090 -3 ct 5080 -8 5072 -15 5066 -23 ct 5066 84 l +5029 84 l p +5063 -108 m 5063 -80 5068 -59 5080 -46 ct 5091 -32 5105 -26 5121 -26 ct 5138 -26 5152 -33 5164 -46 ct +5175 -60 5181 -82 5181 -111 ct 5181 -139 5176 -160 5164 -174 ct 5153 -188 5139 -195 5123 -195 ct +5107 -195 5093 -188 5081 -173 ct 5069 -158 5063 -136 5063 -108 ct p ef +5417 -71 m 5455 -66 l 5449 -43 5438 -26 5422 -14 ct 5405 -1 5384 5 5359 5 ct +5327 5 5301 -5 5283 -25 ct 5264 -44 5254 -72 5254 -108 ct 5254 -145 5264 -173 5283 -193 ct +5302 -214 5327 -224 5357 -224 ct 5386 -224 5410 -214 5429 -194 ct 5447 -174 5457 -146 5457 -110 ct +5457 -108 5457 -104 5456 -100 ct 5293 -100 l 5294 -76 5301 -58 5313 -45 ct +5326 -32 5341 -26 5359 -26 ct 5373 -26 5384 -29 5394 -36 ct 5404 -43 5411 -55 5417 -71 ct +p +5295 -131 m 5417 -131 l 5416 -149 5411 -163 5403 -172 ct 5392 -186 5376 -193 5357 -193 ct +5340 -193 5326 -188 5314 -176 ct 5303 -165 5296 -150 5295 -131 ct p ef +5504 0 m 5504 -219 l 5538 -219 l 5538 -186 l 5546 -201 5554 -212 5562 -217 ct +5569 -222 5577 -224 5585 -224 ct 5598 -224 5611 -220 5624 -212 ct 5611 -178 l +5602 -183 5593 -186 5584 -186 ct 5575 -186 5568 -183 5562 -178 ct 5555 -173 5551 -167 5548 -158 ct +5544 -145 5542 -130 5542 -115 ct 5542 0 l 5504 0 l p ef +5718 -33 m 5723 0 l 5713 2 5704 3 5695 3 ct 5682 3 5671 1 5664 -3 ct 5657 -8 5651 -13 5648 -20 ct +5645 -27 5644 -42 5644 -64 ct 5644 -190 l 5616 -190 l 5616 -219 l 5644 -219 l +5644 -273 l 5681 -296 l 5681 -219 l 5718 -219 l 5718 -190 l 5681 -190 l +5681 -62 l 5681 -51 5681 -45 5683 -42 ct 5684 -39 5686 -36 5689 -34 ct 5692 -33 5696 -32 5702 -32 ct +5706 -32 5711 -32 5718 -33 ct p ef +5887 0 m 5887 -32 l 5870 -7 5846 5 5817 5 ct 5804 5 5792 3 5781 -2 ct 5770 -7 5761 -14 5756 -21 ct +5750 -29 5747 -38 5744 -49 ct 5743 -56 5742 -67 5742 -83 ct 5742 -219 l 5779 -219 l +5779 -98 l 5779 -78 5780 -65 5782 -58 ct 5784 -49 5789 -41 5796 -35 ct 5804 -30 5813 -27 5824 -27 ct +5836 -27 5846 -30 5856 -36 ct 5866 -41 5873 -49 5877 -59 ct 5881 -69 5883 -83 5883 -102 ct +5883 -219 l 5920 -219 l 5920 0 l 5887 0 l p ef +5980 0 m 5980 -219 l 6014 -219 l 6014 -186 l 6022 -201 6030 -212 6038 -217 ct +6045 -222 6053 -224 6061 -224 ct 6074 -224 6087 -220 6100 -212 ct 6087 -178 l +6078 -183 6069 -186 6060 -186 ct 6051 -186 6044 -183 6038 -178 ct 6031 -173 6027 -167 6024 -158 ct +6020 -145 6018 -130 6018 -115 ct 6018 0 l 5980 0 l p ef +6147 0 m 6113 0 l 6113 -302 l 6150 -302 l 6150 -195 l 6166 -214 6186 -224 6210 -224 ct +6223 -224 6236 -221 6248 -216 ct 6260 -210 6270 -203 6278 -193 ct 6286 -183 6292 -171 6296 -157 ct +6301 -143 6303 -129 6303 -113 ct 6303 -75 6294 -46 6275 -26 ct 6256 -5 6234 5 6208 5 ct +6182 5 6162 -6 6147 -27 ct 6147 0 l p +6147 -111 m 6147 -85 6150 -66 6158 -54 ct 6169 -35 6185 -26 6205 -26 ct 6221 -26 6235 -33 6247 -47 ct +6259 -61 6265 -82 6265 -110 ct 6265 -138 6259 -159 6248 -173 ct 6237 -187 6223 -193 6207 -193 ct +6190 -193 6176 -186 6165 -172 ct 6153 -158 6147 -138 6147 -111 ct p ef +6502 -71 m 6540 -66 l 6534 -43 6523 -26 6507 -14 ct 6490 -1 6469 5 6444 5 ct +6412 5 6386 -5 6368 -25 ct 6349 -44 6339 -72 6339 -108 ct 6339 -145 6349 -173 6368 -193 ct +6387 -214 6412 -224 6442 -224 ct 6471 -224 6495 -214 6514 -194 ct 6532 -174 6542 -146 6542 -110 ct +6542 -108 6542 -104 6541 -100 ct 6378 -100 l 6379 -76 6386 -58 6398 -45 ct +6411 -32 6426 -26 6444 -26 ct 6458 -26 6469 -29 6479 -36 ct 6489 -43 6496 -55 6502 -71 ct +p +6380 -131 m 6502 -131 l 6501 -149 6496 -163 6488 -172 ct 6477 -186 6461 -193 6442 -193 ct +6425 -193 6411 -188 6399 -176 ct 6388 -165 6381 -150 6380 -131 ct p ef +6732 0 m 6732 -28 l 6718 -6 6698 5 6671 5 ct 6653 5 6637 0 6623 -9 ct 6608 -19 6597 -33 6589 -50 ct +6580 -67 6576 -87 6576 -109 ct 6576 -131 6580 -151 6587 -169 ct 6595 -187 6606 -200 6620 -210 ct +6635 -219 6651 -224 6669 -224 ct 6682 -224 6694 -221 6705 -216 ct 6715 -210 6723 -203 6730 -194 ct +6730 -302 l 6767 -302 l 6767 0 l 6732 0 l p +6615 -109 m 6615 -81 6621 -60 6632 -46 ct 6644 -32 6658 -26 6674 -26 ct 6691 -26 6704 -32 6716 -45 ct +6727 -59 6733 -79 6733 -106 ct 6733 -136 6727 -158 6715 -172 ct 6704 -186 6690 -193 6673 -193 ct +6656 -193 6642 -187 6631 -173 ct 6620 -160 6615 -138 6615 -109 ct p ef +7076 0 m 7076 -28 l 7062 -6 7042 5 7015 5 ct 6997 5 6981 0 6967 -9 ct 6952 -19 6941 -33 6933 -50 ct +6924 -67 6920 -87 6920 -109 ct 6920 -131 6924 -151 6931 -169 ct 6939 -187 6950 -200 6964 -210 ct +6979 -219 6995 -224 7013 -224 ct 7026 -224 7038 -221 7049 -216 ct 7059 -210 7067 -203 7074 -194 ct +7074 -302 l 7111 -302 l 7111 0 l 7076 0 l p +6959 -109 m 6959 -81 6965 -60 6976 -46 ct 6988 -32 7002 -26 7018 -26 ct 7035 -26 7048 -32 7060 -45 ct +7071 -59 7077 -79 7077 -106 ct 7077 -136 7071 -158 7059 -172 ct 7048 -186 7034 -193 7017 -193 ct +7000 -193 6986 -187 6975 -173 ct 6964 -160 6959 -138 6959 -109 ct p ef +7315 -27 m 7301 -15 7288 -7 7275 -2 ct 7263 3 7249 5 7234 5 ct 7210 5 7192 -1 7179 -13 ct +7166 -24 7159 -39 7159 -58 ct 7159 -68 7162 -78 7167 -87 ct 7172 -96 7178 -103 7186 -108 ct +7194 -114 7203 -118 7213 -121 ct 7220 -123 7231 -124 7246 -126 ct 7276 -130 7298 -134 7312 -139 ct +7312 -144 7312 -147 7312 -149 ct 7312 -164 7309 -174 7302 -181 ct 7292 -189 7278 -193 7259 -193 ct +7242 -193 7229 -190 7221 -184 ct 7212 -178 7206 -167 7202 -152 ct 7166 -157 l +7169 -172 7174 -185 7182 -194 ct 7190 -204 7201 -211 7215 -216 ct 7229 -221 7246 -224 7265 -224 ct +7283 -224 7299 -222 7310 -217 ct 7322 -213 7331 -207 7336 -201 ct 7342 -194 7345 -186 7348 -176 ct +7349 -169 7350 -158 7350 -141 ct 7350 -92 l 7350 -57 7350 -35 7352 -26 ct 7353 -17 7357 -8 7361 0 ct +7322 0 l 7319 -8 7316 -17 7315 -27 ct p +7312 -110 m 7298 -104 7278 -100 7251 -96 ct 7236 -94 7225 -91 7219 -88 ct 7212 -86 7208 -82 7204 -76 ct +7201 -71 7199 -65 7199 -59 ct 7199 -49 7203 -41 7210 -34 ct 7218 -27 7229 -24 7243 -24 ct +7257 -24 7270 -27 7281 -33 ct 7293 -40 7301 -48 7306 -59 ct 7310 -68 7312 -80 7312 -96 ct +7312 -110 l p ef +7491 -33 m 7496 0 l 7486 2 7477 3 7468 3 ct 7455 3 7444 1 7437 -3 ct 7430 -8 7424 -13 7421 -20 ct +7418 -27 7417 -42 7417 -64 ct 7417 -190 l 7389 -190 l 7389 -219 l 7417 -219 l +7417 -273 l 7454 -296 l 7454 -219 l 7491 -219 l 7491 -190 l 7454 -190 l +7454 -62 l 7454 -51 7454 -45 7456 -42 ct 7457 -39 7459 -36 7462 -34 ct 7465 -33 7469 -32 7475 -32 ct +7479 -32 7484 -32 7491 -33 ct p ef +7659 -27 m 7645 -15 7632 -7 7619 -2 ct 7607 3 7593 5 7578 5 ct 7554 5 7536 -1 7523 -13 ct +7510 -24 7503 -39 7503 -58 ct 7503 -68 7506 -78 7511 -87 ct 7516 -96 7522 -103 7530 -108 ct +7538 -114 7547 -118 7557 -121 ct 7564 -123 7575 -124 7590 -126 ct 7620 -130 7642 -134 7656 -139 ct +7656 -144 7656 -147 7656 -149 ct 7656 -164 7653 -174 7646 -181 ct 7636 -189 7622 -193 7603 -193 ct +7586 -193 7573 -190 7565 -184 ct 7556 -178 7550 -167 7546 -152 ct 7510 -157 l +7513 -172 7518 -185 7526 -194 ct 7534 -204 7545 -211 7559 -216 ct 7573 -221 7590 -224 7609 -224 ct +7627 -224 7643 -222 7654 -217 ct 7666 -213 7675 -207 7680 -201 ct 7686 -194 7689 -186 7692 -176 ct +7693 -169 7694 -158 7694 -141 ct 7694 -92 l 7694 -57 7694 -35 7696 -26 ct 7697 -17 7701 -8 7705 0 ct +7666 0 l 7663 -8 7660 -17 7659 -27 ct p +7656 -110 m 7642 -104 7622 -100 7595 -96 ct 7580 -94 7569 -91 7563 -88 ct 7556 -86 7552 -82 7548 -76 ct +7545 -71 7543 -65 7543 -59 ct 7543 -49 7547 -41 7554 -34 ct 7562 -27 7573 -24 7587 -24 ct +7601 -24 7614 -27 7625 -33 ct 7637 -40 7645 -48 7650 -59 ct 7654 -68 7656 -80 7656 -96 ct +7656 -110 l p ef +pom +gr +gs +0 0 m 10876 0 l 10876 8071 l 0 8071 l 0 0 l eoclip newpath +gr +gr +gr +gr + +gs +tm setmatrix +10821 344 t +1 1 s +gs +gs +0 0 m 9510 0 l 9510 8044 l 0 8044 l 0 0 l eoclip newpath +gs +0 0 m 9510 0 l 9510 8044 l 0 8044 l 0 0 l eoclip newpath +0.996 c 4756 8045 m 0 8045 l 0 0 l 9511 0 l 9511 8045 l 4756 8045 l +p ef + + +0.699 c 4913 5978 m 863 5978 l 863 1485 l 8963 1485 l 8963 5978 l 4913 5978 l +pc +0 lw 1 lj 8963 5977 m 863 5977 l ps +8963 5415 m 863 5415 l ps +8963 4853 m 863 4853 l ps +8963 4292 m 863 4292 l ps +8963 3730 m 863 3730 l ps +8963 3168 m 863 3168 l ps +8963 2607 m 863 2607 l ps +8963 2045 m 863 2045 l ps +8963 1484 m 863 1484 l ps + +863 6127 m 863 5977 l ps +863 5003 m 863 4853 l ps +2213 6127 m 2213 5977 l ps +2213 5003 m 2213 4853 l ps +3563 6127 m 3563 5977 l ps +3563 5003 m 3563 4853 l ps +4913 6127 m 4913 5977 l ps +4913 5003 m 4913 4853 l ps +6263 6127 m 6263 5977 l ps +6263 5003 m 6263 4853 l ps +7613 6127 m 7613 5977 l ps +7613 5003 m 7613 4853 l ps +8963 6127 m 8963 5977 l ps +8963 5003 m 8963 4853 l ps +863 4853 m 8963 4853 l ps +713 5977 m 863 5977 l ps +713 5977 m 863 5977 l ps +713 5415 m 863 5415 l ps +713 5415 m 863 5415 l ps +713 4853 m 863 4853 l ps +713 4853 m 863 4853 l ps +713 4292 m 863 4292 l ps +713 4292 m 863 4292 l ps +713 3730 m 863 3730 l ps +713 3730 m 863 3730 l ps +713 3168 m 863 3168 l ps +713 3168 m 863 3168 l ps +713 2607 m 863 2607 l ps +713 2607 m 863 2607 l ps +713 2045 m 863 2045 l ps +713 2045 m 863 2045 l ps +713 1484 m 863 1484 l ps +713 1484 m 863 1484 l ps +863 5977 m 863 1484 l ps +0.500 c 7950 4853 m 7950 3393 l 8625 3393 l 8625 4853 l 7950 4853 l +p ef +0.000 c 7950 4853 m 8625 4853 l 8625 3393 l 7950 3393 l 7950 4853 l +pc +0.500 c 6600 4853 m 6600 3168 l 7275 3168 l 7275 4853 l 6600 4853 l +p ef +0.000 c 6600 4853 m 7275 4853 l 7275 3168 l 6600 3168 l 6600 4853 l +pc +0.500 c 5250 4853 m 5250 1820 l 5925 1820 l 5925 4853 l 5250 4853 l +p ef +0.000 c 5250 4853 m 5925 4853 l 5925 1820 l 5250 1820 l 5250 4853 l +pc +0.500 c 3900 5258 m 3900 4853 l 4575 4853 l 4575 5258 l 3900 5258 l +p ef +0.000 c 3900 5258 m 4575 5258 l 4575 4853 l 3900 4853 l 3900 5258 l +pc +0.500 c 2550 5314 m 2550 4853 l 3225 4853 l 3225 5314 l 2550 5314 l +p ef +0.000 c 2550 5314 m 3225 5314 l 3225 4853 l 2550 4853 l 2550 5314 l +pc +0.500 c 1200 4853 m 1200 4224 l 1875 4224 l 1875 4853 l 1200 4853 l +p ef +0.000 c 1200 4853 m 1875 4853 l 1875 4224 l 1200 4224 l 1200 4853 l +pc + +pum +560 6943 t +0.101 c 26 0 m 26 -252 l 77 -252 l 136 -74 l 142 -57 146 -45 148 -36 ct +151 -46 156 -59 162 -77 ct 222 -252 l 267 -252 l 267 0 l 235 0 l 235 -211 l +162 0 l 132 0 l 58 -215 l 58 0 l 26 0 l p ef +317 0 m 317 -253 l 350 -253 l 350 -30 l 475 -30 l 475 0 l 317 0 l +p ef +503 -1 m 503 -253 l 599 -253 l 615 -253 628 -252 637 -250 ct 649 -248 660 -244 668 -239 ct +677 -233 683 -225 688 -214 ct 694 -204 696 -192 696 -180 ct 696 -158 689 -140 676 -125 ct +662 -110 637 -103 601 -103 ct 537 -103 l 537 -1 l 503 -1 l p +537 -133 m 602 -133 l 624 -133 639 -137 648 -145 ct 657 -153 662 -164 662 -179 ct +662 -189 659 -198 654 -206 ct 648 -213 641 -218 633 -221 ct 627 -222 616 -223 601 -223 ct +537 -223 l 537 -133 l p ef +725 -76 m 725 -107 l 821 -107 l 821 -76 l 725 -76 l p ef +962 0 m 962 -23 l 950 -5 933 4 911 4 ct 896 4 883 0 871 -8 ct 858 -16 849 -27 842 -42 ct +835 -56 832 -73 832 -91 ct 832 -110 835 -126 841 -141 ct 847 -156 856 -167 869 -175 ct +881 -183 894 -187 909 -187 ct 920 -187 930 -185 939 -180 ct 948 -175 955 -169 960 -162 ct +960 -252 l 991 -252 l 991 0 l 962 0 l p +864 -91 m 864 -68 869 -50 879 -39 ct 889 -27 900 -21 914 -21 ct 927 -21 939 -27 948 -38 ct +958 -49 963 -66 963 -89 ct 963 -114 958 -132 948 -144 ct 938 -156 927 -161 912 -161 ct +899 -161 887 -156 878 -144 ct 869 -133 864 -116 864 -91 ct p ef +1028 -217 m 1028 -253 l 1059 -253 l 1059 -217 l 1028 -217 l p +1028 0 m 1028 -183 l 1059 -183 l 1059 0 l 1028 0 l p ef +1103 15 m 1133 19 l 1134 29 1138 35 1143 40 ct 1151 45 1161 48 1175 48 ct +1189 48 1200 45 1208 40 ct 1216 34 1221 26 1224 16 ct 1226 9 1226 -4 1226 -24 ct +1213 -8 1196 0 1175 0 ct 1150 0 1131 -9 1117 -28 ct 1103 -46 1096 -67 1096 -93 ct +1096 -110 1100 -126 1106 -141 ct 1112 -156 1121 -167 1133 -175 ct 1145 -183 1159 -187 1176 -187 ct +1197 -187 1215 -178 1229 -161 ct 1229 -183 l 1258 -183 l 1258 -25 l 1258 4 1255 24 1249 36 ct +1243 47 1234 57 1221 64 ct 1209 71 1193 74 1175 74 ct 1153 74 1136 69 1122 59 ct +1109 49 1102 35 1103 15 ct p +1128 -95 m 1128 -71 1133 -53 1143 -42 ct 1152 -32 1164 -26 1178 -26 ct 1193 -26 1205 -31 1214 -42 ct +1224 -53 1229 -70 1229 -94 ct 1229 -116 1224 -133 1214 -144 ct 1204 -156 1192 -161 1178 -161 ct +1164 -161 1152 -156 1143 -145 ct 1133 -133 1128 -117 1128 -95 ct p ef +1293 -217 m 1293 -253 l 1324 -253 l 1324 -217 l 1293 -217 l p +1293 0 m 1293 -183 l 1324 -183 l 1324 0 l 1293 0 l p ef +1440 -28 m 1444 -1 l 1436 1 1428 2 1421 2 ct 1410 2 1401 0 1395 -3 ct 1389 -7 1384 -12 1382 -17 ct +1379 -23 1378 -35 1378 -54 ct 1378 -159 l 1355 -159 l 1355 -183 l 1378 -183 l +1378 -228 l 1409 -247 l 1409 -183 l 1440 -183 l 1440 -159 l 1409 -159 l +1409 -52 l 1409 -43 1409 -38 1410 -35 ct 1412 -33 1413 -31 1416 -29 ct 1418 -28 1422 -27 1426 -27 ct +1430 -27 1434 -27 1440 -28 ct p ef +1466 -55 m 1497 -60 l 1498 -47 1503 -38 1511 -31 ct 1519 -25 1530 -21 1544 -21 ct +1558 -21 1569 -24 1576 -30 ct 1583 -36 1586 -43 1586 -51 ct 1586 -58 1583 -63 1577 -67 ct +1573 -70 1562 -73 1545 -78 ct 1522 -83 1507 -88 1498 -92 ct 1489 -97 1482 -102 1478 -110 ct +1473 -117 1471 -125 1471 -134 ct 1471 -143 1473 -150 1477 -157 ct 1480 -164 1485 -170 1492 -174 ct +1497 -178 1503 -181 1512 -183 ct 1520 -186 1529 -187 1538 -187 ct 1553 -187 1565 -185 1576 -181 ct +1587 -177 1595 -171 1600 -164 ct 1605 -157 1609 -148 1611 -136 ct 1581 -132 l +1579 -141 1575 -148 1569 -154 ct 1562 -159 1553 -162 1541 -162 ct 1526 -162 1516 -159 1510 -154 ct +1504 -150 1501 -144 1501 -138 ct 1501 -134 1502 -130 1505 -127 ct 1507 -124 1511 -121 1517 -119 ct +1520 -118 1529 -115 1544 -111 ct 1566 -105 1581 -100 1590 -97 ct 1599 -93 1606 -87 1610 -80 ct +1615 -73 1618 -64 1618 -54 ct 1618 -43 1615 -34 1609 -25 ct 1603 -16 1594 -8 1583 -3 ct +1571 2 1558 4 1544 4 ct 1520 4 1502 -1 1490 -11 ct 1477 -21 1469 -35 1466 -55 ct +p ef +pom + +pum +1923 6545 t +26 0 m 26 -252 l 77 -252 l 136 -74 l 142 -57 146 -45 148 -36 ct 151 -46 156 -59 162 -77 ct +222 -252 l 267 -252 l 267 0 l 235 0 l 235 -211 l 162 0 l 132 0 l +58 -215 l 58 0 l 26 0 l p ef +317 0 m 317 -253 l 350 -253 l 350 -30 l 475 -30 l 475 0 l 317 0 l +p ef +503 -1 m 503 -253 l 599 -253 l 615 -253 628 -252 637 -250 ct 649 -248 660 -244 668 -239 ct +677 -233 683 -225 688 -214 ct 694 -204 696 -192 696 -180 ct 696 -158 689 -140 676 -125 ct +662 -110 637 -103 601 -103 ct 537 -103 l 537 -1 l 503 -1 l p +537 -133 m 602 -133 l 624 -133 639 -137 648 -145 ct 657 -153 662 -164 662 -179 ct +662 -189 659 -198 654 -206 ct 648 -213 641 -218 633 -221 ct 627 -222 616 -223 601 -223 ct +537 -223 l 537 -133 l p ef +725 -76 m 725 -107 l 821 -107 l 821 -76 l 725 -76 l p ef +843 0 m 843 -252 l 874 -252 l 874 0 l 843 0 l p ef +912 -92 m 912 -125 921 -150 940 -167 ct 956 -180 975 -187 998 -187 ct 1023 -187 1043 -179 1059 -162 ct +1075 -146 1083 -123 1083 -94 ct 1083 -71 1080 -52 1073 -39 ct 1066 -25 1055 -15 1042 -7 ct +1028 0 1014 4 998 4 ct 972 4 951 -4 935 -21 ct 920 -37 912 -61 912 -92 ct p +944 -92 m 944 -68 949 -51 959 -39 ct 969 -27 982 -21 998 -21 ct 1013 -21 1026 -27 1036 -39 ct +1046 -51 1051 -69 1051 -93 ct 1051 -115 1046 -132 1036 -144 ct 1026 -156 1013 -161 998 -161 ct +982 -161 969 -156 959 -144 ct 949 -132 944 -115 944 -92 ct p ef +1142 0 m 1086 -183 l 1118 -183 l 1147 -77 l 1158 -38 l 1159 -40 1162 -53 1168 -76 ct +1197 -183 l 1229 -183 l 1256 -77 l 1265 -42 l 1276 -77 l 1307 -183 l +1337 -183 l 1280 0 l 1248 0 l 1219 -110 l 1212 -141 l 1174 0 l 1142 0 l +p ef +1472 -59 m 1504 -55 l 1499 -36 1489 -22 1476 -11 ct 1462 -1 1444 4 1423 4 ct +1396 4 1375 -4 1359 -21 ct 1344 -37 1336 -60 1336 -90 ct 1336 -121 1344 -145 1360 -162 ct +1376 -179 1396 -187 1421 -187 ct 1446 -187 1466 -179 1481 -162 ct 1497 -145 1505 -122 1505 -92 ct +1505 -90 1505 -87 1505 -84 ct 1368 -84 l 1369 -63 1375 -48 1385 -37 ct 1395 -27 1408 -21 1423 -21 ct +1435 -21 1444 -24 1452 -30 ct 1460 -36 1467 -46 1472 -59 ct p +1370 -109 m 1472 -109 l 1471 -124 1467 -136 1460 -144 ct 1450 -156 1438 -162 1422 -162 ct +1408 -162 1396 -157 1386 -147 ct 1376 -138 1371 -125 1370 -109 ct p ef +1531 0 m 1531 -183 l 1559 -183 l 1559 -155 l 1566 -168 1573 -177 1579 -181 ct +1585 -185 1591 -187 1598 -187 ct 1609 -187 1620 -184 1630 -177 ct 1620 -148 l +1612 -153 1605 -155 1597 -155 ct 1590 -155 1584 -153 1579 -149 ct 1573 -145 1569 -139 1567 -132 ct +1564 -121 1562 -109 1562 -96 ct 1562 0 l 1531 0 l p ef +pom + +pum +3247 6943 t +26 0 m 26 -252 l 77 -252 l 136 -74 l 142 -57 146 -45 148 -36 ct 151 -46 156 -59 162 -77 ct +222 -252 l 267 -252 l 267 0 l 235 0 l 235 -211 l 162 0 l 132 0 l +58 -215 l 58 0 l 26 0 l p ef +317 0 m 317 -253 l 350 -253 l 350 -30 l 475 -30 l 475 0 l 317 0 l +p ef +503 -1 m 503 -253 l 599 -253 l 615 -253 628 -252 637 -250 ct 649 -248 660 -244 668 -239 ct +677 -233 683 -225 688 -214 ct 694 -204 696 -192 696 -180 ct 696 -158 689 -140 676 -125 ct +662 -110 637 -103 601 -103 ct 537 -103 l 537 -1 l 503 -1 l p +537 -133 m 602 -133 l 624 -133 639 -137 648 -145 ct 657 -153 662 -164 662 -179 ct +662 -189 659 -198 654 -206 ct 648 -213 641 -218 633 -221 ct 627 -222 616 -223 601 -223 ct +537 -223 l 537 -133 l p ef +725 -76 m 725 -107 l 821 -107 l 821 -76 l 725 -76 l p ef +963 0 m 963 -27 l 949 -6 930 4 905 4 ct 894 4 884 2 875 -2 ct 866 -6 859 -12 854 -18 ct +850 -24 846 -32 844 -41 ct 843 -47 843 -56 843 -70 ct 843 -183 l 874 -183 l +874 -82 l 874 -65 874 -54 876 -49 ct 877 -41 882 -34 888 -30 ct 894 -25 902 -23 911 -23 ct +921 -23 929 -25 938 -30 ct 946 -35 951 -41 955 -49 ct 958 -57 960 -69 960 -85 ct +960 -183 l 991 -183 l 991 0 l 963 0 l p ef +1028 70 m 1028 -183 l 1057 -183 l 1057 -159 l 1063 -168 1071 -175 1079 -180 ct +1088 -185 1098 -187 1110 -187 ct 1125 -187 1139 -183 1151 -175 ct 1163 -167 1172 -156 1178 -141 ct +1184 -126 1187 -110 1187 -93 ct 1187 -74 1184 -57 1177 -42 ct 1170 -27 1161 -16 1148 -8 ct +1135 0 1122 4 1107 4 ct 1097 4 1088 2 1080 -3 ct 1071 -7 1065 -12 1059 -19 ct 1059 70 l +1028 70 l p +1056 -90 m 1056 -67 1061 -50 1071 -38 ct 1080 -27 1092 -21 1105 -21 ct 1119 -21 1131 -27 1141 -39 ct +1151 -51 1155 -69 1155 -93 ct 1155 -116 1151 -134 1141 -145 ct 1131 -157 1120 -163 1107 -163 ct +1093 -163 1082 -157 1072 -144 ct 1061 -132 1056 -114 1056 -90 ct p ef +1214 70 m 1214 -183 l 1243 -183 l 1243 -159 l 1249 -168 1257 -175 1265 -180 ct +1274 -185 1284 -187 1296 -187 ct 1311 -187 1325 -183 1337 -175 ct 1349 -167 1358 -156 1364 -141 ct +1370 -126 1373 -110 1373 -93 ct 1373 -74 1370 -57 1363 -42 ct 1356 -27 1347 -16 1334 -8 ct +1321 0 1308 4 1293 4 ct 1283 4 1274 2 1266 -3 ct 1257 -7 1251 -12 1245 -19 ct 1245 70 l +1214 70 l p +1242 -90 m 1242 -67 1247 -50 1257 -38 ct 1266 -27 1278 -21 1291 -21 ct 1305 -21 1317 -27 1327 -39 ct +1337 -51 1341 -69 1341 -93 ct 1341 -116 1337 -134 1327 -145 ct 1317 -157 1306 -163 1293 -163 ct +1279 -163 1268 -157 1258 -144 ct 1247 -132 1242 -114 1242 -90 ct p ef +1525 -59 m 1557 -55 l 1552 -36 1542 -22 1529 -11 ct 1515 -1 1497 4 1476 4 ct +1449 4 1428 -4 1412 -21 ct 1397 -37 1389 -60 1389 -90 ct 1389 -121 1397 -145 1413 -162 ct +1429 -179 1449 -187 1474 -187 ct 1499 -187 1519 -179 1534 -162 ct 1550 -145 1558 -122 1558 -92 ct +1558 -90 1558 -87 1558 -84 ct 1421 -84 l 1422 -63 1428 -48 1438 -37 ct 1448 -27 1461 -21 1476 -21 ct +1488 -21 1497 -24 1505 -30 ct 1513 -36 1520 -46 1525 -59 ct p +1423 -109 m 1525 -109 l 1524 -124 1520 -136 1513 -144 ct 1503 -156 1491 -162 1475 -162 ct +1461 -162 1449 -157 1439 -147 ct 1429 -138 1424 -125 1423 -109 ct p ef +1584 0 m 1584 -183 l 1612 -183 l 1612 -155 l 1619 -168 1626 -177 1632 -181 ct +1638 -185 1644 -187 1651 -187 ct 1662 -187 1673 -184 1683 -177 ct 1673 -148 l +1665 -153 1658 -155 1650 -155 ct 1643 -155 1637 -153 1632 -149 ct 1626 -145 1622 -139 1620 -132 ct +1617 -121 1615 -109 1615 -96 ct 1615 0 l 1584 0 l p ef +pom + +pum +4610 6545 t +16 -81 m 47 -84 l 49 -72 52 -61 58 -53 ct 63 -45 72 -38 83 -33 ct 95 -28 108 -26 122 -26 ct +135 -26 146 -28 156 -32 ct 166 -35 173 -41 178 -47 ct 182 -54 185 -61 185 -69 ct +185 -77 182 -84 178 -90 ct 173 -96 166 -100 155 -104 ct 148 -107 133 -111 110 -117 ct +87 -122 71 -128 61 -133 ct 49 -139 40 -147 34 -156 ct 28 -165 26 -176 26 -187 ct +26 -200 29 -212 36 -223 ct 44 -234 54 -243 68 -248 ct 82 -254 97 -257 114 -257 ct +133 -257 150 -254 164 -248 ct 178 -242 189 -233 197 -221 ct 205 -210 209 -196 209 -182 ct +177 -179 l 176 -195 170 -207 160 -215 ct 150 -223 135 -228 116 -228 ct 96 -228 81 -224 72 -216 ct +62 -209 58 -200 58 -190 ct 58 -181 61 -173 68 -167 ct 74 -161 91 -155 118 -149 ct +145 -143 164 -138 174 -133 ct 189 -126 199 -118 206 -107 ct 214 -97 217 -85 217 -72 ct +217 -58 213 -46 205 -34 ct 198 -22 187 -13 172 -6 ct 158 1 142 4 124 4 ct 101 4 82 1 66 -6 ct +51 -13 39 -23 30 -36 ct 21 -49 16 -65 16 -81 ct p ef +265 0 m 265 -253 l 352 -253 l 372 -253 387 -252 397 -249 ct 412 -246 424 -240 434 -231 ct +448 -220 458 -205 464 -188 ct 471 -170 474 -150 474 -128 ct 474 -109 472 -92 467 -77 ct +463 -62 457 -50 450 -40 ct 443 -30 436 -23 427 -17 ct 419 -11 409 -7 397 -4 ct +385 -1 372 0 356 0 ct 265 0 l p +299 -30 m 353 -30 l 369 -30 382 -31 392 -34 ct 401 -38 409 -42 415 -48 ct +422 -56 429 -66 433 -80 ct 437 -93 440 -109 440 -128 ct 440 -155 435 -175 427 -189 ct +418 -203 407 -213 395 -218 ct 386 -221 372 -223 352 -223 ct 299 -223 l 299 -30 l +p ef +475 1 m 573 -252 l 609 -252 l 712 1 l 674 1 l 644 -76 l 539 -76 l +511 1 l 475 1 l p +548 -103 m 634 -103 l 608 -173 l 600 -194 594 -212 590 -225 ct 587 -209 582 -193 576 -177 ct +548 -103 l p ef +725 -76 m 725 -107 l 821 -107 l 821 -76 l 725 -76 l p ef +962 0 m 962 -23 l 950 -5 933 4 911 4 ct 896 4 883 0 871 -8 ct 858 -16 849 -27 842 -42 ct +835 -56 832 -73 832 -91 ct 832 -110 835 -126 841 -141 ct 847 -156 856 -167 869 -175 ct +881 -183 894 -187 909 -187 ct 920 -187 930 -185 939 -180 ct 948 -175 955 -169 960 -162 ct +960 -252 l 991 -252 l 991 0 l 962 0 l p +864 -91 m 864 -68 869 -50 879 -39 ct 889 -27 900 -21 914 -21 ct 927 -21 939 -27 948 -38 ct +958 -49 963 -66 963 -89 ct 963 -114 958 -132 948 -144 ct 938 -156 927 -161 912 -161 ct +899 -161 887 -156 878 -144 ct 869 -133 864 -116 864 -91 ct p ef +1028 -217 m 1028 -253 l 1059 -253 l 1059 -217 l 1028 -217 l p +1028 0 m 1028 -183 l 1059 -183 l 1059 0 l 1028 0 l p ef +1103 15 m 1133 19 l 1134 29 1138 35 1143 40 ct 1151 45 1161 48 1175 48 ct +1189 48 1200 45 1208 40 ct 1216 34 1221 26 1224 16 ct 1226 9 1226 -4 1226 -24 ct +1213 -8 1196 0 1175 0 ct 1150 0 1131 -9 1117 -28 ct 1103 -46 1096 -67 1096 -93 ct +1096 -110 1100 -126 1106 -141 ct 1112 -156 1121 -167 1133 -175 ct 1145 -183 1159 -187 1176 -187 ct +1197 -187 1215 -178 1229 -161 ct 1229 -183 l 1258 -183 l 1258 -25 l 1258 4 1255 24 1249 36 ct +1243 47 1234 57 1221 64 ct 1209 71 1193 74 1175 74 ct 1153 74 1136 69 1122 59 ct +1109 49 1102 35 1103 15 ct p +1128 -95 m 1128 -71 1133 -53 1143 -42 ct 1152 -32 1164 -26 1178 -26 ct 1193 -26 1205 -31 1214 -42 ct +1224 -53 1229 -70 1229 -94 ct 1229 -116 1224 -133 1214 -144 ct 1204 -156 1192 -161 1178 -161 ct +1164 -161 1152 -156 1143 -145 ct 1133 -133 1128 -117 1128 -95 ct p ef +1293 -217 m 1293 -253 l 1324 -253 l 1324 -217 l 1293 -217 l p +1293 0 m 1293 -183 l 1324 -183 l 1324 0 l 1293 0 l p ef +1440 -28 m 1444 -1 l 1436 1 1428 2 1421 2 ct 1410 2 1401 0 1395 -3 ct 1389 -7 1384 -12 1382 -17 ct +1379 -23 1378 -35 1378 -54 ct 1378 -159 l 1355 -159 l 1355 -183 l 1378 -183 l +1378 -228 l 1409 -247 l 1409 -183 l 1440 -183 l 1440 -159 l 1409 -159 l +1409 -52 l 1409 -43 1409 -38 1410 -35 ct 1412 -33 1413 -31 1416 -29 ct 1418 -28 1422 -27 1426 -27 ct +1430 -27 1434 -27 1440 -28 ct p ef +1466 -55 m 1497 -60 l 1498 -47 1503 -38 1511 -31 ct 1519 -25 1530 -21 1544 -21 ct +1558 -21 1569 -24 1576 -30 ct 1583 -36 1586 -43 1586 -51 ct 1586 -58 1583 -63 1577 -67 ct +1573 -70 1562 -73 1545 -78 ct 1522 -83 1507 -88 1498 -92 ct 1489 -97 1482 -102 1478 -110 ct +1473 -117 1471 -125 1471 -134 ct 1471 -143 1473 -150 1477 -157 ct 1480 -164 1485 -170 1492 -174 ct +1497 -178 1503 -181 1512 -183 ct 1520 -186 1529 -187 1538 -187 ct 1553 -187 1565 -185 1576 -181 ct +1587 -177 1595 -171 1600 -164 ct 1605 -157 1609 -148 1611 -136 ct 1581 -132 l +1579 -141 1575 -148 1569 -154 ct 1562 -159 1553 -162 1541 -162 ct 1526 -162 1516 -159 1510 -154 ct +1504 -150 1501 -144 1501 -138 ct 1501 -134 1502 -130 1505 -127 ct 1507 -124 1511 -121 1517 -119 ct +1520 -118 1529 -115 1544 -111 ct 1566 -105 1581 -100 1590 -97 ct 1599 -93 1606 -87 1610 -80 ct +1615 -73 1618 -64 1618 -54 ct 1618 -43 1615 -34 1609 -25 ct 1603 -16 1594 -8 1583 -3 ct +1571 2 1558 4 1544 4 ct 1520 4 1502 -1 1490 -11 ct 1477 -21 1469 -35 1466 -55 ct +p ef +pom + +pum +5973 6943 t +16 -81 m 47 -84 l 49 -72 52 -61 58 -53 ct 63 -45 72 -38 83 -33 ct 95 -28 108 -26 122 -26 ct +135 -26 146 -28 156 -32 ct 166 -35 173 -41 178 -47 ct 182 -54 185 -61 185 -69 ct +185 -77 182 -84 178 -90 ct 173 -96 166 -100 155 -104 ct 148 -107 133 -111 110 -117 ct +87 -122 71 -128 61 -133 ct 49 -139 40 -147 34 -156 ct 28 -165 26 -176 26 -187 ct +26 -200 29 -212 36 -223 ct 44 -234 54 -243 68 -248 ct 82 -254 97 -257 114 -257 ct +133 -257 150 -254 164 -248 ct 178 -242 189 -233 197 -221 ct 205 -210 209 -196 209 -182 ct +177 -179 l 176 -195 170 -207 160 -215 ct 150 -223 135 -228 116 -228 ct 96 -228 81 -224 72 -216 ct +62 -209 58 -200 58 -190 ct 58 -181 61 -173 68 -167 ct 74 -161 91 -155 118 -149 ct +145 -143 164 -138 174 -133 ct 189 -126 199 -118 206 -107 ct 214 -97 217 -85 217 -72 ct +217 -58 213 -46 205 -34 ct 198 -22 187 -13 172 -6 ct 158 1 142 4 124 4 ct 101 4 82 1 66 -6 ct +51 -13 39 -23 30 -36 ct 21 -49 16 -65 16 -81 ct p ef +265 0 m 265 -253 l 352 -253 l 372 -253 387 -252 397 -249 ct 412 -246 424 -240 434 -231 ct +448 -220 458 -205 464 -188 ct 471 -170 474 -150 474 -128 ct 474 -109 472 -92 467 -77 ct +463 -62 457 -50 450 -40 ct 443 -30 436 -23 427 -17 ct 419 -11 409 -7 397 -4 ct +385 -1 372 0 356 0 ct 265 0 l p +299 -30 m 353 -30 l 369 -30 382 -31 392 -34 ct 401 -38 409 -42 415 -48 ct +422 -56 429 -66 433 -80 ct 437 -93 440 -109 440 -128 ct 440 -155 435 -175 427 -189 ct +418 -203 407 -213 395 -218 ct 386 -221 372 -223 352 -223 ct 299 -223 l 299 -30 l +p ef +475 1 m 573 -252 l 609 -252 l 712 1 l 674 1 l 644 -76 l 539 -76 l +511 1 l 475 1 l p +548 -103 m 634 -103 l 608 -173 l 600 -194 594 -212 590 -225 ct 587 -209 582 -193 576 -177 ct +548 -103 l p ef +725 -76 m 725 -107 l 821 -107 l 821 -76 l 725 -76 l p ef +843 0 m 843 -252 l 874 -252 l 874 0 l 843 0 l p ef +912 -92 m 912 -125 921 -150 940 -167 ct 956 -180 975 -187 998 -187 ct 1023 -187 1043 -179 1059 -162 ct +1075 -146 1083 -123 1083 -94 ct 1083 -71 1080 -52 1073 -39 ct 1066 -25 1055 -15 1042 -7 ct +1028 0 1014 4 998 4 ct 972 4 951 -4 935 -21 ct 920 -37 912 -61 912 -92 ct p +944 -92 m 944 -68 949 -51 959 -39 ct 969 -27 982 -21 998 -21 ct 1013 -21 1026 -27 1036 -39 ct +1046 -51 1051 -69 1051 -93 ct 1051 -115 1046 -132 1036 -144 ct 1026 -156 1013 -161 998 -161 ct +982 -161 969 -156 959 -144 ct 949 -132 944 -115 944 -92 ct p ef +1142 0 m 1086 -183 l 1118 -183 l 1147 -77 l 1158 -38 l 1159 -40 1162 -53 1168 -76 ct +1197 -183 l 1229 -183 l 1256 -77 l 1265 -42 l 1276 -77 l 1307 -183 l +1337 -183 l 1280 0 l 1248 0 l 1219 -110 l 1212 -141 l 1174 0 l 1142 0 l +p ef +1472 -59 m 1504 -55 l 1499 -36 1489 -22 1476 -11 ct 1462 -1 1444 4 1423 4 ct +1396 4 1375 -4 1359 -21 ct 1344 -37 1336 -60 1336 -90 ct 1336 -121 1344 -145 1360 -162 ct +1376 -179 1396 -187 1421 -187 ct 1446 -187 1466 -179 1481 -162 ct 1497 -145 1505 -122 1505 -92 ct +1505 -90 1505 -87 1505 -84 ct 1368 -84 l 1369 -63 1375 -48 1385 -37 ct 1395 -27 1408 -21 1423 -21 ct +1435 -21 1444 -24 1452 -30 ct 1460 -36 1467 -46 1472 -59 ct p +1370 -109 m 1472 -109 l 1471 -124 1467 -136 1460 -144 ct 1450 -156 1438 -162 1422 -162 ct +1408 -162 1396 -157 1386 -147 ct 1376 -138 1371 -125 1370 -109 ct p ef +1531 0 m 1531 -183 l 1559 -183 l 1559 -155 l 1566 -168 1573 -177 1579 -181 ct +1585 -185 1591 -187 1598 -187 ct 1609 -187 1620 -184 1630 -177 ct 1620 -148 l +1612 -153 1605 -155 1597 -155 ct 1590 -155 1584 -153 1579 -149 ct 1573 -145 1569 -139 1567 -132 ct +1564 -121 1562 -109 1562 -96 ct 1562 0 l 1531 0 l p ef +pom + +pum +7297 6545 t +16 -81 m 47 -84 l 49 -72 52 -61 58 -53 ct 63 -45 72 -38 83 -33 ct 95 -28 108 -26 122 -26 ct +135 -26 146 -28 156 -32 ct 166 -35 173 -41 178 -47 ct 182 -54 185 -61 185 -69 ct +185 -77 182 -84 178 -90 ct 173 -96 166 -100 155 -104 ct 148 -107 133 -111 110 -117 ct +87 -122 71 -128 61 -133 ct 49 -139 40 -147 34 -156 ct 28 -165 26 -176 26 -187 ct +26 -200 29 -212 36 -223 ct 44 -234 54 -243 68 -248 ct 82 -254 97 -257 114 -257 ct +133 -257 150 -254 164 -248 ct 178 -242 189 -233 197 -221 ct 205 -210 209 -196 209 -182 ct +177 -179 l 176 -195 170 -207 160 -215 ct 150 -223 135 -228 116 -228 ct 96 -228 81 -224 72 -216 ct +62 -209 58 -200 58 -190 ct 58 -181 61 -173 68 -167 ct 74 -161 91 -155 118 -149 ct +145 -143 164 -138 174 -133 ct 189 -126 199 -118 206 -107 ct 214 -97 217 -85 217 -72 ct +217 -58 213 -46 205 -34 ct 198 -22 187 -13 172 -6 ct 158 1 142 4 124 4 ct 101 4 82 1 66 -6 ct +51 -13 39 -23 30 -36 ct 21 -49 16 -65 16 -81 ct p ef +265 0 m 265 -253 l 352 -253 l 372 -253 387 -252 397 -249 ct 412 -246 424 -240 434 -231 ct +448 -220 458 -205 464 -188 ct 471 -170 474 -150 474 -128 ct 474 -109 472 -92 467 -77 ct +463 -62 457 -50 450 -40 ct 443 -30 436 -23 427 -17 ct 419 -11 409 -7 397 -4 ct +385 -1 372 0 356 0 ct 265 0 l p +299 -30 m 353 -30 l 369 -30 382 -31 392 -34 ct 401 -38 409 -42 415 -48 ct +422 -56 429 -66 433 -80 ct 437 -93 440 -109 440 -128 ct 440 -155 435 -175 427 -189 ct +418 -203 407 -213 395 -218 ct 386 -221 372 -223 352 -223 ct 299 -223 l 299 -30 l +p ef +475 1 m 573 -252 l 609 -252 l 712 1 l 674 1 l 644 -76 l 539 -76 l +511 1 l 475 1 l p +548 -103 m 634 -103 l 608 -173 l 600 -194 594 -212 590 -225 ct 587 -209 582 -193 576 -177 ct +548 -103 l p ef +725 -76 m 725 -107 l 821 -107 l 821 -76 l 725 -76 l p ef +963 0 m 963 -27 l 949 -6 930 4 905 4 ct 894 4 884 2 875 -2 ct 866 -6 859 -12 854 -18 ct +850 -24 846 -32 844 -41 ct 843 -47 843 -56 843 -70 ct 843 -183 l 874 -183 l +874 -82 l 874 -65 874 -54 876 -49 ct 877 -41 882 -34 888 -30 ct 894 -25 902 -23 911 -23 ct +921 -23 929 -25 938 -30 ct 946 -35 951 -41 955 -49 ct 958 -57 960 -69 960 -85 ct +960 -183 l 991 -183 l 991 0 l 963 0 l p ef +1028 70 m 1028 -183 l 1057 -183 l 1057 -159 l 1063 -168 1071 -175 1079 -180 ct +1088 -185 1098 -187 1110 -187 ct 1125 -187 1139 -183 1151 -175 ct 1163 -167 1172 -156 1178 -141 ct +1184 -126 1187 -110 1187 -93 ct 1187 -74 1184 -57 1177 -42 ct 1170 -27 1161 -16 1148 -8 ct +1135 0 1122 4 1107 4 ct 1097 4 1088 2 1080 -3 ct 1071 -7 1065 -12 1059 -19 ct 1059 70 l +1028 70 l p +1056 -90 m 1056 -67 1061 -50 1071 -38 ct 1080 -27 1092 -21 1105 -21 ct 1119 -21 1131 -27 1141 -39 ct +1151 -51 1155 -69 1155 -93 ct 1155 -116 1151 -134 1141 -145 ct 1131 -157 1120 -163 1107 -163 ct +1093 -163 1082 -157 1072 -144 ct 1061 -132 1056 -114 1056 -90 ct p ef +1214 70 m 1214 -183 l 1243 -183 l 1243 -159 l 1249 -168 1257 -175 1265 -180 ct +1274 -185 1284 -187 1296 -187 ct 1311 -187 1325 -183 1337 -175 ct 1349 -167 1358 -156 1364 -141 ct +1370 -126 1373 -110 1373 -93 ct 1373 -74 1370 -57 1363 -42 ct 1356 -27 1347 -16 1334 -8 ct +1321 0 1308 4 1293 4 ct 1283 4 1274 2 1266 -3 ct 1257 -7 1251 -12 1245 -19 ct 1245 70 l +1214 70 l p +1242 -90 m 1242 -67 1247 -50 1257 -38 ct 1266 -27 1278 -21 1291 -21 ct 1305 -21 1317 -27 1327 -39 ct +1337 -51 1341 -69 1341 -93 ct 1341 -116 1337 -134 1327 -145 ct 1317 -157 1306 -163 1293 -163 ct +1279 -163 1268 -157 1258 -144 ct 1247 -132 1242 -114 1242 -90 ct p ef +1525 -59 m 1557 -55 l 1552 -36 1542 -22 1529 -11 ct 1515 -1 1497 4 1476 4 ct +1449 4 1428 -4 1412 -21 ct 1397 -37 1389 -60 1389 -90 ct 1389 -121 1397 -145 1413 -162 ct +1429 -179 1449 -187 1474 -187 ct 1499 -187 1519 -179 1534 -162 ct 1550 -145 1558 -122 1558 -92 ct +1558 -90 1558 -87 1558 -84 ct 1421 -84 l 1422 -63 1428 -48 1438 -37 ct 1448 -27 1461 -21 1476 -21 ct +1488 -21 1497 -24 1505 -30 ct 1513 -36 1520 -46 1525 -59 ct p +1423 -109 m 1525 -109 l 1524 -124 1520 -136 1513 -144 ct 1503 -156 1491 -162 1475 -162 ct +1461 -162 1449 -157 1439 -147 ct 1429 -138 1424 -125 1423 -109 ct p ef +1584 0 m 1584 -183 l 1612 -183 l 1612 -155 l 1619 -168 1626 -177 1632 -181 ct +1638 -185 1644 -187 1651 -187 ct 1662 -187 1673 -184 1683 -177 ct 1673 -148 l +1665 -153 1658 -155 1650 -155 ct 1643 -155 1637 -153 1632 -149 ct 1626 -145 1622 -139 1620 -132 ct +1617 -121 1615 -109 1615 -96 ct 1615 0 l 1584 0 l p ef +pom + +pum +190 6084 t +9 -61 m 9 -86 l 85 -86 l 85 -61 l 9 -61 l p ef +211 0 m 186 0 l 186 -158 l 180 -153 172 -147 163 -141 ct 153 -136 144 -131 137 -128 ct +137 -153 l 151 -159 163 -167 173 -176 ct 183 -186 191 -195 195 -203 ct 211 -203 l +211 0 l p ef +277 -100 m 277 -124 279 -143 284 -158 ct 289 -173 296 -184 306 -192 ct 316 -200 328 -204 343 -204 ct +353 -204 363 -201 371 -197 ct 379 -193 386 -186 391 -178 ct 397 -170 401 -160 404 -148 ct +407 -136 408 -120 408 -100 ct 408 -76 406 -57 401 -43 ct 396 -28 389 -17 379 -9 ct +370 -1 357 3 343 3 ct 323 3 308 -4 297 -18 ct 283 -35 277 -62 277 -100 ct p +302 -100 m 302 -67 306 -45 314 -34 ct 322 -23 331 -17 343 -17 ct 354 -17 363 -23 371 -34 ct +379 -45 383 -67 383 -100 ct 383 -134 379 -156 371 -167 ct 363 -178 354 -183 342 -183 ct +331 -183 322 -178 315 -169 ct 306 -156 302 -133 302 -100 ct p ef +pom + +pum +348 5522 t +9 -61 m 9 -86 l 85 -86 l 85 -61 l 9 -61 l p ef +118 -54 m 144 -56 l 146 -43 150 -33 157 -27 ct 164 -21 173 -17 183 -17 ct +194 -17 205 -22 213 -31 ct 221 -40 225 -52 225 -67 ct 225 -81 221 -92 213 -101 ct +205 -109 195 -113 182 -113 ct 174 -113 167 -111 161 -108 ct 154 -104 149 -99 145 -93 ct +122 -96 l 142 -200 l 242 -200 l 242 -176 l 161 -176 l 151 -122 l +163 -131 175 -135 189 -135 ct 206 -135 221 -129 233 -117 ct 245 -104 252 -89 252 -69 ct +252 -51 246 -35 236 -22 ct 223 -5 205 3 183 3 ct 164 3 149 -2 138 -12 ct 126 -23 119 -37 118 -54 ct +p ef +pom + +pum +454 4960 t +12 -100 m 12 -124 14 -143 19 -158 ct 24 -173 31 -184 41 -192 ct 51 -200 63 -204 78 -204 ct +88 -204 98 -201 106 -197 ct 114 -193 121 -186 126 -178 ct 132 -170 136 -160 139 -148 ct +142 -136 143 -120 143 -100 ct 143 -76 141 -57 136 -43 ct 131 -28 124 -17 114 -9 ct +105 -1 92 3 78 3 ct 58 3 43 -4 32 -18 ct 18 -35 12 -62 12 -100 ct p +37 -100 m 37 -67 41 -45 49 -34 ct 57 -23 66 -17 78 -17 ct 89 -17 98 -23 106 -34 ct +114 -45 118 -67 118 -100 ct 118 -134 114 -156 106 -167 ct 98 -178 89 -183 77 -183 ct +66 -183 57 -178 50 -169 ct 41 -156 37 -133 37 -100 ct p ef +pom + +pum +454 4399 t +12 -54 m 38 -56 l 40 -43 44 -33 51 -27 ct 58 -21 67 -17 77 -17 ct 88 -17 99 -22 107 -31 ct +115 -40 119 -52 119 -67 ct 119 -81 115 -92 107 -101 ct 99 -109 89 -113 76 -113 ct +68 -113 61 -111 55 -108 ct 48 -104 43 -99 39 -93 ct 16 -96 l 36 -200 l 136 -200 l +136 -176 l 55 -176 l 45 -122 l 57 -131 69 -135 83 -135 ct 100 -135 115 -129 127 -117 ct +139 -104 146 -89 146 -69 ct 146 -51 140 -35 130 -22 ct 117 -5 99 3 77 3 ct 58 3 43 -2 32 -12 ct +20 -23 13 -37 12 -54 ct p ef +pom + +pum +295 3837 t +105 0 m 80 0 l 80 -158 l 74 -153 66 -147 57 -141 ct 47 -136 38 -131 31 -128 ct +31 -153 l 45 -159 57 -167 67 -176 ct 77 -186 85 -195 89 -203 ct 105 -203 l +105 0 l p ef +171 -100 m 171 -124 173 -143 178 -158 ct 183 -173 190 -184 200 -192 ct 210 -200 222 -204 237 -204 ct +247 -204 257 -201 265 -197 ct 273 -193 280 -186 285 -178 ct 291 -170 295 -160 298 -148 ct +301 -136 302 -120 302 -100 ct 302 -76 300 -57 295 -43 ct 290 -28 283 -17 273 -9 ct +264 -1 251 3 237 3 ct 217 3 202 -4 191 -18 ct 177 -35 171 -62 171 -100 ct p +196 -100 m 196 -67 200 -45 208 -34 ct 216 -23 225 -17 237 -17 ct 248 -17 257 -23 265 -34 ct +273 -45 277 -67 277 -100 ct 277 -134 273 -156 265 -167 ct 257 -178 248 -183 236 -183 ct +225 -183 216 -178 209 -169 ct 200 -156 196 -133 196 -100 ct p ef +pom + +pum +295 3275 t +105 0 m 80 0 l 80 -158 l 74 -153 66 -147 57 -141 ct 47 -136 38 -131 31 -128 ct +31 -153 l 45 -159 57 -167 67 -176 ct 77 -186 85 -195 89 -203 ct 105 -203 l +105 0 l p ef +171 -54 m 197 -56 l 199 -43 203 -33 210 -27 ct 217 -21 226 -17 236 -17 ct +247 -17 258 -22 266 -31 ct 274 -40 278 -52 278 -67 ct 278 -81 274 -92 266 -101 ct +258 -109 248 -113 235 -113 ct 227 -113 220 -111 214 -108 ct 207 -104 202 -99 198 -93 ct +175 -96 l 195 -200 l 295 -200 l 295 -176 l 214 -176 l 204 -122 l +216 -131 228 -135 242 -135 ct 259 -135 274 -129 286 -117 ct 298 -104 305 -89 305 -69 ct +305 -51 299 -35 289 -22 ct 276 -5 258 3 236 3 ct 217 3 202 -2 191 -12 ct 179 -23 172 -37 171 -54 ct +p ef +pom + +pum +295 2714 t +142 -24 m 142 0 l 9 0 l 8 -6 9 -12 11 -17 ct 15 -26 20 -35 28 -44 ct 35 -53 46 -63 60 -75 ct +82 -93 97 -107 105 -118 ct 112 -128 116 -138 116 -148 ct 116 -158 113 -166 106 -173 ct +99 -180 90 -183 78 -183 ct 66 -183 57 -179 50 -172 ct 42 -165 39 -155 39 -142 ct +13 -145 l 15 -164 22 -179 33 -189 ct 44 -199 60 -204 79 -204 ct 98 -204 113 -198 125 -187 ct +136 -177 142 -163 142 -147 ct 142 -139 140 -131 137 -123 ct 133 -116 128 -107 120 -99 ct +113 -90 100 -78 82 -63 ct 67 -50 58 -42 53 -37 ct 49 -33 46 -28 43 -24 ct 142 -24 l +p ef +171 -100 m 171 -124 173 -143 178 -158 ct 183 -173 190 -184 200 -192 ct 210 -200 222 -204 237 -204 ct +247 -204 257 -201 265 -197 ct 273 -193 280 -186 285 -178 ct 291 -170 295 -160 298 -148 ct +301 -136 302 -120 302 -100 ct 302 -76 300 -57 295 -43 ct 290 -28 283 -17 273 -9 ct +264 -1 251 3 237 3 ct 217 3 202 -4 191 -18 ct 177 -35 171 -62 171 -100 ct p +196 -100 m 196 -67 200 -45 208 -34 ct 216 -23 225 -17 237 -17 ct 248 -17 257 -23 265 -34 ct +273 -45 277 -67 277 -100 ct 277 -134 273 -156 265 -167 ct 257 -178 248 -183 236 -183 ct +225 -183 216 -178 209 -169 ct 200 -156 196 -133 196 -100 ct p ef +pom + +pum +295 2152 t +142 -24 m 142 0 l 9 0 l 8 -6 9 -12 11 -17 ct 15 -26 20 -35 28 -44 ct 35 -53 46 -63 60 -75 ct +82 -93 97 -107 105 -118 ct 112 -128 116 -138 116 -148 ct 116 -158 113 -166 106 -173 ct +99 -180 90 -183 78 -183 ct 66 -183 57 -179 50 -172 ct 42 -165 39 -155 39 -142 ct +13 -145 l 15 -164 22 -179 33 -189 ct 44 -199 60 -204 79 -204 ct 98 -204 113 -198 125 -187 ct +136 -177 142 -163 142 -147 ct 142 -139 140 -131 137 -123 ct 133 -116 128 -107 120 -99 ct +113 -90 100 -78 82 -63 ct 67 -50 58 -42 53 -37 ct 49 -33 46 -28 43 -24 ct 142 -24 l +p ef +171 -54 m 197 -56 l 199 -43 203 -33 210 -27 ct 217 -21 226 -17 236 -17 ct +247 -17 258 -22 266 -31 ct 274 -40 278 -52 278 -67 ct 278 -81 274 -92 266 -101 ct +258 -109 248 -113 235 -113 ct 227 -113 220 -111 214 -108 ct 207 -104 202 -99 198 -93 ct +175 -96 l 195 -200 l 295 -200 l 295 -176 l 214 -176 l 204 -122 l +216 -131 228 -135 242 -135 ct 259 -135 274 -129 286 -117 ct 298 -104 305 -89 305 -69 ct +305 -51 299 -35 289 -22 ct 276 -5 258 3 236 3 ct 217 3 202 -2 191 -12 ct 179 -23 172 -37 171 -54 ct +p ef +pom + +pum +295 1591 t +12 -53 m 37 -56 l 39 -42 44 -32 51 -26 ct 58 -20 66 -17 76 -17 ct 88 -17 98 -21 106 -29 ct +114 -37 118 -47 118 -59 ct 118 -70 114 -80 107 -87 ct 99 -95 90 -98 78 -98 ct 74 -98 68 -97 61 -95 ct +63 -117 l 65 -117 66 -117 67 -117 ct 78 -117 88 -120 96 -125 ct 104 -131 109 -139 109 -151 ct +109 -160 106 -168 99 -174 ct 93 -180 85 -183 76 -183 ct 66 -183 58 -180 52 -173 ct +45 -167 41 -158 39 -146 ct 14 -150 l 17 -167 24 -180 35 -189 ct 46 -198 59 -203 75 -203 ct +86 -203 96 -201 105 -196 ct 115 -191 122 -185 127 -176 ct 132 -168 134 -160 134 -150 ct +134 -142 132 -134 127 -126 ct 122 -119 115 -114 106 -109 ct 118 -107 128 -101 134 -92 ct +141 -83 144 -72 144 -59 ct 144 -42 138 -27 125 -14 ct 112 -2 96 4 76 4 ct 58 4 44 -1 32 -12 ct +20 -22 14 -36 12 -53 ct p ef +171 -100 m 171 -124 173 -143 178 -158 ct 183 -173 190 -184 200 -192 ct 210 -200 222 -204 237 -204 ct +247 -204 257 -201 265 -197 ct 273 -193 280 -186 285 -178 ct 291 -170 295 -160 298 -148 ct +301 -136 302 -120 302 -100 ct 302 -76 300 -57 295 -43 ct 290 -28 283 -17 273 -9 ct +264 -1 251 3 237 3 ct 217 3 202 -4 191 -18 ct 177 -35 171 -62 171 -100 ct p +196 -100 m 196 -67 200 -45 208 -34 ct 216 -23 225 -17 237 -17 ct 248 -17 257 -23 265 -34 ct +273 -45 277 -67 277 -100 ct 277 -134 273 -156 265 -167 ct 257 -178 248 -183 236 -183 ct +225 -183 216 -178 209 -169 ct 200 -156 196 -133 196 -100 ct p ef +pom + +pum +1925 558 t +36 1 m 36 -329 l 182 -329 l 211 -329 233 -326 249 -320 ct 264 -314 276 -304 285 -289 ct +294 -274 299 -257 299 -239 ct 299 -216 291 -196 276 -180 ct 261 -164 238 -154 206 -150 ct +218 -144 226 -139 232 -133 ct 245 -121 257 -107 269 -89 ct 326 1 l 271 1 l +227 -68 l 215 -88 204 -103 196 -114 ct 188 -124 181 -131 174 -136 ct 168 -140 161 -143 154 -144 ct +149 -145 141 -146 130 -146 ct 80 -146 l 80 1 l 36 1 l p +80 -184 m 173 -184 l 193 -184 208 -186 220 -190 ct 231 -194 239 -201 245 -210 ct +251 -219 254 -229 254 -239 ct 254 -255 248 -268 237 -278 ct 226 -288 208 -293 184 -293 ct +80 -293 l 80 -184 l p ef +511 -77 m 553 -72 l 546 -48 534 -29 516 -15 ct 499 -2 476 5 448 5 ct 413 5 386 -6 365 -27 ct +345 -49 335 -79 335 -118 ct 335 -158 345 -189 366 -211 ct 386 -233 413 -244 446 -244 ct +478 -244 504 -233 524 -212 ct 544 -190 554 -159 554 -120 ct 554 -117 554 -114 554 -109 ct +377 -109 l 378 -83 385 -63 399 -49 ct 412 -35 429 -28 448 -28 ct 463 -28 476 -32 486 -40 ct +497 -48 505 -60 511 -77 ct p +379 -142 m 512 -142 l 510 -162 505 -177 496 -188 ct 484 -203 467 -211 446 -211 ct +428 -211 412 -205 400 -192 ct 387 -180 380 -163 379 -142 ct p ef +585 0 m 585 -329 l 626 -329 l 626 0 l 585 0 l p ef +847 -30 m 832 -17 817 -8 803 -3 ct 790 2 775 5 759 5 ct 733 5 713 -1 699 -14 ct +685 -27 678 -43 678 -63 ct 678 -75 680 -86 686 -95 ct 691 -105 698 -113 706 -119 ct +715 -124 725 -129 735 -132 ct 743 -134 755 -136 771 -138 ct 804 -142 828 -146 843 -152 ct +843 -157 843 -161 843 -162 ct 843 -179 840 -191 832 -197 ct 822 -206 806 -211 786 -211 ct +767 -211 753 -208 744 -201 ct 735 -194 728 -183 724 -166 ct 685 -171 l 688 -188 694 -202 702 -212 ct +710 -222 722 -230 738 -236 ct 753 -242 771 -244 792 -244 ct 812 -244 829 -242 841 -237 ct +854 -232 863 -226 869 -219 ct 875 -212 880 -203 882 -192 ct 883 -185 884 -172 884 -154 ct +884 -100 l 884 -63 885 -39 887 -29 ct 888 -19 892 -10 897 0 ct 855 0 l 850 -9 848 -19 847 -30 ct +p +843 -120 m 829 -114 807 -109 777 -105 ct 761 -103 749 -100 742 -97 ct 735 -94 730 -89 726 -84 ct +722 -78 721 -71 721 -64 ct 721 -54 725 -45 733 -37 ct 741 -30 753 -27 769 -27 ct +784 -27 798 -30 810 -37 ct 822 -44 831 -53 837 -65 ct 841 -74 843 -88 843 -105 ct +843 -120 l p ef +1018 -36 m 1024 -1 l 1013 2 1003 3 994 3 ct 979 3 968 1 960 -4 ct 952 -9 946 -15 943 -22 ct +939 -30 938 -46 938 -70 ct 938 -208 l 908 -208 l 908 -239 l 938 -239 l +938 -298 l 978 -322 l 978 -239 l 1018 -239 l 1018 -208 l 978 -208 l +978 -68 l 978 -56 978 -49 980 -46 ct 981 -42 984 -40 987 -38 ct 990 -36 995 -35 1001 -35 ct +1005 -35 1011 -35 1018 -36 ct p ef +1062 -283 m 1062 -330 l 1103 -330 l 1103 -283 l 1062 -283 l p +1062 0 m 1062 -239 l 1103 -239 l 1103 0 l 1062 0 l p ef +1234 0 m 1144 -239 l 1186 -239 l 1238 -96 l 1243 -80 1248 -64 1253 -48 ct +1256 -60 1261 -75 1268 -93 ct 1321 -239 l 1362 -239 l 1272 0 l 1234 0 l +p ef +1569 -77 m 1611 -72 l 1604 -48 1592 -29 1574 -15 ct 1557 -2 1534 5 1506 5 ct +1471 5 1444 -6 1423 -27 ct 1403 -49 1393 -79 1393 -118 ct 1393 -158 1403 -189 1424 -211 ct +1444 -233 1471 -244 1504 -244 ct 1536 -244 1562 -233 1582 -212 ct 1602 -190 1612 -159 1612 -120 ct +1612 -117 1612 -114 1612 -109 ct 1435 -109 l 1436 -83 1443 -63 1457 -49 ct +1470 -35 1487 -28 1506 -28 ct 1521 -28 1534 -32 1544 -40 ct 1555 -48 1563 -60 1569 -77 ct +p +1437 -142 m 1570 -142 l 1568 -162 1563 -177 1554 -188 ct 1542 -203 1525 -211 1504 -211 ct +1486 -211 1470 -205 1458 -192 ct 1445 -180 1438 -163 1437 -142 ct p ef +1776 -283 m 1776 -330 l 1817 -330 l 1817 -283 l 1776 -283 l p +1776 0 m 1776 -239 l 1817 -239 l 1817 0 l 1776 0 l p ef +1882 0 m 1882 -239 l 1918 -239 l 1918 -205 l 1926 -217 1936 -226 1948 -233 ct +1961 -240 1975 -244 1991 -244 ct 2008 -244 2023 -240 2034 -233 ct 2045 -226 2053 -215 2058 -202 ct +2077 -230 2101 -244 2131 -244 ct 2155 -244 2173 -237 2186 -224 ct 2198 -211 2205 -191 2205 -164 ct +2205 0 l 2165 0 l 2165 -150 l 2165 -166 2163 -178 2161 -185 ct 2158 -192 2153 -198 2147 -202 ct +2140 -207 2132 -209 2122 -209 ct 2106 -209 2092 -203 2081 -192 ct 2070 -181 2064 -163 2064 -139 ct +2064 0 l 2024 0 l 2024 -155 l 2024 -173 2020 -186 2014 -195 ct 2007 -204 1996 -209 1982 -209 ct +1970 -209 1960 -206 1950 -200 ct 1940 -194 1933 -185 1929 -174 ct 1925 -162 1923 -146 1923 -124 ct +1923 0 l 1882 0 l p ef +2253 91 m 2253 -239 l 2290 -239 l 2290 -208 l 2299 -220 2308 -230 2319 -236 ct +2330 -242 2344 -245 2359 -245 ct 2379 -245 2397 -239 2413 -229 ct 2428 -218 2440 -204 2448 -185 ct +2456 -165 2460 -144 2460 -122 ct 2460 -97 2456 -75 2447 -56 ct 2438 -36 2425 -21 2409 -11 ct +2392 0 2375 5 2356 5 ct 2343 5 2331 2 2320 -4 ct 2309 -9 2300 -16 2294 -25 ct 2294 91 l +2253 91 l p +2290 -118 m 2290 -88 2296 -65 2308 -50 ct 2321 -36 2336 -28 2353 -28 ct 2371 -28 2387 -36 2399 -51 ct +2412 -66 2419 -90 2419 -122 ct 2419 -152 2412 -175 2400 -190 ct 2387 -205 2373 -213 2355 -213 ct +2338 -213 2323 -205 2310 -189 ct 2296 -173 2290 -149 2290 -118 ct p ef +2491 0 m 2491 -239 l 2527 -239 l 2527 -202 l 2536 -219 2545 -231 2553 -236 ct +2561 -241 2569 -244 2579 -244 ct 2592 -244 2606 -240 2620 -231 ct 2606 -193 l +2596 -199 2587 -202 2577 -202 ct 2568 -202 2560 -200 2553 -194 ct 2546 -189 2541 -182 2538 -172 ct +2533 -158 2531 -142 2531 -125 ct 2531 0 l 2491 0 l p ef +2634 -120 m 2634 -164 2646 -197 2671 -218 ct 2691 -236 2716 -244 2746 -244 ct +2779 -244 2805 -234 2826 -212 ct 2847 -191 2857 -161 2857 -123 ct 2857 -92 2853 -68 2843 -51 ct +2834 -33 2821 -19 2803 -10 ct 2786 0 2767 5 2746 5 ct 2713 5 2686 -6 2665 -27 ct +2645 -49 2634 -79 2634 -120 ct p +2676 -120 m 2676 -89 2682 -66 2696 -51 ct 2709 -36 2726 -28 2746 -28 ct 2766 -28 2783 -36 2796 -51 ct +2809 -66 2816 -90 2816 -121 ct 2816 -151 2809 -173 2796 -188 ct 2782 -203 2766 -211 2746 -211 ct +2726 -211 2709 -203 2696 -188 ct 2682 -173 2676 -150 2676 -120 ct p ef +2954 0 m 2864 -239 l 2906 -239 l 2958 -96 l 2963 -80 2968 -64 2973 -48 ct +2976 -60 2981 -75 2988 -93 ct 3041 -239 l 3082 -239 l 2992 0 l 2954 0 l +p ef +3289 -77 m 3331 -72 l 3324 -48 3312 -29 3294 -15 ct 3277 -2 3254 5 3226 5 ct +3191 5 3164 -6 3143 -27 ct 3123 -49 3113 -79 3113 -118 ct 3113 -158 3123 -189 3144 -211 ct +3164 -233 3191 -244 3224 -244 ct 3256 -244 3282 -233 3302 -212 ct 3322 -190 3332 -159 3332 -120 ct +3332 -117 3332 -114 3332 -109 ct 3155 -109 l 3156 -83 3163 -63 3177 -49 ct +3190 -35 3207 -28 3226 -28 ct 3241 -28 3254 -32 3264 -40 ct 3275 -48 3283 -60 3289 -77 ct +p +3157 -142 m 3290 -142 l 3288 -162 3283 -177 3274 -188 ct 3262 -203 3245 -211 3224 -211 ct +3206 -211 3190 -205 3178 -192 ct 3165 -180 3158 -163 3157 -142 ct p ef +3364 0 m 3364 -239 l 3400 -239 l 3400 -205 l 3408 -217 3418 -226 3430 -233 ct +3443 -240 3457 -244 3473 -244 ct 3490 -244 3505 -240 3516 -233 ct 3527 -226 3535 -215 3540 -202 ct +3559 -230 3583 -244 3613 -244 ct 3637 -244 3655 -237 3668 -224 ct 3680 -211 3687 -191 3687 -164 ct +3687 0 l 3647 0 l 3647 -150 l 3647 -166 3645 -178 3643 -185 ct 3640 -192 3635 -198 3629 -202 ct +3622 -207 3614 -209 3604 -209 ct 3588 -209 3574 -203 3563 -192 ct 3552 -181 3546 -163 3546 -139 ct +3546 0 l 3506 0 l 3506 -155 l 3506 -173 3502 -186 3496 -195 ct 3489 -204 3478 -209 3464 -209 ct +3452 -209 3442 -206 3432 -200 ct 3422 -194 3415 -185 3411 -174 ct 3407 -162 3405 -146 3405 -124 ct +3405 0 l 3364 0 l p ef +3897 -77 m 3939 -72 l 3932 -48 3920 -29 3902 -15 ct 3885 -2 3862 5 3834 5 ct +3799 5 3772 -6 3751 -27 ct 3731 -49 3721 -79 3721 -118 ct 3721 -158 3731 -189 3752 -211 ct +3772 -233 3799 -244 3832 -244 ct 3864 -244 3890 -233 3910 -212 ct 3930 -190 3940 -159 3940 -120 ct +3940 -117 3940 -114 3940 -109 ct 3763 -109 l 3764 -83 3771 -63 3785 -49 ct +3798 -35 3815 -28 3834 -28 ct 3849 -28 3862 -32 3872 -40 ct 3883 -48 3891 -60 3897 -77 ct +p +3765 -142 m 3898 -142 l 3896 -162 3891 -177 3882 -188 ct 3870 -203 3853 -211 3832 -211 ct +3814 -211 3798 -205 3786 -192 ct 3773 -180 3766 -163 3765 -142 ct p ef +3972 0 m 3972 -239 l 4009 -239 l 4009 -205 l 4026 -231 4051 -244 4084 -244 ct +4099 -244 4112 -241 4124 -236 ct 4136 -231 4145 -224 4151 -216 ct 4157 -208 4161 -198 4163 -186 ct +4165 -179 4166 -165 4166 -147 ct 4166 0 l 4125 0 l 4125 -145 l 4125 -162 4124 -174 4121 -182 ct +4117 -190 4112 -197 4104 -202 ct 4096 -207 4087 -209 4076 -209 ct 4059 -209 4044 -203 4031 -193 ct +4019 -182 4013 -161 4013 -130 ct 4013 0 l 3972 0 l p ef +4298 -36 m 4304 -1 l 4293 2 4283 3 4274 3 ct 4259 3 4248 1 4240 -4 ct 4232 -9 4226 -15 4223 -22 ct +4219 -30 4218 -46 4218 -70 ct 4218 -208 l 4188 -208 l 4188 -239 l 4218 -239 l +4218 -298 l 4258 -322 l 4258 -239 l 4298 -239 l 4298 -208 l 4258 -208 l +4258 -68 l 4258 -56 4258 -49 4260 -46 ct 4261 -42 4264 -40 4267 -38 ct 4270 -36 4275 -35 4281 -35 ct +4285 -35 4291 -35 4298 -36 ct p ef +4630 -1 m 4630 -31 l 4615 -7 4592 5 4563 5 ct 4544 5 4527 0 4511 -11 ct 4495 -21 4483 -36 4474 -55 ct +4465 -73 4461 -95 4461 -120 ct 4461 -143 4465 -165 4473 -184 ct 4480 -204 4492 -219 4508 -229 ct +4524 -239 4542 -244 4561 -244 ct 4576 -244 4588 -241 4600 -235 ct 4611 -229 4620 -221 4627 -212 ct +4627 -330 l 4667 -330 l 4667 -1 l 4630 -1 l p +4502 -120 m 4502 -89 4509 -66 4521 -51 ct 4534 -36 4549 -28 4567 -28 ct 4585 -28 4600 -35 4612 -50 ct +4624 -64 4630 -86 4630 -116 ct 4630 -149 4624 -173 4612 -188 ct 4599 -203 4584 -211 4565 -211 ct +4547 -211 4532 -204 4520 -189 ct 4508 -174 4502 -151 4502 -120 ct p ef +4869 0 m 4869 -35 l 4851 -8 4826 5 4794 5 ct 4780 5 4767 2 4754 -3 ct 4742 -8 4733 -15 4727 -23 ct +4721 -32 4717 -42 4715 -53 ct 4713 -61 4712 -74 4712 -91 ct 4712 -239 l 4753 -239 l +4753 -107 l 4753 -86 4754 -71 4755 -64 ct 4758 -53 4763 -45 4771 -39 ct 4780 -33 4790 -30 4802 -30 ct +4814 -30 4825 -33 4836 -39 ct 4846 -45 4854 -54 4858 -65 ct 4863 -75 4865 -91 4865 -111 ct +4865 -239 l 4905 -239 l 4905 0 l 4869 0 l p ef +5114 -77 m 5156 -72 l 5149 -48 5137 -29 5119 -15 ct 5102 -2 5079 5 5051 5 ct +5016 5 4989 -6 4968 -27 ct 4948 -49 4938 -79 4938 -118 ct 4938 -158 4948 -189 4969 -211 ct +4989 -233 5016 -244 5049 -244 ct 5081 -244 5107 -233 5127 -212 ct 5147 -190 5157 -159 5157 -120 ct +5157 -117 5157 -114 5157 -109 ct 4980 -109 l 4981 -83 4988 -63 5002 -49 ct +5015 -35 5032 -28 5051 -28 ct 5066 -28 5079 -32 5089 -40 ct 5100 -48 5108 -60 5114 -77 ct +p +4982 -142 m 5115 -142 l 5113 -162 5108 -177 5099 -188 ct 5087 -203 5070 -211 5049 -211 ct +5031 -211 5015 -205 5003 -192 ct 4990 -180 4983 -163 4982 -142 ct p ef +5410 -36 m 5416 -1 l 5405 2 5395 3 5386 3 ct 5371 3 5360 1 5352 -4 ct 5344 -9 5338 -15 5335 -22 ct +5331 -30 5330 -46 5330 -70 ct 5330 -208 l 5300 -208 l 5300 -239 l 5330 -239 l +5330 -298 l 5370 -322 l 5370 -239 l 5410 -239 l 5410 -208 l 5370 -208 l +5370 -68 l 5370 -56 5370 -49 5372 -46 ct 5373 -42 5376 -40 5379 -38 ct 5382 -36 5387 -35 5393 -35 ct +5397 -35 5403 -35 5410 -36 ct p ef +5439 -120 m 5439 -164 5451 -197 5476 -218 ct 5496 -236 5521 -244 5551 -244 ct +5584 -244 5610 -234 5631 -212 ct 5652 -191 5662 -161 5662 -123 ct 5662 -92 5658 -68 5648 -51 ct +5639 -33 5626 -19 5608 -10 ct 5591 0 5572 5 5551 5 ct 5518 5 5491 -6 5470 -27 ct +5450 -49 5439 -79 5439 -120 ct p +5481 -120 m 5481 -89 5487 -66 5501 -51 ct 5514 -36 5531 -28 5551 -28 ct 5571 -28 5588 -36 5601 -51 ct +5614 -66 5621 -90 5621 -121 ct 5621 -151 5614 -173 5601 -188 ct 5587 -203 5571 -211 5551 -211 ct +5531 -211 5514 -203 5501 -188 ct 5487 -173 5481 -150 5481 -120 ct p ef +pom +pum +2375 1061 t +186 0 m 186 -35 l 168 -8 143 5 111 5 ct 97 5 84 2 71 -3 ct 59 -8 50 -15 44 -23 ct +38 -32 34 -42 32 -53 ct 30 -61 29 -74 29 -91 ct 29 -239 l 70 -239 l 70 -107 l +70 -86 71 -71 72 -64 ct 75 -53 80 -45 88 -39 ct 97 -33 107 -30 119 -30 ct 131 -30 142 -33 153 -39 ct +163 -45 171 -54 175 -65 ct 180 -75 182 -91 182 -111 ct 182 -239 l 222 -239 l +222 0 l 186 0 l p ef +252 -72 m 292 -78 l 294 -62 300 -50 311 -41 ct 321 -33 335 -28 354 -28 ct +372 -28 386 -32 395 -40 ct 404 -47 408 -56 408 -66 ct 408 -75 404 -83 396 -88 ct +391 -91 377 -96 355 -101 ct 326 -109 305 -115 294 -121 ct 282 -126 274 -134 268 -144 ct +262 -153 259 -164 259 -176 ct 259 -186 261 -196 266 -205 ct 271 -214 278 -222 286 -228 ct +292 -232 301 -236 312 -239 ct 322 -243 334 -244 346 -244 ct 365 -244 382 -242 396 -236 ct +410 -231 420 -223 427 -214 ct 434 -205 438 -193 441 -177 ct 401 -172 l 400 -184 394 -194 386 -201 ct +377 -208 365 -211 349 -211 ct 331 -211 318 -208 310 -202 ct 302 -196 298 -188 298 -180 ct +298 -175 299 -170 303 -166 ct 306 -162 311 -158 318 -155 ct 322 -154 334 -150 354 -145 ct +382 -137 402 -131 414 -126 ct 425 -121 434 -114 440 -105 ct 447 -96 450 -84 450 -70 ct +450 -57 446 -44 438 -32 ct 430 -20 419 -11 404 -5 ct 389 2 373 5 354 5 ct 323 5 299 -1 283 -14 ct +267 -27 257 -46 252 -72 ct p ef +669 -77 m 711 -72 l 704 -48 692 -29 674 -15 ct 657 -2 634 5 606 5 ct 571 5 544 -6 523 -27 ct +503 -49 493 -79 493 -118 ct 493 -158 503 -189 524 -211 ct 544 -233 571 -244 604 -244 ct +636 -244 662 -233 682 -212 ct 702 -190 712 -159 712 -120 ct 712 -117 712 -114 712 -109 ct +535 -109 l 536 -83 543 -63 557 -49 ct 570 -35 587 -28 606 -28 ct 621 -28 634 -32 644 -40 ct +655 -48 663 -60 669 -77 ct p +537 -142 m 670 -142 l 668 -162 663 -177 654 -188 ct 642 -203 625 -211 604 -211 ct +586 -211 570 -205 558 -192 ct 545 -180 538 -163 537 -142 ct p ef +862 -120 m 862 -164 874 -197 899 -218 ct 919 -236 944 -244 974 -244 ct 1007 -244 1033 -234 1054 -212 ct +1075 -191 1085 -161 1085 -123 ct 1085 -92 1081 -68 1071 -51 ct 1062 -33 1049 -19 1031 -10 ct +1014 0 995 5 974 5 ct 941 5 914 -6 893 -27 ct 873 -49 862 -79 862 -120 ct p +904 -120 m 904 -89 910 -66 924 -51 ct 937 -36 954 -28 974 -28 ct 994 -28 1011 -36 1024 -51 ct +1037 -66 1044 -90 1044 -121 ct 1044 -151 1037 -173 1024 -188 ct 1010 -203 994 -211 974 -211 ct +954 -211 937 -203 924 -188 ct 910 -173 904 -150 904 -120 ct p ef +1125 0 m 1125 -207 l 1089 -207 l 1089 -238 l 1125 -238 l 1125 -264 l +1125 -280 1126 -292 1129 -300 ct 1133 -310 1140 -319 1150 -325 ct 1159 -332 1173 -335 1191 -335 ct +1202 -335 1215 -334 1228 -331 ct 1222 -296 l 1214 -297 1206 -298 1199 -298 ct +1186 -298 1178 -295 1173 -290 ct 1168 -285 1165 -275 1165 -261 ct 1165 -238 l +1211 -238 l 1211 -207 l 1165 -207 l 1165 0 l 1125 0 l p ef +1379 0 m 1379 -239 l 1415 -239 l 1415 -205 l 1423 -217 1433 -226 1445 -233 ct +1458 -240 1472 -244 1488 -244 ct 1505 -244 1520 -240 1531 -233 ct 1542 -226 1550 -215 1555 -202 ct +1574 -230 1598 -244 1628 -244 ct 1652 -244 1670 -237 1683 -224 ct 1695 -211 1702 -191 1702 -164 ct +1702 0 l 1662 0 l 1662 -150 l 1662 -166 1660 -178 1658 -185 ct 1655 -192 1650 -198 1644 -202 ct +1637 -207 1629 -209 1619 -209 ct 1603 -209 1589 -203 1578 -192 ct 1567 -181 1561 -163 1561 -139 ct +1561 0 l 1521 0 l 1521 -155 l 1521 -173 1517 -186 1511 -195 ct 1504 -204 1493 -209 1479 -209 ct +1467 -209 1457 -206 1447 -200 ct 1437 -194 1430 -185 1426 -174 ct 1422 -162 1420 -146 1420 -124 ct +1420 0 l 1379 0 l p ef +1906 0 m 1906 -35 l 1888 -8 1863 5 1831 5 ct 1817 5 1804 2 1791 -3 ct 1779 -8 1770 -15 1764 -23 ct +1758 -32 1754 -42 1752 -53 ct 1750 -61 1749 -74 1749 -91 ct 1749 -239 l 1790 -239 l +1790 -107 l 1790 -86 1791 -71 1792 -64 ct 1795 -53 1800 -45 1808 -39 ct 1817 -33 1827 -30 1839 -30 ct +1851 -30 1862 -33 1873 -39 ct 1883 -45 1891 -54 1895 -65 ct 1900 -75 1902 -91 1902 -111 ct +1902 -239 l 1942 -239 l 1942 0 l 1906 0 l p ef +1987 0 m 1987 -329 l 2028 -329 l 2028 0 l 1987 0 l p ef +2182 -36 m 2188 -1 l 2177 2 2167 3 2158 3 ct 2143 3 2132 1 2124 -4 ct 2116 -9 2110 -15 2107 -22 ct +2103 -30 2102 -46 2102 -70 ct 2102 -208 l 2072 -208 l 2072 -239 l 2102 -239 l +2102 -298 l 2142 -322 l 2142 -239 l 2182 -239 l 2182 -208 l 2142 -208 l +2142 -68 l 2142 -56 2142 -49 2144 -46 ct 2145 -42 2148 -40 2151 -38 ct 2154 -36 2159 -35 2165 -35 ct +2169 -35 2175 -35 2182 -36 ct p ef +2226 -283 m 2226 -330 l 2267 -330 l 2267 -283 l 2226 -283 l p +2226 0 m 2226 -239 l 2267 -239 l 2267 0 l 2226 0 l p ef +2317 -99 m 2317 -140 l 2441 -140 l 2441 -99 l 2317 -99 l p ef +2579 -36 m 2585 -1 l 2574 2 2564 3 2555 3 ct 2540 3 2529 1 2521 -4 ct 2513 -9 2507 -15 2504 -22 ct +2500 -30 2499 -46 2499 -70 ct 2499 -208 l 2469 -208 l 2469 -239 l 2499 -239 l +2499 -298 l 2539 -322 l 2539 -239 l 2579 -239 l 2579 -208 l 2539 -208 l +2539 -68 l 2539 -56 2539 -49 2541 -46 ct 2542 -42 2545 -40 2548 -38 ct 2551 -36 2556 -35 2562 -35 ct +2566 -35 2572 -35 2579 -36 ct p ef +2779 -30 m 2764 -17 2749 -8 2735 -3 ct 2722 2 2707 5 2691 5 ct 2665 5 2645 -1 2631 -14 ct +2617 -27 2610 -43 2610 -63 ct 2610 -75 2612 -86 2618 -95 ct 2623 -105 2630 -113 2638 -119 ct +2647 -124 2657 -129 2667 -132 ct 2675 -134 2687 -136 2703 -138 ct 2736 -142 2760 -146 2775 -152 ct +2775 -157 2775 -161 2775 -162 ct 2775 -179 2772 -191 2764 -197 ct 2754 -206 2738 -211 2718 -211 ct +2699 -211 2685 -208 2676 -201 ct 2667 -194 2660 -183 2656 -166 ct 2617 -171 l +2620 -188 2626 -202 2634 -212 ct 2642 -222 2654 -230 2670 -236 ct 2685 -242 2703 -244 2724 -244 ct +2744 -244 2761 -242 2773 -237 ct 2786 -232 2795 -226 2801 -219 ct 2807 -212 2812 -203 2814 -192 ct +2815 -185 2816 -172 2816 -154 ct 2816 -100 l 2816 -63 2817 -39 2819 -29 ct +2820 -19 2824 -10 2829 0 ct 2787 0 l 2782 -9 2780 -19 2779 -30 ct p +2775 -120 m 2761 -114 2739 -109 2709 -105 ct 2693 -103 2681 -100 2674 -97 ct +2667 -94 2662 -89 2658 -84 ct 2654 -78 2653 -71 2653 -64 ct 2653 -54 2657 -45 2665 -37 ct +2673 -30 2685 -27 2701 -27 ct 2716 -27 2730 -30 2742 -37 ct 2754 -44 2763 -53 2769 -65 ct +2773 -74 2775 -88 2775 -105 ct 2775 -120 l p ef +2845 -72 m 2885 -78 l 2887 -62 2893 -50 2904 -41 ct 2914 -33 2928 -28 2947 -28 ct +2965 -28 2979 -32 2988 -40 ct 2997 -47 3001 -56 3001 -66 ct 3001 -75 2997 -83 2989 -88 ct +2984 -91 2970 -96 2948 -101 ct 2919 -109 2898 -115 2887 -121 ct 2875 -126 2867 -134 2861 -144 ct +2855 -153 2852 -164 2852 -176 ct 2852 -186 2854 -196 2859 -205 ct 2864 -214 2871 -222 2879 -228 ct +2885 -232 2894 -236 2905 -239 ct 2915 -243 2927 -244 2939 -244 ct 2958 -244 2975 -242 2989 -236 ct +3003 -231 3013 -223 3020 -214 ct 3027 -205 3031 -193 3034 -177 ct 2994 -172 l +2993 -184 2987 -194 2979 -201 ct 2970 -208 2958 -211 2942 -211 ct 2924 -211 2911 -208 2903 -202 ct +2895 -196 2891 -188 2891 -180 ct 2891 -175 2892 -170 2896 -166 ct 2899 -162 2904 -158 2911 -155 ct +2915 -154 2927 -150 2947 -145 ct 2975 -137 2995 -131 3007 -126 ct 3018 -121 3027 -114 3033 -105 ct +3040 -96 3043 -84 3043 -70 ct 3043 -57 3039 -44 3031 -32 ct 3023 -20 3012 -11 2997 -5 ct +2982 2 2966 5 2947 5 ct 2916 5 2892 -1 2876 -14 ct 2860 -27 2850 -46 2845 -72 ct +p ef +3099 0 m 3099 -329 l 3140 -329 l 3140 -142 l 3235 -239 l 3288 -239 l +3197 -150 l 3297 0 l 3247 0 l 3168 -122 l 3140 -95 l 3140 0 l 3099 0 l +p ef +3454 -72 m 3494 -78 l 3496 -62 3502 -50 3513 -41 ct 3523 -33 3537 -28 3556 -28 ct +3574 -28 3588 -32 3597 -40 ct 3606 -47 3610 -56 3610 -66 ct 3610 -75 3606 -83 3598 -88 ct +3593 -91 3579 -96 3557 -101 ct 3528 -109 3507 -115 3496 -121 ct 3484 -126 3476 -134 3470 -144 ct +3464 -153 3461 -164 3461 -176 ct 3461 -186 3463 -196 3468 -205 ct 3473 -214 3480 -222 3488 -228 ct +3494 -232 3503 -236 3514 -239 ct 3524 -243 3536 -244 3548 -244 ct 3567 -244 3584 -242 3598 -236 ct +3612 -231 3622 -223 3629 -214 ct 3636 -205 3640 -193 3643 -177 ct 3603 -172 l +3602 -184 3596 -194 3588 -201 ct 3579 -208 3567 -211 3551 -211 ct 3533 -211 3520 -208 3512 -202 ct +3504 -196 3500 -188 3500 -180 ct 3500 -175 3501 -170 3505 -166 ct 3508 -162 3513 -158 3520 -155 ct +3524 -154 3536 -150 3556 -145 ct 3584 -137 3604 -131 3616 -126 ct 3627 -121 3636 -114 3642 -105 ct +3649 -96 3652 -84 3652 -70 ct 3652 -57 3648 -44 3640 -32 ct 3632 -20 3621 -11 3606 -5 ct +3591 2 3575 5 3556 5 ct 3525 5 3501 -1 3485 -14 ct 3469 -27 3459 -46 3454 -72 ct +p ef +3871 -77 m 3913 -72 l 3906 -48 3894 -29 3876 -15 ct 3859 -2 3836 5 3808 5 ct +3773 5 3746 -6 3725 -27 ct 3705 -49 3695 -79 3695 -118 ct 3695 -158 3705 -189 3726 -211 ct +3746 -233 3773 -244 3806 -244 ct 3838 -244 3864 -233 3884 -212 ct 3904 -190 3914 -159 3914 -120 ct +3914 -117 3914 -114 3914 -109 ct 3737 -109 l 3738 -83 3745 -63 3759 -49 ct +3772 -35 3789 -28 3808 -28 ct 3823 -28 3836 -32 3846 -40 ct 3857 -48 3865 -60 3871 -77 ct +p +3739 -142 m 3872 -142 l 3870 -162 3865 -177 3856 -188 ct 3844 -203 3827 -211 3806 -211 ct +3788 -211 3772 -205 3760 -192 ct 3747 -180 3740 -163 3739 -142 ct p ef +4034 -36 m 4040 -1 l 4029 2 4019 3 4010 3 ct 3995 3 3984 1 3976 -4 ct 3968 -9 3962 -15 3959 -22 ct +3955 -30 3954 -46 3954 -70 ct 3954 -208 l 3924 -208 l 3924 -239 l 3954 -239 l +3954 -298 l 3994 -322 l 3994 -239 l 4034 -239 l 4034 -208 l 3994 -208 l +3994 -68 l 3994 -56 3994 -49 3996 -46 ct 3997 -42 4000 -40 4003 -38 ct 4006 -36 4011 -35 4017 -35 ct +4021 -35 4027 -35 4034 -36 ct p ef +4166 -36 m 4172 -1 l 4161 2 4151 3 4142 3 ct 4127 3 4116 1 4108 -4 ct 4100 -9 4094 -15 4091 -22 ct +4087 -30 4086 -46 4086 -70 ct 4086 -208 l 4056 -208 l 4056 -239 l 4086 -239 l +4086 -298 l 4126 -322 l 4126 -239 l 4166 -239 l 4166 -208 l 4126 -208 l +4126 -68 l 4126 -56 4126 -49 4128 -46 ct 4129 -42 4132 -40 4135 -38 ct 4138 -36 4143 -35 4149 -35 ct +4153 -35 4159 -35 4166 -36 ct p ef +4210 -283 m 4210 -330 l 4251 -330 l 4251 -283 l 4210 -283 l p +4210 0 m 4210 -239 l 4251 -239 l 4251 0 l 4210 0 l p ef +4316 0 m 4316 -239 l 4353 -239 l 4353 -205 l 4370 -231 4395 -244 4428 -244 ct +4443 -244 4456 -241 4468 -236 ct 4480 -231 4489 -224 4495 -216 ct 4501 -208 4505 -198 4507 -186 ct +4509 -179 4510 -165 4510 -147 ct 4510 0 l 4469 0 l 4469 -145 l 4469 -162 4468 -174 4465 -182 ct +4461 -190 4456 -197 4448 -202 ct 4440 -207 4431 -209 4420 -209 ct 4403 -209 4388 -203 4375 -193 ct +4363 -182 4357 -161 4357 -130 ct 4357 0 l 4316 0 l p ef +4547 20 m 4586 26 l 4588 38 4592 47 4600 52 ct 4610 60 4623 64 4641 64 ct +4659 64 4674 60 4684 52 ct 4694 45 4701 34 4705 21 ct 4707 12 4708 -5 4708 -31 ct +4690 -10 4668 0 4642 0 ct 4609 0 4584 -12 4566 -36 ct 4548 -59 4539 -88 4539 -121 ct +4539 -143 4543 -164 4551 -184 ct 4559 -203 4571 -218 4587 -228 ct 4602 -239 4621 -244 4642 -244 ct +4670 -244 4693 -233 4711 -210 ct 4711 -239 l 4749 -239 l 4749 -32 l 4749 5 4745 31 4737 47 ct +4730 62 4718 75 4701 84 ct 4685 92 4665 97 4641 97 ct 4613 97 4590 91 4572 78 ct +4555 65 4546 46 4547 20 ct p +4580 -124 m 4580 -92 4586 -69 4599 -55 ct 4611 -41 4627 -33 4645 -33 ct 4664 -33 4680 -41 4692 -55 ct +4705 -69 4711 -92 4711 -122 ct 4711 -151 4704 -173 4692 -188 ct 4679 -203 4663 -211 4645 -211 ct +4627 -211 4612 -203 4599 -189 ct 4587 -174 4580 -152 4580 -124 ct p ef +pom + +pum +2306 7654 t +20 -147 m 20 -198 34 -237 61 -265 ct 88 -294 123 -308 165 -308 ct 193 -308 219 -301 241 -288 ct +263 -275 281 -256 292 -232 ct 304 -208 310 -181 310 -151 ct 310 -120 304 -93 291 -69 ct +279 -44 261 -26 239 -14 ct 216 -1 192 5 165 5 ct 137 5 111 -2 89 -16 ct 66 -29 49 -48 38 -72 ct +26 -96 20 -121 20 -147 ct p +62 -147 m 62 -110 72 -82 91 -61 ct 111 -40 135 -29 165 -29 ct 195 -29 220 -40 239 -61 ct +259 -82 269 -112 269 -151 ct 269 -176 265 -197 256 -216 ct 248 -234 236 -248 220 -258 ct +204 -268 186 -274 166 -274 ct 137 -274 113 -264 92 -244 ct 72 -225 62 -192 62 -147 ct +p ef +345 0 m 345 -219 l 379 -219 l 379 -186 l 387 -201 395 -212 403 -217 ct +410 -222 418 -224 426 -224 ct 439 -224 452 -220 465 -212 ct 452 -178 l 443 -183 434 -186 425 -186 ct +416 -186 409 -183 403 -178 ct 396 -173 392 -167 389 -158 ct 385 -145 383 -130 383 -115 ct +383 0 l 345 0 l p ef +478 -260 m 478 -303 l 515 -303 l 515 -260 l 478 -260 l p +478 0 m 478 -219 l 515 -219 l 515 0 l 478 0 l p ef +577 18 m 613 24 l 615 35 619 43 626 48 ct 635 55 648 58 664 58 ct 681 58 694 55 703 48 ct +713 41 719 31 722 19 ct 724 11 725 -4 725 -29 ct 709 -10 689 0 664 0 ct 634 0 611 -11 594 -33 ct +578 -54 570 -80 570 -111 ct 570 -132 573 -151 581 -169 ct 589 -186 600 -200 614 -210 ct +628 -219 645 -224 665 -224 ct 691 -224 712 -214 729 -193 ct 729 -219 l 763 -219 l +763 -30 l 763 4 759 29 753 43 ct 746 57 735 68 719 77 ct 704 85 686 89 664 89 ct +638 89 617 83 600 71 ct 584 60 577 42 577 18 ct p +608 -113 m 608 -85 614 -64 625 -51 ct 636 -37 651 -31 668 -31 ct 685 -31 699 -37 711 -50 ct +722 -64 728 -84 728 -112 ct 728 -139 722 -159 710 -173 ct 698 -186 684 -193 667 -193 ct +651 -193 637 -187 625 -173 ct 614 -160 608 -140 608 -113 ct p ef +822 -260 m 822 -303 l 859 -303 l 859 -260 l 822 -260 l p +822 0 m 822 -219 l 859 -219 l 859 0 l 822 0 l p ef +928 0 m 928 -219 l 961 -219 l 961 -188 l 977 -212 1001 -224 1031 -224 ct +1044 -224 1057 -222 1068 -217 ct 1079 -212 1087 -206 1093 -198 ct 1098 -191 1102 -181 1104 -171 ct +1105 -164 1106 -152 1106 -135 ct 1106 0 l 1069 0 l 1069 -133 l 1069 -148 1068 -160 1065 -167 ct +1062 -175 1057 -181 1049 -185 ct 1042 -190 1033 -192 1023 -192 ct 1007 -192 994 -187 982 -177 ct +971 -167 965 -148 965 -120 ct 965 0 l 928 0 l p ef +1309 -27 m 1295 -15 1282 -7 1269 -2 ct 1257 3 1243 5 1228 5 ct 1204 5 1186 -1 1173 -13 ct +1160 -24 1153 -39 1153 -58 ct 1153 -68 1156 -78 1161 -87 ct 1166 -96 1172 -103 1180 -108 ct +1188 -114 1197 -118 1207 -121 ct 1214 -123 1225 -124 1240 -126 ct 1270 -130 1292 -134 1306 -139 ct +1306 -144 1306 -147 1306 -149 ct 1306 -164 1303 -174 1296 -181 ct 1286 -189 1272 -193 1253 -193 ct +1236 -193 1223 -190 1215 -184 ct 1206 -178 1200 -167 1196 -152 ct 1160 -157 l +1163 -172 1168 -185 1176 -194 ct 1184 -204 1195 -211 1209 -216 ct 1223 -221 1240 -224 1259 -224 ct +1277 -224 1293 -222 1304 -217 ct 1316 -213 1325 -207 1330 -201 ct 1336 -194 1339 -186 1342 -176 ct +1343 -169 1344 -158 1344 -141 ct 1344 -92 l 1344 -57 1344 -35 1346 -26 ct 1347 -17 1351 -8 1355 0 ct +1316 0 l 1313 -8 1310 -17 1309 -27 ct p +1306 -110 m 1292 -104 1272 -100 1245 -96 ct 1230 -94 1219 -91 1213 -88 ct 1206 -86 1202 -82 1198 -76 ct +1195 -71 1193 -65 1193 -59 ct 1193 -49 1197 -41 1204 -34 ct 1212 -27 1223 -24 1237 -24 ct +1251 -24 1264 -27 1275 -33 ct 1287 -40 1295 -48 1300 -59 ct 1304 -68 1306 -80 1306 -96 ct +1306 -110 l p ef +1403 0 m 1403 -302 l 1440 -302 l 1440 0 l 1403 0 l p ef +1601 -65 m 1638 -71 l 1640 -56 1646 -45 1655 -37 ct 1664 -29 1678 -26 1695 -26 ct +1712 -26 1724 -29 1733 -36 ct 1741 -43 1745 -51 1745 -60 ct 1745 -69 1741 -75 1734 -80 ct +1729 -84 1716 -88 1696 -93 ct 1669 -100 1650 -106 1639 -111 ct 1629 -116 1621 -123 1615 -131 ct +1610 -140 1607 -150 1607 -161 ct 1607 -171 1609 -180 1614 -188 ct 1618 -196 1625 -203 1632 -209 ct +1638 -213 1646 -217 1656 -220 ct 1666 -223 1677 -224 1688 -224 ct 1705 -224 1720 -222 1733 -217 ct +1746 -212 1756 -205 1762 -196 ct 1768 -188 1773 -177 1775 -163 ct 1739 -158 l +1737 -169 1732 -178 1724 -184 ct 1716 -190 1705 -193 1691 -193 ct 1674 -193 1661 -191 1654 -185 ct +1647 -179 1643 -173 1643 -165 ct 1643 -160 1645 -156 1648 -152 ct 1651 -148 1655 -145 1662 -142 ct +1666 -141 1677 -138 1695 -133 ct 1721 -126 1739 -120 1750 -116 ct 1760 -111 1768 -105 1774 -96 ct +1780 -88 1783 -77 1783 -64 ct 1783 -52 1780 -40 1772 -29 ct 1765 -18 1755 -10 1741 -4 ct +1727 2 1712 5 1695 5 ct 1666 5 1645 -1 1630 -13 ct 1615 -25 1605 -42 1601 -65 ct +p ef +1827 -260 m 1827 -303 l 1864 -303 l 1864 -260 l 1827 -260 l p +1827 0 m 1827 -219 l 1864 -219 l 1864 0 l 1827 0 l p ef +1933 0 m 1933 -219 l 1966 -219 l 1966 -188 l 1982 -212 2006 -224 2036 -224 ct +2049 -224 2062 -222 2073 -217 ct 2084 -212 2092 -206 2098 -198 ct 2103 -191 2107 -181 2109 -171 ct +2110 -164 2111 -152 2111 -135 ct 2111 0 l 2074 0 l 2074 -133 l 2074 -148 2073 -160 2070 -167 ct +2067 -175 2062 -181 2054 -185 ct 2047 -190 2038 -192 2028 -192 ct 2012 -192 1999 -187 1987 -177 ct +1976 -167 1970 -148 1970 -120 ct 1970 0 l 1933 0 l p ef +2164 18 m 2200 24 l 2202 35 2206 43 2213 48 ct 2222 55 2235 58 2251 58 ct +2268 58 2281 55 2290 48 ct 2300 41 2306 31 2309 19 ct 2311 11 2312 -4 2312 -29 ct +2296 -10 2276 0 2251 0 ct 2221 0 2198 -11 2181 -33 ct 2165 -54 2157 -80 2157 -111 ct +2157 -132 2160 -151 2168 -169 ct 2176 -186 2187 -200 2201 -210 ct 2215 -219 2232 -224 2252 -224 ct +2278 -224 2299 -214 2316 -193 ct 2316 -219 l 2350 -219 l 2350 -30 l 2350 4 2346 29 2340 43 ct +2333 57 2322 68 2306 77 ct 2291 85 2273 89 2251 89 ct 2225 89 2204 83 2187 71 ct +2171 60 2164 42 2164 18 ct p +2195 -113 m 2195 -85 2201 -64 2212 -51 ct 2223 -37 2238 -31 2255 -31 ct 2272 -31 2286 -37 2298 -50 ct +2309 -64 2315 -84 2315 -112 ct 2315 -139 2309 -159 2297 -173 ct 2285 -186 2271 -193 2254 -193 ct +2238 -193 2224 -187 2212 -173 ct 2201 -160 2195 -140 2195 -113 ct p ef +2408 0 m 2408 -302 l 2445 -302 l 2445 0 l 2408 0 l p ef +2665 -71 m 2703 -66 l 2697 -43 2686 -26 2670 -14 ct 2653 -1 2632 5 2607 5 ct +2575 5 2549 -5 2531 -25 ct 2512 -44 2502 -72 2502 -108 ct 2502 -145 2512 -173 2531 -193 ct +2550 -214 2575 -224 2605 -224 ct 2634 -224 2658 -214 2677 -194 ct 2695 -174 2705 -146 2705 -110 ct +2705 -108 2705 -104 2704 -100 ct 2541 -100 l 2542 -76 2549 -58 2561 -45 ct +2574 -32 2589 -26 2607 -26 ct 2621 -26 2632 -29 2642 -36 ct 2652 -43 2659 -55 2665 -71 ct +p +2543 -131 m 2665 -131 l 2664 -149 2659 -163 2651 -172 ct 2640 -186 2624 -193 2605 -193 ct +2588 -193 2574 -188 2562 -176 ct 2551 -165 2544 -150 2543 -131 ct p ef +2738 -91 m 2738 -128 l 2853 -128 l 2853 -91 l 2738 -91 l p ef +2967 -33 m 2972 0 l 2962 2 2953 3 2944 3 ct 2931 3 2920 1 2913 -3 ct 2906 -8 2900 -13 2897 -20 ct +2894 -27 2893 -42 2893 -64 ct 2893 -190 l 2865 -190 l 2865 -219 l 2893 -219 l +2893 -273 l 2930 -296 l 2930 -219 l 2967 -219 l 2967 -190 l 2930 -190 l +2930 -62 l 2930 -51 2930 -45 2932 -42 ct 2933 -39 2935 -36 2938 -34 ct 2941 -33 2945 -32 2951 -32 ct +2955 -32 2960 -32 2967 -33 ct p ef +3134 -27 m 3120 -15 3107 -7 3094 -2 ct 3082 3 3068 5 3053 5 ct 3029 5 3011 -1 2998 -13 ct +2985 -24 2978 -39 2978 -58 ct 2978 -68 2981 -78 2986 -87 ct 2991 -96 2997 -103 3005 -108 ct +3013 -114 3022 -118 3032 -121 ct 3039 -123 3050 -124 3065 -126 ct 3095 -130 3117 -134 3131 -139 ct +3131 -144 3131 -147 3131 -149 ct 3131 -164 3128 -174 3121 -181 ct 3111 -189 3097 -193 3078 -193 ct +3061 -193 3048 -190 3040 -184 ct 3031 -178 3025 -167 3021 -152 ct 2985 -157 l +2988 -172 2993 -185 3001 -194 ct 3009 -204 3020 -211 3034 -216 ct 3048 -221 3065 -224 3084 -224 ct +3102 -224 3118 -222 3129 -217 ct 3141 -213 3150 -207 3155 -201 ct 3161 -194 3164 -186 3167 -176 ct +3168 -169 3169 -158 3169 -141 ct 3169 -92 l 3169 -57 3169 -35 3171 -26 ct 3172 -17 3176 -8 3180 0 ct +3141 0 l 3138 -8 3135 -17 3134 -27 ct p +3131 -110 m 3117 -104 3097 -100 3070 -96 ct 3055 -94 3044 -91 3038 -88 ct 3031 -86 3027 -82 3023 -76 ct +3020 -71 3018 -65 3018 -59 ct 3018 -49 3022 -41 3029 -34 ct 3037 -27 3048 -24 3062 -24 ct +3076 -24 3089 -27 3100 -33 ct 3112 -40 3120 -48 3125 -59 ct 3129 -68 3131 -80 3131 -96 ct +3131 -110 l p ef +3214 -65 m 3251 -71 l 3253 -56 3259 -45 3268 -37 ct 3277 -29 3291 -26 3308 -26 ct +3325 -26 3337 -29 3346 -36 ct 3354 -43 3358 -51 3358 -60 ct 3358 -69 3354 -75 3347 -80 ct +3342 -84 3329 -88 3309 -93 ct 3282 -100 3263 -106 3252 -111 ct 3242 -116 3234 -123 3228 -131 ct +3223 -140 3220 -150 3220 -161 ct 3220 -171 3222 -180 3227 -188 ct 3231 -196 3238 -203 3245 -209 ct +3251 -213 3259 -217 3269 -220 ct 3279 -223 3290 -224 3301 -224 ct 3318 -224 3333 -222 3346 -217 ct +3359 -212 3369 -205 3375 -196 ct 3381 -188 3386 -177 3388 -163 ct 3352 -158 l +3350 -169 3345 -178 3337 -184 ct 3329 -190 3318 -193 3304 -193 ct 3287 -193 3274 -191 3267 -185 ct +3260 -179 3256 -173 3256 -165 ct 3256 -160 3258 -156 3261 -152 ct 3264 -148 3268 -145 3275 -142 ct +3279 -141 3290 -138 3308 -133 ct 3334 -126 3352 -120 3363 -116 ct 3373 -111 3381 -105 3387 -96 ct +3393 -88 3396 -77 3396 -64 ct 3396 -52 3393 -40 3385 -29 ct 3378 -18 3368 -10 3354 -4 ct +3340 2 3325 5 3308 5 ct 3279 5 3258 -1 3243 -13 ct 3228 -25 3218 -42 3214 -65 ct +p ef +3441 0 m 3441 -302 l 3478 -302 l 3478 -130 l 3566 -219 l 3614 -219 l +3531 -138 l 3623 0 l 3577 0 l 3505 -112 l 3478 -87 l 3478 0 l 3441 0 l +p ef +3759 0 m 3759 -219 l 3792 -219 l 3792 -188 l 3799 -199 3808 -208 3820 -214 ct +3831 -221 3844 -224 3859 -224 ct 3875 -224 3888 -221 3899 -214 ct 3909 -207 3916 -198 3921 -186 ct +3938 -211 3961 -224 3988 -224 ct 4010 -224 4027 -218 4039 -206 ct 4050 -194 4056 -175 4056 -150 ct +4056 0 l 4019 0 l 4019 -138 l 4019 -153 4018 -164 4016 -170 ct 4013 -177 4009 -182 4002 -186 ct +3996 -190 3989 -192 3980 -192 ct 3965 -192 3952 -187 3942 -176 ct 3931 -166 3926 -150 3926 -127 ct +3926 0 l 3889 0 l 3889 -142 l 3889 -159 3886 -171 3880 -179 ct 3874 -188 3864 -192 3850 -192 ct +3840 -192 3830 -189 3821 -184 ct 3812 -178 3806 -170 3802 -159 ct 3798 -149 3796 -134 3796 -114 ct +3796 0 l 3759 0 l p ef +4089 -109 m 4089 -150 4100 -180 4123 -200 ct 4142 -216 4165 -224 4192 -224 ct +4222 -224 4247 -214 4266 -194 ct 4285 -175 4295 -147 4295 -113 ct 4295 -84 4290 -62 4282 -46 ct +4273 -30 4261 -17 4245 -8 ct 4229 1 4211 5 4192 5 ct 4161 5 4136 -5 4117 -25 ct +4099 -44 4089 -73 4089 -109 ct p +4127 -110 m 4127 -81 4133 -60 4146 -46 ct 4158 -33 4173 -26 4192 -26 ct 4210 -26 4226 -33 4238 -47 ct +4250 -61 4256 -82 4256 -111 ct 4256 -138 4250 -158 4238 -172 ct 4226 -186 4210 -193 4192 -193 ct +4173 -193 4158 -186 4146 -172 ct 4133 -159 4127 -138 4127 -110 ct p ef +4483 0 m 4483 -28 l 4469 -6 4449 5 4422 5 ct 4404 5 4388 0 4374 -9 ct 4359 -19 4348 -33 4340 -50 ct +4331 -67 4327 -87 4327 -109 ct 4327 -131 4331 -151 4338 -169 ct 4346 -187 4357 -200 4371 -210 ct +4386 -219 4402 -224 4420 -224 ct 4433 -224 4445 -221 4456 -216 ct 4466 -210 4474 -203 4481 -194 ct +4481 -302 l 4518 -302 l 4518 0 l 4483 0 l p +4366 -109 m 4366 -81 4372 -60 4383 -46 ct 4395 -32 4409 -26 4425 -26 ct 4442 -26 4455 -32 4467 -45 ct +4478 -59 4484 -79 4484 -106 ct 4484 -136 4478 -158 4466 -172 ct 4455 -186 4441 -193 4424 -193 ct +4407 -193 4393 -187 4382 -173 ct 4371 -160 4366 -138 4366 -109 ct p ef +4729 -71 m 4767 -66 l 4761 -43 4750 -26 4734 -14 ct 4717 -1 4696 5 4671 5 ct +4639 5 4613 -5 4595 -25 ct 4576 -44 4566 -72 4566 -108 ct 4566 -145 4576 -173 4595 -193 ct +4614 -214 4639 -224 4669 -224 ct 4698 -224 4722 -214 4741 -194 ct 4759 -174 4769 -146 4769 -110 ct +4769 -108 4769 -104 4768 -100 ct 4605 -100 l 4606 -76 4613 -58 4625 -45 ct +4638 -32 4653 -26 4671 -26 ct 4685 -26 4696 -29 4706 -36 ct 4716 -43 4723 -55 4729 -71 ct +p +4607 -131 m 4729 -131 l 4728 -149 4723 -163 4715 -172 ct 4704 -186 4688 -193 4669 -193 ct +4652 -193 4638 -188 4626 -176 ct 4615 -165 4608 -150 4607 -131 ct p ef +4816 0 m 4816 -302 l 4853 -302 l 4853 0 l 4816 0 l p ef +pom +gr +gs +0 0 m 9510 0 l 9510 8044 l 0 8044 l 0 0 l eoclip newpath +gr +gr +gr +gr +gr +gs +0 0 m 20366 0 l 20366 8627 l 0 8627 l 0 0 l eoclip newpath +gr +gr +0 8628 t +pom +count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_inc_state restore +%%PageTrailer +%%Trailer +%%EOF
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/mlj_submission.tex Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,1140 @@ +\RequirePackage{fix-cm} % from template + +%\documentclass{article} % For LaTeX2e +\documentclass[smallcondensed]{svjour3} % onecolumn (ditto) + +\usepackage{times} +\usepackage{wrapfig} +%\usepackage{amsthm} % not to be used with springer tools +\usepackage{amsmath} +\usepackage{bbm} +\usepackage[psamsfonts]{amssymb} +%\usepackage{algorithm,algorithmic} % not used after all +\usepackage[utf8]{inputenc} +\usepackage{graphicx,subfigure} +\usepackage{natbib} % was [numbers]{natbib} + +\addtolength{\textwidth}{10mm} +\addtolength{\evensidemargin}{-5mm} +\addtolength{\oddsidemargin}{-5mm} + +%\setlength\parindent{0mm} + +\title{Deep Self-Taught Learning for Handwritten Character Recognition} +\author{ +Yoshua Bengio \and +Frédéric Bastien \and +Arnaud Bergeron \and +Nicolas Boulanger-Lewandowski \and +Thomas Breuel \and +Youssouf Chherawala \and +Moustapha Cisse \and +Myriam Côté \and +Dumitru Erhan \and +Jeremy Eustache \and +Xavier Glorot \and +Xavier Muller \and +Sylvain Pannetier Lebeuf \and +Razvan Pascanu \and +Salah Rifai \and +Francois Savard \and +Guillaume Sicard +} +\date{September 30th, submission to MLJ special issue on learning from multi-label data} +\journalname{Machine Learning Journal} +\institute{Frédéric Bastien \and \\ + Yoshua Bengio \and \\ + Arnaud Bergeron \and \\ + Nicolas Boulanger-Lewandowski \and \\ + Youssouf Chherawala \and \\ + Moustapha Cisse \and \\ + Myriam Côté \and \\ + Dumitru Erhan \and \\ + Jeremy Eustache \and \\ + Xavier Glorot \and \\ + Xavier Muller \and \\ + Sylvain Pannetier-Lebeuf \and \\ + Razvan Pascanu \and \\ + Salah Rifai \and \\ + Francois Savard \and \\ + Guillaume Sicard \at + Dept. IRO, Universite de Montreal, C.P. 6128, Montreal, QC, H3C 3J7, Canada\\ + \email{yoshua.bengio@umontreal.ca} + \and + Thomas Breuel \at + Department of Computer Science, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany +} + + +\begin{document} + +%\makeanontitle +\maketitle + +%\vspace*{-2mm} +\begin{abstract} + Recent theoretical and empirical work in statistical machine learning has demonstrated the importance of learning algorithms for deep architectures, i.e., function classes obtained by composing multiple non-linear transformations. Self-taught learning (exploiting unlabeled examples or examples from other distributions) has already been applied to deep learners, but mostly to show the advantage of unlabeled examples. Here we explore the advantage brought by {\em out-of-distribution examples}. For this purpose we developed a powerful generator of stochastic variations and noise processes for character images, including not only affine transformations but also slant, local elastic deformations, changes in thickness, background images, grey level changes, contrast, occlusion, and various types of noise. The out-of-distribution examples are obtained from these highly distorted images or by including examples of object classes different from those in the target test set. We show that {\em deep learners benefit more from out-of-distribution examples than a corresponding shallow learner}, at least in the area of handwritten character recognition. In fact, we show that they beat previously published results and reach human-level performance on both handwritten digit classification and 62-class handwritten character recognition. +\end{abstract} +%\vspace*{-3mm} + +Keywords: self-taught learning, multi-task learning, out-of-distribution examples, deep learning, handwriting recognition. + +\section{Introduction} +%\vspace*{-1mm} + +{\bf Deep Learning} has emerged as a promising new area of research in +statistical machine learning (see \citet{Bengio-2009} for a review). +Learning algorithms for deep architectures are centered on the learning +of useful representations of data, which are better suited to the task at hand, +and are organized in a hierarchy with multiple levels. +This is in part inspired by observations of the mammalian visual cortex, +which consists of a chain of processing elements, each of which is associated with a +different representation of the raw visual input. In fact, +it was found recently that the features learnt in deep architectures resemble +those observed in the first two of these stages (in areas V1 and V2 +of visual cortex) \citep{HonglakL2008}, and that they become more and +more invariant to factors of variation (such as camera movement) in +higher layers~\citep{Goodfellow2009}. +Learning a hierarchy of features increases the +ease and practicality of developing representations that are at once +tailored to specific tasks, yet are able to borrow statistical strength +from other related tasks (e.g., modeling different kinds of objects). Finally, learning the +feature representation can lead to higher-level (more abstract, more +general) features that are more robust to unanticipated sources of +variance extant in real data. + +{\bf Self-taught learning}~\citep{RainaR2007} is a paradigm that combines principles +of semi-supervised and multi-task learning: the learner can exploit examples +that are unlabeled and possibly come from a distribution different from the target +distribution, e.g., from other classes than those of interest. +It has already been shown that deep learners can clearly take advantage of +unsupervised learning and unlabeled examples~\citep{Bengio-2009,WestonJ2008-small}, +but more needs to be done to explore the impact +of {\em out-of-distribution} examples and of the {\em multi-task} setting +(one exception is~\citep{CollobertR2008}, which uses a different kind +of learning algorithm). In particular the {\em relative +advantage of deep learning} for these settings has not been evaluated. +The hypothesis discussed in the conclusion is that in the context of +multi-task learning and the availability of out-of-distribution training examples, +a deep hierarchy of features +may be better able to provide sharing of statistical strength +between different regions in input space or different tasks, compared to +a shallow learner. + +Whereas a deep architecture can in principle be more powerful than a +shallow one in terms of representation, depth appears to render the +training problem more difficult in terms of optimization and local minima. +It is also only recently that successful algorithms were proposed to +overcome some of these difficulties. All are based on unsupervised +learning, often in an greedy layer-wise ``unsupervised pre-training'' +stage~\citep{Bengio-2009}. One of these layer initialization techniques, +applied here, is the Denoising +Auto-encoder~(DA)~\citep{VincentPLarochelleH2008-very-small} (see Figure~\ref{fig:da}), +which +performed similarly or better than previously proposed Restricted Boltzmann +Machines in terms of unsupervised extraction of a hierarchy of features +useful for classification. Each layer is trained to denoise its +input, creating a layer of features that can be used as input for the next layer. + +%The principle is that each layer starting from +%the bottom is trained to encode its input (the output of the previous +%layer) and to reconstruct it from a corrupted version. After this +%unsupervised initialization, the stack of DAs can be +%converted into a deep supervised feedforward neural network and fine-tuned by +%stochastic gradient descent. + +% +In this paper we ask the following questions: + +%\begin{enumerate} +$\bullet$ %\item +Do the good results previously obtained with deep architectures on the +MNIST digit images generalize to the setting of a much larger and richer (but similar) +dataset, the NIST special database 19, with 62 classes and around 800k examples? + +$\bullet$ %\item +To what extent does the perturbation of input images (e.g. adding +noise, affine transformations, background images) make the resulting +classifiers better not only on similarly perturbed images but also on +the {\em original clean examples}? We study this question in the +context of the 62-class and 10-class tasks of the NIST special database 19. + +$\bullet$ %\item +Do deep architectures {\em benefit {\bf more} from such out-of-distribution} +examples, i.e. do they benefit more from the self-taught learning~\citep{RainaR2007} framework? +We use highly perturbed examples to generate out-of-distribution examples. + +$\bullet$ %\item +Similarly, does the feature learning step in deep learning algorithms benefit {\bf more} +from training with moderately {\em different classes} (i.e. a multi-task learning scenario) than +a corresponding shallow and purely supervised architecture? +We train on 62 classes and test on 10 (digits) or 26 (upper case or lower case) +to answer this question. +%\end{enumerate} + +Our experimental results provide positive evidence towards all of these questions, +as well as classifiers that reach human-level performance on 62-class isolated character +recognition and beat previously published results on the NIST dataset (special database 19). +To achieve these results, we introduce in the next section a sophisticated system +for stochastically transforming character images and then explain the methodology, +which is based on training with or without these transformed images and testing on +clean ones. We measure the relative advantage of out-of-distribution examples +(perturbed or out-of-class) +for a deep learner vs a supervised shallow one. +Code for generating these transformations as well as for the deep learning +algorithms are made available at {\tt http://hg.assembla.com/ift6266}. +We estimate the relative advantage for deep learners of training with +other classes than those of interest, by comparing learners trained with +62 classes with learners trained with only a subset (on which they +are then tested). +The conclusion discusses +the more general question of why deep learners may benefit so much from +the self-taught learning framework. Since out-of-distribution data +(perturbed or from other related classes) is very common, this conclusion +is of practical importance. + +%\vspace*{-3mm} +%\newpage +\section{Perturbed and Transformed Character Images} +\label{s:perturbations} +%\vspace*{-2mm} + +\begin{wrapfigure}[8]{l}{0.15\textwidth} +%\begin{minipage}[b]{0.14\linewidth} +%\vspace*{-5mm} +\begin{center} +\includegraphics[scale=.4]{Original.png}\\ +{\bf Original} +\end{center} +\end{wrapfigure} +%%\vspace{0.7cm} +%\end{minipage}% +%\hspace{0.3cm}\begin{minipage}[b]{0.86\linewidth} +This section describes the different transformations we used to stochastically +transform $32 \times 32$ source images (such as the one on the left) +in order to obtain data from a larger distribution which +covers a domain substantially larger than the clean characters distribution from +which we start. +Although character transformations have been used before to +improve character recognizers, this effort is on a large scale both +in number of classes and in the complexity of the transformations, hence +in the complexity of the learning task. +The code for these transformations (mostly python) is available at +{\tt http://hg.assembla.com/ift6266}. All the modules in the pipeline share +a global control parameter ($0 \le complexity \le 1$) that allows one to modulate the +amount of deformation or noise introduced. +There are two main parts in the pipeline. The first one, +from slant to pinch below, performs transformations. The second +part, from blur to contrast, adds different kinds of noise. +%\end{minipage} + +%\vspace*{1mm} +\subsection{Transformations} +%{\large\bf 2.1 Transformations} +%\vspace*{1mm} + +\subsubsection*{Thickness} + +%\begin{wrapfigure}[7]{l}{0.15\textwidth} +\begin{minipage}[b]{0.14\linewidth} +%\centering +\begin{center} +\vspace*{-5mm} +\includegraphics[scale=.4]{Thick_only.png}\\ +%{\bf Thickness} +\end{center} +\vspace{.6cm} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[b]{0.86\linewidth} +%\end{wrapfigure} +To change character {\bf thickness}, morphological operators of dilation and erosion~\citep{Haralick87,Serra82} +are applied. The neighborhood of each pixel is multiplied +element-wise with a {\em structuring element} matrix. +The pixel value is replaced by the maximum or the minimum of the resulting +matrix, respectively for dilation or erosion. Ten different structural elements with +increasing dimensions (largest is $5\times5$) were used. For each image, +randomly sample the operator type (dilation or erosion) with equal probability and one structural +element from a subset of the $n=round(m \times complexity)$ smallest structuring elements +where $m=10$ for dilation and $m=6$ for erosion (to avoid completely erasing thin characters). +A neutral element (no transformation) +is always present in the set. +%%\vspace{.4cm} +\end{minipage} + +\vspace{2mm} + +\subsubsection*{Slant} +\vspace*{2mm} + +\begin{minipage}[b]{0.14\linewidth} +\centering +\includegraphics[scale=.4]{Slant_only.png}\\ +%{\bf Slant} +\end{minipage}% +\hspace{0.3cm} +\begin{minipage}[b]{0.83\linewidth} +%\centering +To produce {\bf slant}, each row of the image is shifted +proportionally to its height: $shift = round(slant \times height)$. +$slant \sim U[-complexity,complexity]$. +The shift is randomly chosen to be either to the left or to the right. +\vspace{5mm} +\end{minipage} +%\vspace*{-4mm} + +%\newpage + +\subsubsection*{Affine Transformations} + +\begin{minipage}[b]{0.14\linewidth} +%\centering +%\begin{wrapfigure}[8]{l}{0.15\textwidth} +\begin{center} +\includegraphics[scale=.4]{Affine_only.png} +\vspace*{6mm} +%{\small {\bf Affine \mbox{Transformation}}} +\end{center} +%\end{wrapfigure} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[b]{0.86\linewidth} +\noindent A $2 \times 3$ {\bf affine transform} matrix (with +parameters $(a,b,c,d,e,f)$) is sampled according to the $complexity$. +Output pixel $(x,y)$ takes the value of input pixel +nearest to $(ax+by+c,dx+ey+f)$, +producing scaling, translation, rotation and shearing. +Marginal distributions of $(a,b,c,d,e,f)$ have been tuned to +forbid large rotations (to avoid confusing classes) but to give good +variability of the transformation: $a$ and $d$ $\sim U[1-3 +complexity,1+3\,complexity]$, $b$ and $e$ $\sim U[-3 \,complexity,3\, +complexity]$, and $c$ and $f \sim U[-4 \,complexity, 4 \, +complexity]$.\\ +\end{minipage} + +%\vspace*{-4.5mm} +\subsubsection*{Local Elastic Deformations} + +%\begin{minipage}[t]{\linewidth} +%\begin{wrapfigure}[7]{l}{0.15\textwidth} +%\hspace*{-8mm} +\begin{minipage}[b]{0.14\linewidth} +%\centering +\begin{center} +\vspace*{5mm} +\includegraphics[scale=.4]{Localelasticdistorsions_only.png} +%{\bf Local Elastic Deformation} +\end{center} +%\end{wrapfigure} +\end{minipage}% +\hspace{3mm} +\begin{minipage}[b]{0.85\linewidth} +%%\vspace*{-20mm} +The {\bf local elastic deformation} +module induces a ``wiggly'' effect in the image, following~\citet{SimardSP03-short}, +which provides more details. +The intensity of the displacement fields is given by +$\alpha = \sqrt[3]{complexity} \times 10.0$, which are +convolved with a Gaussian 2D kernel (resulting in a blur) of +standard deviation $\sigma = 10 - 7 \times\sqrt[3]{complexity}$. +\vspace{2mm} +\end{minipage} + +\vspace*{4mm} + +\subsubsection*{Pinch} + +\begin{minipage}[b]{0.14\linewidth} +%\centering +%\begin{wrapfigure}[7]{l}{0.15\textwidth} +%\vspace*{-5mm} +\begin{center} +\includegraphics[scale=.4]{Pinch_only.png}\\ +\vspace*{15mm} +%{\bf Pinch} +\end{center} +%\end{wrapfigure} +%%\vspace{.6cm} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[b]{0.86\linewidth} +The {\bf pinch} module applies the ``Whirl and pinch'' GIMP filter with whirl set to 0. +A pinch is ``similar to projecting the image onto an elastic +surface and pressing or pulling on the center of the surface'' (GIMP documentation manual). +For a square input image, draw a radius-$r$ disk +around its center $C$. Any pixel $P$ belonging to +that disk has its value replaced by +the value of a ``source'' pixel in the original image, +on the line that goes through $C$ and $P$, but +at some other distance $d_2$. Define $d_1=distance(P,C)$ +and $d_2 = sin(\frac{\pi{}d_1}{2r})^{-pinch} \times +d_1$, where $pinch$ is a parameter of the filter. +The actual value is given by bilinear interpolation considering the pixels +around the (non-integer) source position thus found. +Here $pinch \sim U[-complexity, 0.7 \times complexity]$. +%%\vspace{1.5cm} +\end{minipage} + +%\vspace{1mm} + +%{\large\bf 2.2 Injecting Noise} +\subsection{Injecting Noise} +%\vspace{2mm} + +\subsubsection*{Motion Blur} + +%%\vspace*{-.2cm} +\begin{minipage}[t]{0.14\linewidth} +\centering +\vspace*{0mm} +\includegraphics[scale=.4]{Motionblur_only.png} +%{\bf Motion Blur} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[t]{0.83\linewidth} +%%\vspace*{.5mm} +\vspace*{2mm} +The {\bf motion blur} module is GIMP's ``linear motion blur'', which +has parameters $length$ and $angle$. The value of +a pixel in the final image is approximately the mean of the first $length$ pixels +found by moving in the $angle$ direction, +$angle \sim U[0,360]$ degrees, and $length \sim {\rm Normal}(0,(3 \times complexity)^2)$. +%\vspace{5mm} +\end{minipage} + +%\vspace*{1mm} + +\subsubsection*{Occlusion} + +\begin{minipage}[t]{0.14\linewidth} +\centering +\vspace*{3mm} +\includegraphics[scale=.4]{occlusion_only.png}\\ +%{\bf Occlusion} +%%\vspace{.5cm} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[t]{0.83\linewidth} +%\vspace*{-18mm} +The {\bf occlusion} module selects a random rectangle from an {\em occluder} character +image and places it over the original {\em occluded} +image. Pixels are combined by taking the max(occluder, occluded), +i.e. keeping the lighter ones. +The rectangle corners +are sampled so that larger complexity gives larger rectangles. +The destination position in the occluded image are also sampled +according to a normal distribution. +This module is skipped with probability 60\%. +%%\vspace{7mm} +\end{minipage} + +%\vspace*{1mm} +\subsubsection*{Gaussian Smoothing} + +%\begin{wrapfigure}[8]{l}{0.15\textwidth} +%\vspace*{-6mm} +\begin{minipage}[t]{0.14\linewidth} +\begin{center} +%\centering +\vspace*{6mm} +\includegraphics[scale=.4]{Bruitgauss_only.png} +%{\bf Gaussian Smoothing} +\end{center} +%\end{wrapfigure} +%%\vspace{.5cm} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[t]{0.86\linewidth} +With the {\bf Gaussian smoothing} module, +different regions of the image are spatially smoothed. +This is achieved by first convolving +the image with an isotropic Gaussian kernel of +size and variance chosen uniformly in the ranges $[12,12 + 20 \times +complexity]$ and $[2,2 + 6 \times complexity]$. This filtered image is normalized +between $0$ and $1$. We also create an isotropic weighted averaging window, of the +kernel size, with maximum value at the center. For each image we sample +uniformly from $3$ to $3 + 10 \times complexity$ pixels that will be +averaging centers between the original image and the filtered one. We +initialize to zero a mask matrix of the image size. For each selected pixel +we add to the mask the averaging window centered on it. The final image is +computed from the following element-wise operation: $\frac{image + filtered\_image +\times mask}{mask+1}$. +This module is skipped with probability 75\%. +\end{minipage} + +%\newpage + +%\vspace*{-9mm} +\subsubsection*{Permute Pixels} + +%\hspace*{-3mm}\begin{minipage}[t]{0.18\linewidth} +%\centering +\begin{minipage}[t]{0.14\textwidth} +%\begin{wrapfigure}[7]{l}{ +%\vspace*{-5mm} +\begin{center} +\vspace*{1mm} +\includegraphics[scale=.4]{Permutpixel_only.png} +%{\small\bf Permute Pixels} +\end{center} +%\end{wrapfigure} +\end{minipage}% +\hspace{3mm}\begin{minipage}[t]{0.86\linewidth} +\vspace*{1mm} +%%\vspace*{-20mm} +This module {\bf permutes neighbouring pixels}. It first selects a +fraction $\frac{complexity}{3}$ of pixels randomly in the image. Each +of these pixels is then sequentially exchanged with a random pixel +among its four nearest neighbors (on its left, right, top or bottom). +This module is skipped with probability 80\%.\\ +%\vspace*{1mm} +\end{minipage} + +%\vspace{-3mm} + +\subsubsection*{Gaussian Noise} + +\begin{minipage}[t]{0.14\textwidth} +%\begin{wrapfigure}[7]{l}{ +%%\vspace*{-3mm} +\begin{center} +%\hspace*{-3mm}\begin{minipage}[t]{0.18\linewidth} +%\centering +\vspace*{0mm} +\includegraphics[scale=.4]{Distorsiongauss_only.png} +%{\small \bf Gauss. Noise} +\end{center} +%\end{wrapfigure} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[t]{0.86\linewidth} +\vspace*{1mm} +%\vspace*{12mm} +The {\bf Gaussian noise} module simply adds, to each pixel of the image independently, a +noise $\sim Normal(0,(\frac{complexity}{10})^2)$. +This module is skipped with probability 70\%. +%%\vspace{1.1cm} +\end{minipage} + +%\vspace*{1.2cm} + +\subsubsection*{Background Image Addition} + +\begin{minipage}[t]{\linewidth} +\begin{minipage}[t]{0.14\linewidth} +\centering +\vspace*{0mm} +\includegraphics[scale=.4]{background_other_only.png} +%{\small \bf Bg Image} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[t]{0.83\linewidth} +\vspace*{1mm} +Following~\citet{Larochelle-jmlr-2009}, the {\bf background image} module adds a random +background image behind the letter, from a randomly chosen natural image, +with contrast adjustments depending on $complexity$, to preserve +more or less of the original character image. +%%\vspace{.8cm} +\end{minipage} +\end{minipage} +%%\vspace{-.7cm} + +\subsubsection*{Salt and Pepper Noise} + +\begin{minipage}[t]{0.14\linewidth} +\centering +\vspace*{0mm} +\includegraphics[scale=.4]{Poivresel_only.png} +%{\small \bf Salt \& Pepper} +\end{minipage}% +\hspace{0.3cm}\begin{minipage}[t]{0.83\linewidth} +\vspace*{1mm} +The {\bf salt and pepper noise} module adds noise $\sim U[0,1]$ to random subsets of pixels. +The number of selected pixels is $0.2 \times complexity$. +This module is skipped with probability 75\%. +%%\vspace{.9cm} +\end{minipage} +%%\vspace{-.7cm} + +%\vspace{1mm} +\subsubsection*{Scratches} + +\begin{minipage}[t]{0.14\textwidth} +%\begin{wrapfigure}[7]{l}{ +%\begin{minipage}[t]{0.14\linewidth} +%\centering +\begin{center} +\vspace*{4mm} +%\hspace*{-1mm} +\includegraphics[scale=.4]{Rature_only.png}\\ +%{\bf Scratches} +\end{center} +\end{minipage}% +%\end{wrapfigure} +\hspace{0.3cm}\begin{minipage}[t]{0.86\linewidth} +%%\vspace{.4cm} +The {\bf scratches} module places line-like white patches on the image. The +lines are heavily transformed images of the digit ``1'' (one), chosen +at random among 500 such 1 images, +randomly cropped and rotated by an angle $\sim Normal(0,(100 \times +complexity)^2$ (in degrees), using bi-cubic interpolation. +Two passes of a grey-scale morphological erosion filter +are applied, reducing the width of the line +by an amount controlled by $complexity$. +This module is skipped with probability 85\%. The probabilities +of applying 1, 2, or 3 patches are (50\%,30\%,20\%). +\end{minipage} + +%\vspace*{1mm} + +\subsubsection*{Grey Level and Contrast Changes} + +\begin{minipage}[t]{0.15\linewidth} +\centering +\vspace*{0mm} +\includegraphics[scale=.4]{Contrast_only.png} +%{\bf Grey Level \& Contrast} +\end{minipage}% +\hspace{3mm}\begin{minipage}[t]{0.85\linewidth} +\vspace*{1mm} +The {\bf grey level and contrast} module changes the contrast by changing grey levels, and may invert the image polarity (white +to black and black to white). The contrast is $C \sim U[1-0.85 \times complexity,1]$ +so the image is normalized into $[\frac{1-C}{2},1-\frac{1-C}{2}]$. The +polarity is inverted with probability 50\%. +%%\vspace{.7cm} +\end{minipage} +%\vspace{2mm} + + +\iffalse +\begin{figure}[ht] +\centerline{\resizebox{.9\textwidth}{!}{\includegraphics{example_t.png}}}\\ +\caption{Illustration of the pipeline of stochastic +transformations applied to the image of a lower-case \emph{t} +(the upper left image). Each image in the pipeline (going from +left to right, first top line, then bottom line) shows the result +of applying one of the modules in the pipeline. The last image +(bottom right) is used as training example.} +\label{fig:pipeline} +\end{figure} +\fi + +%\vspace*{-3mm} +\section{Experimental Setup} +%\vspace*{-1mm} + +Much previous work on deep learning had been performed on +the MNIST digits task~\citep{Hinton06,ranzato-07-small,Bengio-nips-2006,Salakhutdinov+Hinton-2009}, +with 60~000 examples, and variants involving 10~000 +examples~\citep{Larochelle-jmlr-toappear-2008,VincentPLarochelleH2008}. +The focus here is on much larger training sets, from 10 times to +to 1000 times larger, and 62 classes. + +The first step in constructing the larger datasets (called NISTP and P07) is to sample from +a {\em data source}: {\bf NIST} (NIST database 19), {\bf Fonts}, {\bf Captchas}, +and {\bf OCR data} (scanned machine printed characters). Once a character +is sampled from one of these sources (chosen randomly), the second step is to +apply a pipeline of transformations and/or noise processes described in section \ref{s:perturbations}. + +To provide a baseline of error rate comparison we also estimate human performance +on both the 62-class task and the 10-class digits task. +We compare the best Multi-Layer Perceptrons (MLP) against +the best Stacked Denoising Auto-encoders (SDA), when +both models' hyper-parameters are selected to minimize the validation set error. +We also provide a comparison against a precise estimate +of human performance obtained via Amazon's Mechanical Turk (AMT) +service (http://mturk.com). +AMT users are paid small amounts +of money to perform tasks for which human intelligence is required. +Mechanical Turk has been used extensively in natural language processing and vision. +%processing \citep{SnowEtAl2008} and vision +%\citep{SorokinAndForsyth2008,whitehill09}. +AMT users were presented +with 10 character images (from a test set) and asked to choose 10 corresponding ASCII +characters. They were forced to choose a single character class (either among the +62 or 10 character classes) for each image. +80 subjects classified 2500 images per (dataset,task) pair. +Different humans labelers sometimes provided a different label for the same +example, and we were able to estimate the error variance due to this effect +because each image was classified by 3 different persons. +The average error of humans on the 62-class task NIST test set +is 18.2\%, with a standard error of 0.1\%. + +%\vspace*{-3mm} +\subsection{Data Sources} +%\vspace*{-2mm} + +%\begin{itemize} +%\item +{\bf NIST.} +Our main source of characters is the NIST Special Database 19~\citep{Grother-1995}, +widely used for training and testing character +recognition systems~\citep{Granger+al-2007,Cortes+al-2000,Oliveira+al-2002-short,Milgram+al-2005}. +The dataset is composed of 814255 digits and characters (upper and lower cases), with hand checked classifications, +extracted from handwritten sample forms of 3600 writers. The characters are labelled by one of the 62 classes +corresponding to ``0''-``9'',``A''-``Z'' and ``a''-``z''. The dataset contains 8 parts (partitions) of varying complexity. +The fourth partition (called $hsf_4$, 82587 examples), +experimentally recognized to be the most difficult one, is the one recommended +by NIST as a testing set and is used in our work as well as some previous work~\citep{Granger+al-2007,Cortes+al-2000,Oliveira+al-2002-short,Milgram+al-2005} +for that purpose. We randomly split the remainder (731668 examples) into a training set and a validation set for +model selection. +The performances reported by previous work on that dataset mostly use only the digits. +Here we use all the classes both in the training and testing phase. This is especially +useful to estimate the effect of a multi-task setting. +The distribution of the classes in the NIST training and test sets differs +substantially, with relatively many more digits in the test set, and a more uniform distribution +of letters in the test set (whereas in the training set they are distributed +more like in natural text). +%\vspace*{-1mm} + +%\item +{\bf Fonts.} +In order to have a good variety of sources we downloaded an important number of free fonts from: +{\tt http://cg.scs.carleton.ca/\textasciitilde luc/freefonts.html}. +% TODO: pointless to anonymize, it's not pointing to our work +Including the operating system's (Windows 7) fonts, there is a total of $9817$ different fonts that we can choose uniformly from. +The chosen {\tt ttf} file is either used as input of the Captcha generator (see next item) or, by producing a corresponding image, +directly as input to our models. +%\vspace*{-1mm} + +%\item +{\bf Captchas.} +The Captcha data source is an adaptation of the \emph{pycaptcha} library (a python based captcha generator library) for +generating characters of the same format as the NIST dataset. This software is based on +a random character class generator and various kinds of transformations similar to those described in the previous sections. +In order to increase the variability of the data generated, many different fonts are used for generating the characters. +Transformations (slant, distortions, rotation, translation) are applied to each randomly generated character with a complexity +depending on the value of the complexity parameter provided by the user of the data source. +%Two levels of complexity are allowed and can be controlled via an easy to use facade class. %TODO: what's a facade class? +%\vspace*{-1mm} + +%\item +{\bf OCR data.} +A large set (2 million) of scanned, OCRed and manually verified machine-printed +characters where included as an +additional source. This set is part of a larger corpus being collected by the Image Understanding +Pattern Recognition Research group led by Thomas Breuel at University of Kaiserslautern +({\tt http://www.iupr.com}), and which will be publicly released. +%TODO: let's hope that Thomas is not a reviewer! :) Seriously though, maybe we should anonymize this +%\end{itemize} + +%\vspace*{-3mm} +\subsection{Data Sets} +%\vspace*{-2mm} + +All data sets contain 32$\times$32 grey-level images (values in $[0,1]$) associated with a label +from one of the 62 character classes. +%\begin{itemize} +%\vspace*{-1mm} + +%\item +{\bf NIST.} This is the raw NIST special database 19~\citep{Grother-1995}. It has +\{651668 / 80000 / 82587\} \{training / validation / test\} examples. +%\vspace*{-1mm} + +%\item +{\bf P07.} This dataset is obtained by taking raw characters from all four of the above sources +and sending them through the transformation pipeline described in section \ref{s:perturbations}. +For each new example to generate, a data source is selected with probability $10\%$ from the fonts, +$25\%$ from the captchas, $25\%$ from the OCR data and $40\%$ from NIST. We apply all the transformations in the +order given above, and for each of them we sample uniformly a \emph{complexity} in the range $[0,0.7]$. +It has \{81920000 / 80000 / 20000\} \{training / validation / test\} examples. +%\vspace*{-1mm} + +%\item +{\bf NISTP.} This one is equivalent to P07 (complexity parameter of $0.7$ with the same proportions of data sources) + except that we only apply + transformations from slant to pinch. Therefore, the character is + transformed but no additional noise is added to the image, giving images + closer to the NIST dataset. +It has \{81920000 / 80000 / 20000\} \{training / validation / test\} examples. +%\end{itemize} + +%\vspace*{-3mm} +\subsection{Models and their Hyperparameters} +%\vspace*{-2mm} + +The experiments are performed using MLPs (with a single +hidden layer) and SDAs. +\emph{Hyper-parameters are selected based on the {\bf NISTP} validation set error.} + +{\bf Multi-Layer Perceptrons (MLP).} +Whereas previous work had compared deep architectures to both shallow MLPs and +SVMs, we only compared to MLPs here because of the very large datasets used +(making the use of SVMs computationally challenging because of their quadratic +scaling behavior). Preliminary experiments on training SVMs (libSVM) with subsets of the training +set allowing the program to fit in memory yielded substantially worse results +than those obtained with MLPs. For training on nearly a billion examples +(with the perturbed data), the MLPs and SDA are much more convenient than +classifiers based on kernel methods. +The MLP has a single hidden layer with $\tanh$ activation functions, and softmax (normalized +exponentials) on the output layer for estimating $P(class | image)$. +The number of hidden units is taken in $\{300,500,800,1000,1500\}$. +Training examples are presented in minibatches of size 20. A constant learning +rate was chosen among $\{0.001, 0.01, 0.025, 0.075, 0.1, 0.5\}$. +%through preliminary experiments (measuring performance on a validation set), +%and $0.1$ (which was found to work best) was then selected for optimizing on +%the whole training sets. +%\vspace*{-1mm} + + +{\bf Stacked Denoising Auto-Encoders (SDA).} +Various auto-encoder variants and Restricted Boltzmann Machines (RBMs) +can be used to initialize the weights of each layer of a deep MLP (with many hidden +layers)~\citep{Hinton06,ranzato-07-small,Bengio-nips-2006}, +apparently setting parameters in the +basin of attraction of supervised gradient descent yielding better +generalization~\citep{Erhan+al-2010}. This initial {\em unsupervised +pre-training phase} uses all of the training images but not the training labels. +Each layer is trained in turn to produce a new representation of its input +(starting from the raw pixels). +It is hypothesized that the +advantage brought by this procedure stems from a better prior, +on the one hand taking advantage of the link between the input +distribution $P(x)$ and the conditional distribution of interest +$P(y|x)$ (like in semi-supervised learning), and on the other hand +taking advantage of the expressive power and bias implicit in the +deep architecture (whereby complex concepts are expressed as +compositions of simpler ones through a deep hierarchy). + +\begin{figure}[ht] +%\vspace*{-2mm} +\centerline{\resizebox{0.8\textwidth}{!}{\includegraphics{denoising_autoencoder_small.pdf}}} +%\vspace*{-2mm} +\caption{Illustration of the computations and training criterion for the denoising +auto-encoder used to pre-train each layer of the deep architecture. Input $x$ of +the layer (i.e. raw input or output of previous layer) +s corrupted into $\tilde{x}$ and encoded into code $y$ by the encoder $f_\theta(\cdot)$. +The decoder $g_{\theta'}(\cdot)$ maps $y$ to reconstruction $z$, which +is compared to the uncorrupted input $x$ through the loss function +$L_H(x,z)$, whose expected value is approximately minimized during training +by tuning $\theta$ and $\theta'$.} +\label{fig:da} +%\vspace*{-2mm} +\end{figure} + +Here we chose to use the Denoising +Auto-encoder~\citep{VincentPLarochelleH2008} as the building block for +these deep hierarchies of features, as it is simple to train and +explain (see Figure~\ref{fig:da}, as well as +tutorial and code there: {\tt http://deeplearning.net/tutorial}), +provides efficient inference, and yielded results +comparable or better than RBMs in series of experiments +\citep{VincentPLarochelleH2008}. During training, a Denoising +Auto-encoder is presented with a stochastically corrupted version +of the input and trained to reconstruct the uncorrupted input, +forcing the hidden units to represent the leading regularities in +the data. Here we use the random binary masking corruption +(which sets to 0 a random subset of the inputs). + Once it is trained, in a purely unsupervised way, +its hidden units' activations can +be used as inputs for training a second one, etc. +After this unsupervised pre-training stage, the parameters +are used to initialize a deep MLP, which is fine-tuned by +the same standard procedure used to train them (see previous section). +The SDA hyper-parameters are the same as for the MLP, with the addition of the +amount of corruption noise (we used the masking noise process, whereby a +fixed proportion of the input values, randomly selected, are zeroed), and a +separate learning rate for the unsupervised pre-training stage (selected +from the same above set). The fraction of inputs corrupted was selected +among $\{10\%, 20\%, 50\%\}$. Another hyper-parameter is the number +of hidden layers but it was fixed to 3 based on previous work with +SDAs on MNIST~\citep{VincentPLarochelleH2008}. The size of the hidden +layers was kept constant across hidden layers, and the best results +were obtained with the largest values that we could experiment +with given our patience, with 1000 hidden units. + +%\vspace*{-1mm} + +\begin{figure}[ht] +%\vspace*{-2mm} +\centerline{\resizebox{.99\textwidth}{!}{\includegraphics{error_rates_charts.pdf}}} +%\vspace*{-3mm} +\caption{SDAx are the {\bf deep} models. Error bars indicate a 95\% confidence interval. 0 indicates that the model was trained +on NIST, 1 on NISTP, and 2 on P07. Left: overall results +of all models, on NIST and NISTP test sets. +Right: error rates on NIST test digits only, along with the previous results from +literature~\citep{Granger+al-2007,Cortes+al-2000,Oliveira+al-2002-short,Milgram+al-2005} +respectively based on ART, nearest neighbors, MLPs, and SVMs.} +\label{fig:error-rates-charts} +%\vspace*{-2mm} +\end{figure} + + +\begin{figure}[ht] +%\vspace*{-3mm} +\centerline{\resizebox{.99\textwidth}{!}{\includegraphics{improvements_charts.pdf}}} +%\vspace*{-3mm} +\caption{Relative improvement in error rate due to self-taught learning. +Left: Improvement (or loss, when negative) +induced by out-of-distribution examples (perturbed data). +Right: Improvement (or loss, when negative) induced by multi-task +learning (training on all classes and testing only on either digits, +upper case, or lower-case). The deep learner (SDA) benefits more from +both self-taught learning scenarios, compared to the shallow MLP.} +\label{fig:improvements-charts} +%\vspace*{-2mm} +\end{figure} + +\section{Experimental Results} +%\vspace*{-2mm} + +%%\vspace*{-1mm} +%\subsection{SDA vs MLP vs Humans} +%%\vspace*{-1mm} +The models are either trained on NIST (MLP0 and SDA0), +NISTP (MLP1 and SDA1), or P07 (MLP2 and SDA2), and tested +on either NIST, NISTP or P07, either on the 62-class task +or on the 10-digits task. Training (including about half +for unsupervised pre-training, for DAs) on the larger +datasets takes around one day on a GPU-285. +Figure~\ref{fig:error-rates-charts} summarizes the results obtained, +comparing humans, the three MLPs (MLP0, MLP1, MLP2) and the three SDAs (SDA0, SDA1, +SDA2), along with the previous results on the digits NIST special database +19 test set from the literature, respectively based on ARTMAP neural +networks ~\citep{Granger+al-2007}, fast nearest-neighbor search +~\citep{Cortes+al-2000}, MLPs ~\citep{Oliveira+al-2002-short}, and SVMs +~\citep{Milgram+al-2005}. More detailed and complete numerical results +(figures and tables, including standard errors on the error rates) can be +found in Appendix. +The deep learner not only outperformed the shallow ones and +previously published performance (in a statistically and qualitatively +significant way) but when trained with perturbed data +reaches human performance on both the 62-class task +and the 10-class (digits) task. +17\% error (SDA1) or 18\% error (humans) may seem large but a large +majority of the errors from humans and from SDA1 are from out-of-context +confusions (e.g. a vertical bar can be a ``1'', an ``l'' or an ``L'', and a +``c'' and a ``C'' are often indistinguishible). + +In addition, as shown in the left of +Figure~\ref{fig:improvements-charts}, the relative improvement in error +rate brought by self-taught learning is greater for the SDA, and these +differences with the MLP are statistically and qualitatively +significant. +The left side of the figure shows the improvement to the clean +NIST test set error brought by the use of out-of-distribution examples +(i.e. the perturbed examples examples from NISTP or P07). +Relative percent change is measured by taking +$100 \% \times$ (original model's error / perturbed-data model's error - 1). +The right side of +Figure~\ref{fig:improvements-charts} shows the relative improvement +brought by the use of a multi-task setting, in which the same model is +trained for more classes than the target classes of interest (i.e. training +with all 62 classes when the target classes are respectively the digits, +lower-case, or upper-case characters). Again, whereas the gain from the +multi-task setting is marginal or negative for the MLP, it is substantial +for the SDA. Note that to simplify these multi-task experiments, only the original +NIST dataset is used. For example, the MLP-digits bar shows the relative +percent improvement in MLP error rate on the NIST digits test set +is $100\% \times$ (single-task +model's error / multi-task model's error - 1). The single-task model is +trained with only 10 outputs (one per digit), seeing only digit examples, +whereas the multi-task model is trained with 62 outputs, with all 62 +character classes as examples. Hence the hidden units are shared across +all tasks. For the multi-task model, the digit error rate is measured by +comparing the correct digit class with the output class associated with the +maximum conditional probability among only the digit classes outputs. The +setting is similar for the other two target classes (lower case characters +and upper case characters). +%%\vspace*{-1mm} +%\subsection{Perturbed Training Data More Helpful for SDA} +%%\vspace*{-1mm} + +%%\vspace*{-1mm} +%\subsection{Multi-Task Learning Effects} +%%\vspace*{-1mm} + +\iffalse +As previously seen, the SDA is better able to benefit from the +transformations applied to the data than the MLP. In this experiment we +define three tasks: recognizing digits (knowing that the input is a digit), +recognizing upper case characters (knowing that the input is one), and +recognizing lower case characters (knowing that the input is one). We +consider the digit classification task as the target task and we want to +evaluate whether training with the other tasks can help or hurt, and +whether the effect is different for MLPs versus SDAs. The goal is to find +out if deep learning can benefit more (or less) from multiple related tasks +(i.e. the multi-task setting) compared to a corresponding purely supervised +shallow learner. + +We use a single hidden layer MLP with 1000 hidden units, and a SDA +with 3 hidden layers (1000 hidden units per layer), pre-trained and +fine-tuned on NIST. + +Our results show that the MLP benefits marginally from the multi-task setting +in the case of digits (5\% relative improvement) but is actually hurt in the case +of characters (respectively 3\% and 4\% worse for lower and upper class characters). +On the other hand the SDA benefited from the multi-task setting, with relative +error rate improvements of 27\%, 15\% and 13\% respectively for digits, +lower and upper case characters, as shown in Table~\ref{tab:multi-task}. +\fi + + +%\vspace*{-2mm} +\section{Conclusions and Discussion} +%\vspace*{-2mm} + +We have found that the self-taught learning framework is more beneficial +to a deep learner than to a traditional shallow and purely +supervised learner. More precisely, +the answers are positive for all the questions asked in the introduction. +%\begin{itemize} + +$\bullet$ %\item +{\bf Do the good results previously obtained with deep architectures on the +MNIST digits generalize to a much larger and richer (but similar) +dataset, the NIST special database 19, with 62 classes and around 800k examples}? +Yes, the SDA {\em systematically outperformed the MLP and all the previously +published results on this dataset} (the ones that we are aware of), {\em in fact reaching human-level +performance} at around 17\% error on the 62-class task and 1.4\% on the digits, +and beating previously published results on the same data. + +$\bullet$ %\item +{\bf To what extent do self-taught learning scenarios help deep learners, +and do they help them more than shallow supervised ones}? +We found that distorted training examples not only made the resulting +classifier better on similarly perturbed images but also on +the {\em original clean examples}, and more importantly and more novel, +that deep architectures benefit more from such {\em out-of-distribution} +examples. MLPs were helped by perturbed training examples when tested on perturbed input +images (65\% relative improvement on NISTP) +but only marginally helped (5\% relative improvement on all classes) +or even hurt (10\% relative loss on digits) +with respect to clean examples . On the other hand, the deep SDAs +were significantly boosted by these out-of-distribution examples. +Similarly, whereas the improvement due to the multi-task setting was marginal or +negative for the MLP (from +5.6\% to -3.6\% relative change), +it was quite significant for the SDA (from +13\% to +27\% relative change), +which may be explained by the arguments below. +%\end{itemize} + +In the original self-taught learning framework~\citep{RainaR2007}, the +out-of-sample examples were used as a source of unsupervised data, and +experiments showed its positive effects in a \emph{limited labeled data} +scenario. However, many of the results by \citet{RainaR2007} (who used a +shallow, sparse coding approach) suggest that the {\em relative gain of self-taught +learning vs ordinary supervised learning} diminishes as the number of labeled examples increases. +We note instead that, for deep +architectures, our experiments show that such a positive effect is accomplished +even in a scenario with a \emph{large number of labeled examples}, +i.e., here, the relative gain of self-taught learning is probably preserved +in the asymptotic regime. + +{\bf Why would deep learners benefit more from the self-taught learning framework}? +The key idea is that the lower layers of the predictor compute a hierarchy +of features that can be shared across tasks or across variants of the +input distribution. A theoretical analysis of generalization improvements +due to sharing of intermediate features across tasks already points +towards that explanation~\cite{baxter95a}. +Intermediate features that can be used in different +contexts can be estimated in a way that allows to share statistical +strength. Features extracted through many levels are more likely to +be more abstract (as the experiments in~\citet{Goodfellow2009} suggest), +increasing the likelihood that they would be useful for a larger array +of tasks and input conditions. +Therefore, we hypothesize that both depth and unsupervised +pre-training play a part in explaining the advantages observed here, and future +experiments could attempt at teasing apart these factors. +And why would deep learners benefit from the self-taught learning +scenarios even when the number of labeled examples is very large? +We hypothesize that this is related to the hypotheses studied +in~\citet{Erhan+al-2010}. Whereas in~\citet{Erhan+al-2010} +it was found that online learning on a huge dataset did not make the +advantage of the deep learning bias vanish, a similar phenomenon +may be happening here. We hypothesize that unsupervised pre-training +of a deep hierarchy with self-taught learning initializes the +model in the basin of attraction of supervised gradient descent +that corresponds to better generalization. Furthermore, such good +basins of attraction are not discovered by pure supervised learning +(with or without self-taught settings), and more labeled examples +does not allow the model to go from the poorer basins of attraction discovered +by the purely supervised shallow models to the kind of better basins associated +with deep learning and self-taught learning. + +A Flash demo of the recognizer (where both the MLP and the SDA can be compared) +can be executed on-line at {\tt http://deep.host22.com}. + + +\section*{Appendix I: Detailed Numerical Results} + +These tables correspond to Figures 2 and 3 and contain the raw error rates for each model and dataset considered. +They also contain additional data such as test errors on P07 and standard errors. + +\begin{table}[ht] +\caption{Overall comparison of error rates ($\pm$ std.err.) on 62 character classes (10 digits + +26 lower + 26 upper), except for last columns -- digits only, between deep architecture with pre-training +(SDA=Stacked Denoising Autoencoder) and ordinary shallow architecture +(MLP=Multi-Layer Perceptron). The models shown are all trained using perturbed data (NISTP or P07) +and using a validation set to select hyper-parameters and other training choices. +\{SDA,MLP\}0 are trained on NIST, +\{SDA,MLP\}1 are trained on NISTP, and \{SDA,MLP\}2 are trained on P07. +The human error rate on digits is a lower bound because it does not count digits that were +recognized as letters. For comparison, the results found in the literature +on NIST digits classification using the same test set are included.} +\label{tab:sda-vs-mlp-vs-humans} +\begin{center} +\begin{tabular}{|l|r|r|r|r|} \hline + & NIST test & NISTP test & P07 test & NIST test digits \\ \hline +Humans& 18.2\% $\pm$.1\% & 39.4\%$\pm$.1\% & 46.9\%$\pm$.1\% & $1.4\%$ \\ \hline +SDA0 & 23.7\% $\pm$.14\% & 65.2\%$\pm$.34\% & 97.45\%$\pm$.06\% & 2.7\% $\pm$.14\%\\ \hline +SDA1 & 17.1\% $\pm$.13\% & 29.7\%$\pm$.3\% & 29.7\%$\pm$.3\% & 1.4\% $\pm$.1\%\\ \hline +SDA2 & 18.7\% $\pm$.13\% & 33.6\%$\pm$.3\% & 39.9\%$\pm$.17\% & 1.7\% $\pm$.1\%\\ \hline +MLP0 & 24.2\% $\pm$.15\% & 68.8\%$\pm$.33\% & 78.70\%$\pm$.14\% & 3.45\% $\pm$.15\% \\ \hline +MLP1 & 23.0\% $\pm$.15\% & 41.8\%$\pm$.35\% & 90.4\%$\pm$.1\% & 3.85\% $\pm$.16\% \\ \hline +MLP2 & 24.3\% $\pm$.15\% & 46.0\%$\pm$.35\% & 54.7\%$\pm$.17\% & 4.85\% $\pm$.18\% \\ \hline +\citep{Granger+al-2007} & & & & 4.95\% $\pm$.18\% \\ \hline +\citep{Cortes+al-2000} & & & & 3.71\% $\pm$.16\% \\ \hline +\citep{Oliveira+al-2002} & & & & 2.4\% $\pm$.13\% \\ \hline +\citep{Milgram+al-2005} & & & & 2.1\% $\pm$.12\% \\ \hline +\end{tabular} +\end{center} +\end{table} + +\begin{table}[ht] +\caption{Relative change in error rates due to the use of perturbed training data, +either using NISTP, for the MLP1/SDA1 models, or using P07, for the MLP2/SDA2 models. +A positive value indicates that training on the perturbed data helped for the +given test set (the first 3 columns on the 62-class tasks and the last one is +on the clean 10-class digits). Clearly, the deep learning models did benefit more +from perturbed training data, even when testing on clean data, whereas the MLP +trained on perturbed data performed worse on the clean digits and about the same +on the clean characters. } +\label{tab:perturbation-effect} +\begin{center} +\begin{tabular}{|l|r|r|r|r|} \hline + & NIST test & NISTP test & P07 test & NIST test digits \\ \hline +SDA0/SDA1-1 & 38\% & 84\% & 228\% & 93\% \\ \hline +SDA0/SDA2-1 & 27\% & 94\% & 144\% & 59\% \\ \hline +MLP0/MLP1-1 & 5.2\% & 65\% & -13\% & -10\% \\ \hline +MLP0/MLP2-1 & -0.4\% & 49\% & 44\% & -29\% \\ \hline +\end{tabular} +\end{center} +\end{table} + +\begin{table}[ht] +\caption{Test error rates and relative change in error rates due to the use of +a multi-task setting, i.e., training on each task in isolation vs training +for all three tasks together, for MLPs vs SDAs. The SDA benefits much +more from the multi-task setting. All experiments on only on the +unperturbed NIST data, using validation error for model selection. +Relative improvement is 1 - single-task error / multi-task error.} +\label{tab:multi-task} +\begin{center} +\begin{tabular}{|l|r|r|r|} \hline + & single-task & multi-task & relative \\ + & setting & setting & improvement \\ \hline +MLP-digits & 3.77\% & 3.99\% & 5.6\% \\ \hline +MLP-lower & 17.4\% & 16.8\% & -4.1\% \\ \hline +MLP-upper & 7.84\% & 7.54\% & -3.6\% \\ \hline +SDA-digits & 2.6\% & 3.56\% & 27\% \\ \hline +SDA-lower & 12.3\% & 14.4\% & 15\% \\ \hline +SDA-upper & 5.93\% & 6.78\% & 13\% \\ \hline +\end{tabular} +\end{center} +\end{table} + +%\afterpage{\clearpage} +\clearpage +{ +\bibliographystyle{spbasic} % basic style, author-year citations +\bibliography{strings,strings-short,strings-shorter,ift6266_ml,specials,aigaion-shorter} +%\bibliographystyle{plainnat} +%\bibliographystyle{unsrtnat} +%\bibliographystyle{apalike} +} + + +\end{document}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/specials.bib Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,15 @@ +@Book{Serra82, + author = "J. Serra", + title = "Image Analysis and Mathematical Morphology", + publisher = "Academic Press", + year = "1982", +} +@Article{Haralick87, + author = "R. M. Haralick and S. R. Sternberg and X. Zhuang", + title = "Image analysis using mathematical morphology", + journal = "IEEE Trans. Pattern. Anal. Mach. Intel.", + volume = "9", + number = "4", + pages = "532-550", + year = "1987", +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/strings-short.bib Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,233 @@ +@String{cogsci = "Cognitive Science"} + +@String{AI06 = "AI 2006"} + +@String{JSM02="Proc. of JSM 2002"} + +@STRING{NIPS = "NIPS"} + +@STRING{NIPS1ed = "D.S.~Touretzky"} + +@String{nips87 = "NIPS'87"} + +@String{nips87ed = "D. Z. Anderson"} + +@STRING{NIPS1 = "Advances in NIPS'88"} + +@STRING{NIPS2ed = "D.S.~Touretzky"} + +@STRING{NIPS2 = "NIPS'89"} + +@STRING{NIPS3ed = "R.P.~Lippman and J.M.~Moody and D.S.~Touretzky"} + +@STRING{NIPS3 = "NIPS'90"} + +@STRING{NIPS4ed = "J.E. Moody S.J. Hanson and R.P. Lippmann"} + +@STRING{NIPS4 = "NIPS'91"} + +@STRING{NIPS5ed = "C.L.~Giles and S.J.~Hanson and J.D.~Cowan"} + +@STRING{NIPS5 = "NIPS'92"} + +@STRING{NIPS6ed = "D. Cowan and G. Tesauro and J. Alspector"}, + +@STRING{NIPS6 = "NIPS'93"} + +@STRING{NIPS7ed = "G.~Tesauro and D.S.~Touretzky and T.K.~Leen"} + +@STRING{NIPS7 = "NIPS'94"} + +@STRING{NIPS8ed = "D.S.~Touretzky and M.C.~Mozer and M.E.~Hasselmo"} + +@STRING{NIPS8 = "NIPS'95"} + +@STRING{NIPS9ed = "M.C.~Mozer and M.I.~Jordan and T.~Petsche"} + +@STRING{NIPS9 = "NIPS'96"} + +@STRING{NIPS10ed = "M.I.~Jordan and M.J.~Kearns and S.A.~Solla"} + +@STRING{NIPS10 = "NIPS'97"} + +@STRING{NIPS11ed = "M.S.~Kearns and S.A.~Solla and D.A.~Cohn"} + +@STRING{NIPS11 = "NIPS'98"} + +@STRING{NIPS12ed = "S.A.~Solla and T.K.~Leen and K-R.~M{\"u}ller"} + +@STRING{NIPS12 = "NIPS'99"} + +@STRING{NIPS13ed = "T.K.~Leen and T.G.~Dietterich and V.~Tresp"} + +@STRING{NIPS13 = "NIPS'00"} + +@STRING{NIPS14ed = "T.G.~Dietterich and S.~Becker and Z.~Ghahramani"} + +@STRING{NIPS14 = "NIPS'01"} + +@STRING{NIPS15ed = "S.~Becker and S.~Thrun and K.~Obermayer"} + +@STRING{NIPS15 = "NIPS'02"} + +@STRING{NIPS16ed = ""} +@string{NIPS16publ = {}} +@STRING{NIPS16 = "NIPS'03"} +@string{NIPS16addr = ""} + +@STRING{NIPS17ed = "L.K.~Saul and Y.~Weiss and L.~Bottou"} + +@STRING{NIPS17 = "NIPS'04"} + +@STRING{NIPS18 = "NIPS'05"} + +@STRING{NIPS18ed = "Y. Weiss and B. Sch{\"o}lkopf and J. Platt"} + +@STRING{NIPS19 = "NIPS'06"} + +@STRING{NIPS19ed = "B. Sch{\"o}lkopf and J. Platt and T. Hoffman"} + +@STRING{NIPS20 = "NIPS'07"} + +@STRING{NIPS20ed = "J.C. Platt and D. Koller and Y. Singer and S. Roweis"} + +@STRING{NIPS21 = "NIPS'08"} +@STRING{NIPS22 = "NIPS'09"} + +@STRING{NIPS21ed = "D. Koller and D. Schuurmans and Y. Bengio and L. Bottou"} + +@String{nips87 = "NIPS"} + +@String{nips89 = "NIPS'89"} + +@String{nips89eds = "D.S. Touretzky"} + +@String{nips90 = "NIPS'90"} + +@String{nips90eds = "D.S. Touretzky"} + +@String{nips91 = "NIPS'91"} + +@String{nips91eds = "R. P. Lippman and R. Moody and D. S. Touretzky"} + +@String{nips92 = "NIPS'92"} + +@String{nips92eds = "Moody, J.E. and S.J. Hanson and R.P. Lipmann"} + +@String{nips93 = "NIPS'93"} + +@String{nips93eds = "S. J. Hanson and J. D. Cowan and C. L. Giles"} + +@String{nips94 = "NIPS'94"} + +@String{nips94eds = "J.D. Cowan and G. Tesauro and J. Alspector"} + +@String{nips95 = "NIPS'95"} + +@String{nips95eds = "G. Tesauro and D.S. Touretzky and T.K. Leen"} + +@String{nips96 = "NIPS'96"} + +@String{nips96eds = "M. Mozer and D.S. Touretzky and M. Perrone"} + +@String{nips97 = "NIPS'97"} + +@String{nips97eds = "M. Jordan and M. Mozer and T. Petsche"} + +@String{nips98 = "NIPS'98"} + +@String{nips98eds = "S. Solla and M. Jordan"} + +@String{nips2001 = "NIPS'01"} + +@String{nips2002 = "NIPS'02"} + +@String{nips2002eds = "T. G. Dietterich and S. Becker and Z. Ghahramani"} + +@String{nips2002publ = "MIT Press, Cambridge, {MA}"} + +@String{nips2003 = "NIPS'03"} + +@String{iapr = "Proc. IAPR"} +@String{ijprai = "Int. J. Pattern Recognition and AI"} +@String{jprr = "J. of Pat. Reco. Research"} + + +@String{ICDAR03 = "Proc. {ICDAR}'03"} +@String{ICDAR07 = "Proc. {ICDAR}'07"} + +@String{ICML96 = "Proc. {ICML} 1996"} +@String{ICML97 = "Proc. {ICML} 1997"} +@String{ICML98 = "Proc. {ICML} 1998"} +@String{ICML99 = "Proc. {ICML} 1999"} +@String{ICML00 = "Proc. {ICML} 2000"} +@String{ICML01 = "Proc. {ICML} 2001"} +@String{ICML02 = "Proc. {ICML} 2002"} +@String{ICML03 = "Proc. {ICML} 2003"} +@String{ICML04 = "Proc. {ICML} 2004"} +@String{ICML05 = "Proc. {ICML} 2005"} +@String{ICML06 = "Proc. {ICML} 2006"} +@String{ICML07 = "Proc. {ICML} 2007"} +@String{ICML08 = "Proc. {ICML} 2008"} +@String{ICML09 = "Proc. {ICML} 2009"} +@String{ICML96ed = ""} +@String{ICML97ed = ""} +@String{ICML98ed = ""} +@String{ICML99ed = ""} +@String{ICML00ed = ""} +@String{ICML01ed = ""} +@String{ICML02ed = ""} +@String{ICML03ed = ""} +@String{ICML04ed = ""} +@String{ICML05ed = ""} +@String{ICML06ed = ""} +@String{ICML07ed = ""} +@String{ICML08ed = ""} +@String{ICML09ed = ""} +@String{ICML96publ = ""} +@String{ICML97publ = ""} +@String{ICML98publ = ""} +@String{ICML99publ = ""} +@String{ICML00publ = ""} +@String{ICML01publ = ""} +@String{ICML02publ = ""} +@String{ICML03publ = ""} +@String{ICML04publ = ""} +@String{ICML05publ = ""} +@String{ICML06publ = ""} +@String{ICML07publ = ""} +@String{ICML08publ = ""} +@String{ICML09publ = ""} + +@STRING{aistats05 = "Proc. AISTATS'2005"} +@STRING{aistats07 = "Proc. AISTATS'2007"} +@STRING{aistats09 = "Proc. AISTATS'2009"} +@String{SVM02 = "SVM2002"} + +@String{cvpr83 = "Proc. {CVPR}'83"} +@String{cvpr96 = "Proc. {CVPR}'96"} +@String{cvpr97 = "Proc. {CVPR}'97"} +@String{cvpr99 = "Proc. {CVPR}'99"} +@String{cvpr04 = "Proc. {CVPR}'04"} +@String{cvpr05 = "Proc. {CVPR}'05"} +@String{cvpr06 = "Proc. {CVPR}'06"} +@String{cvpr07 = "Proc. {CVPR}'07"} +@String{cvpr08 = "Proc. {CVPR}'08"} +@String{cvpr09 = "Proc. {CVPR}'09"} + +@string{IEEE_trans_biomed = "{IEEE} Trans. Biomed. Eng."} +@string{IJCAS = "{IJCAS}"} +@string{DSP = "Digital Signal Process."} +@string{IEEE_trans_SP = "{IEEE} Trans. Signal Process."} +@string{BME = "BME"} +@string{SSDBM2009 = "{SSDBM} 2009"} +@string{PRL = "Pattern Recognit. Lett."} +@string{jmlr = "{JMLR}"} +@string{FTML = "Found. Trends Mach. Learn."} +@string{Bengio2009FTML_note = ""} +@string{JEC = "J. Electrocardiol."} +@string{DMKD = "Data Min. Knowl. Disc."} +@string{IEEE_trans_NN = "IEEE Trans. Neural Networks"} +@string{eng_med_bio = "IEEE Eng. Med. Biol. Mag."} +@string{ICTAI06 = "ICTAI'06"} +@String{ieeetpami = "IEEE Trans. Pattern Analysis and Mach. Intelli."} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/strings-shorter.bib Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,110 @@ +@String{cogsci = "Cognitive Science"} + +@String{AI06 = "AI 2006"} + +@String{JSM02="Proc. of JSM 2002"} + +@STRING{NIPS = "NIPS"} + +@STRING{NIPS1ed = ""} + +@String{nips87 = "NIPS'87"} + +@String{nips87ed = ""} + +@STRING{NIPS1 = "Advances in NIPS'88"} + +@STRING{NIPS2ed = ""} + +@STRING{NIPS2 = "NIPS'89"} + +@STRING{NIPS3ed = ""} + +@STRING{NIPS3 = "NIPS'90"} + +@STRING{NIPS4ed = ""} + +@STRING{NIPS4 = "NIPS'91"} + +@STRING{NIPS5ed = ""} + +@STRING{NIPS5 = "NIPS'92"} + +@STRING{NIPS6ed = ""}, + +@STRING{NIPS6 = "NIPS'93"} + +@STRING{NIPS7ed = ""} + +@STRING{NIPS7 = "NIPS'94"} + +@STRING{NIPS8ed = ""} + +@STRING{NIPS8 = "NIPS'95"} + +@STRING{NIPS9ed = ""} + +@STRING{NIPS9 = "NIPS'96"} + +@STRING{NIPS10ed = ""} + +@STRING{NIPS10 = "NIPS'97"} + +@STRING{NIPS11ed = ""} + +@STRING{NIPS11 = "NIPS'98"} + +@STRING{NIPS12ed = ""} +@STRING{NIPS12 = "NIPS'99"} +@STRING{NIPS13ed = ""} +@STRING{NIPS13 = "NIPS'00"} +@STRING{NIPS14ed = ""} +@STRING{NIPS14 = "NIPS'01"} +@STRING{NIPS15ed = ""} +@STRING{NIPS15 = "NIPS'02"} +@STRING{NIPS16ed = ""} +@STRING{NIPS16 = "NIPS'03"} +@string{NIPS16addr = ""} +@STRING{NIPS17ed = ""} +@STRING{NIPS17 = "NIPS'04"} +@STRING{NIPS18ed = ""} +@STRING{NIPS18 = "NIPS'05"} +@STRING{NIPS19ed = ""} +@STRING{NIPS19 = "NIPS'06"} +@STRING{NIPS20ed = ""} +@STRING{NIPS20 = "NIPS'07"} +@STRING{NIPS21ed = ""} +@STRING{NIPS21 = "NIPS'08"} +@STRING{NIPS22ed = ""} +@STRING{NIPS22 = "NIPS'09"} + +@String{ICDAR03 = "Proc. {ICDAR}'03"} +@String{ICDAR07 = "Proc. {ICDAR}'07"} + +@String{ICML96 = "{ICML} 1996"} +@String{ICML97 = "{ICML} 1997"} +@String{ICML98 = "{ICML} 1998"} +@String{ICML99 = "{ICML} 1999"} +@String{ICML00 = "{ICML} 2000"} +@String{ICML01 = "{ICML} 2001"} +@String{ICML02 = "{ICML} 2002"} +@String{ICML03 = "{ICML} 2003"} +@String{ICML04 = "{ICML} 2004"} +@String{ICML05 = "{ICML} 2005"} +@String{ICML06 = "{ICML} 2006"} +@String{ICML07 = "{ICML} 2007"} +@String{ICML08 = "{ICML} 2008"} +@String{ICML09 = "{ICML} 2009"} +@string{icml09loc = {}} +@STRING{aistats05 = "AISTATS'2005"} +@STRING{aistats07 = "AISTATS'2007"} +@STRING{aistats09 = "AISTATS'2009"} +@String{SVM02 = "SVM2002"} +@String{UAI09 = {UAI'09}} + +@String{iapr = "IAPR"} +@String{jprr = "JPRR"} + +@string{PhysioNetAuthors = {{Goldberger, A.L., et al.}}} +@string{PhysioNetNote = ""} +@string{PhysioNetYear = "2000"} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/mlj_submission/strings.bib Thu Sep 30 17:51:02 2010 -0400 @@ -0,0 +1,477 @@ +@String{AAAI-85 = "Proceedings of the Fifth National Conference on + Artificial Intelligence"} + +@String{AAAI-86 = "Proceedings of the Sixth National Conference on + Artificial Intelligence"} + +@String{AAAI-87 = "Proceedings of the Seventh National Conference on + Artificial Intelligence"} + +@String{AAAI-88 = "Proceedings of the Eigth National Conference on + Artificial Intelligence"} + +@String{AAAI-89 = "Proceedings of the Ninth National Conference on + Artificial Intelligence"} + + +@String{AAAI-90 = "Proceedings of the Tenth National Conference on + Artificial Intelligence"} + +@String{AAAI-91 = "Proceedings of the 11th National Conference on + Artificial Intelligence"} + +@String{AAAI-92 = "Proceedings of the 12th National Conference on + Artificial Intelligence"} + +@String{AAAI-93 = "Proceedings of the 13th National Conference on + Artificial Intelligence"} + +@String{AAAI-94 = "Proceedings of the 14th National Conference on + Artificial Intelligence"} + +@String{AI06 = "Advances in Artificial Intelligence, Proceedings of the 19th Conference of the Canadian Society for Computational Studies of Intelligence"} + +@String{acmtms = "ACM Transactions on Mathematical Software"} + +@STRING{aistats01 = "Proceedings of the Eigth International Workshop on Artificial Intelligence and Statistics (AISTATS'01)"} + +@STRING{aistats05 = "Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS'05)"} +@STRING{aistats05ed = "Robert G. Cowell and Zoubin Ghahramani"} + +@STRING{aistats07 = "Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS'07)"} +@STRING{aistats07-small = "Proceedings of AISTATS-2007"} + +@STRING{aistats09 = "Proceedings of The Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS'09)"} + +@String{ams = "Ann. Math. Stat."} + +@String{annphys = "Annals of Physics"} + +@String{ans = "American Nuclear Society, Illinois, USA"} + +@String{applopt = "Applied Optics"} + +@String{JSM02="Proceedings of 2002 Joint Statistical Meetings"} + +@String{bbs = "Behavioral and Brain Sciences"} + +@String{behbio = "Behavioral Biology"} + +@String{biocyb = "Biological Cybernetics"} + +@String{bmbiol = "Bulletin of Mathematical Biology"} + +@String{bmbiophys = "Bulletin of Mathematical Biophysics"} + +@String{brain = "Brain"} + +@String{BYTE = "BYTE"} + +@String{cmss88 = "Proceedings of the 1988 Connectionist Models Summer + School"} + +@String{cogsci = "Cognitive Science"} + +@String{colt94 = "Proceedings of the 7th International Conference on Computational Learning Theory (COLT'94)" } +@String{colt95 = "Proceedings of the 8th International Conference on Computational Learning Theory (COLT'95)" } +@String{colt98 = "Proceedings of the 11th International Conference on Computational Learning Theory (COLT'98)" } +@String{colt99 = "Proceedings of the 12th International Conference on Computational Learning Theory (COLT'99)" } +@String{colt03 = "Proceedings of the 16th International Conference on Computational Learning Theory (COLT'03)" } +@String{colt04 = "Proceedings of the 17th International Conference on Computational Learning Theory (COLT'04)" } + +@String{computer = "Computer"} + +@String{connsci = "Connection Science"} + +@String{cpc = "Computer Physics Communications"} + +@String{cs = "Complex Systems"} + +@STRING{CSL = "Computers Speech and Language"} + +@String{cspla = "Computer Speech and Language"} + +@String{cvgip = "Computer Vision, Graphics, and Image Processing"} + +@String{cvpr83 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'83)"} +@String{cvpr96 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'96)"} +@String{cvpr97 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'97)"} +@String{cvpr99 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'99)"} +@String{cvpr04 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'04)"} +@String{cvpr05 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'05)"} +@String{cvpr06 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'06)"} +@String{cvpr07 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'07)"} +@String{cvpr08 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'08)"} +@String{cvpr09 = "Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'09)"} + +@String{DIRO= "D\'epartement d'informatique et recherche op\'erationnelle, Universit\'e de Montr\'eal"} + +@String{daed = "D\ae dalus, Proceedings of the American Academy of + Arts and Sciences"} + +@String{ECML97 = "Proceedings of the 9th European Conference on Machine Learning (ECML'97)"} + +@String{ECML94 = "Proceedings of the 9th European Conference on Machine Learning (ECML'94)"} + +@String{ECML02 = "Proceedings of the 9th European Conference on Machine Learning (ECML'02)"} + +@String{EEGCN = "EEG and Clinical Neurophysiology"} + +@String{eul = "Europhysics Letters"} + +@string{euro97 = {Proc. Eurospeech '97}} + +@string{euro97addr = {Rhodes, Greece}} + +@string{euro97month = sep} + +@String{febsl = "FEBS Letters"} + +@String{iapr = "Proceedings of the Joint International Workshops on Advances in Pattern Recognition (IAPR)"} + +@String{icassp = "International Conference on Acoustics, Speech and Signal Processing (ICASSP)"} + +@String{ICCV99 = "Proceedings {IEEE} International Conference on Computer Vision (ICCV'99)"} + +@String{ICCV05 = "Proceedings {IEEE} International Conference on Computer Vision (ICCV'05)"} + +@String{ICCV07 = "Proceedings {IEEE} of the 11th International Conference on Computer Vision (ICCV'07)"} + +@String{ICDAR95 = "3rd International Conference on Document Analysis and Recognition (ICDAR'95)"} + +@String{ICDAR03 = "International Conference on Document Analysis and Recognition (ICDAR'03)"} + +@String{ICDAR07 = "International Conference on Document Analysis and Recognition (ICDAR'07)"} + +@String{ICIP07 = "2007 International Conference on Image Processing"} + +@String{icnn = "IEEE International Conference on Neural Networks"} + +@STRING{icpr = "International Conference on Pattern Recognition"} +@STRING{ICPR94 = "International Conference on Pattern Recognition (ICPR'94)"} + +@STRING{icslp = "International Conference on Speech and Language Processing"} + +@String{ieeeac = "IEEE Transactions on Automatic Control"} + +@String{ieeeassp = "IEEE ASSP Magazine"} + +@String{ieeeit = "IEEE Transactions on Information Theory"} + +@String{ieeesmc = "IEEE Transactions on Systems, Man, and Cybernetics"} + +@String{ieeetrnn = "IEEE Transactions on Neural Networks"} + +@String{ieeetrkde = "IEEE Transactions on Knowledge and Data + Engineering"} + +@String{ieeetassp = "IEEE Transactions on Acoustics, Speech, and Signal + Processing"} + +@String{ieeetc = "IEEE Transactions on Computers"} + +@String{ieeetcas = "IEEE Transactions on Circuits and Systems"} + +@String{ieeetcomm = "IEEE Transactions on Communications"} + +@String{ieeetec = "IEEE Transactions on Electronic Computers"} + +@String{ieeetpami = "IEEE Transactions on Pattern Analysis and Machine + Intelligence"} + +@String{ieeeproc = "Proceedings of the IEEE"} + +%@STRING{ijcnn = "IEEE joint conference on neural networks"} + +@String{ijcnn = "International Joint Conference on Neural Networks (IJCNN)"} + +@String{ijns = "International Journal of Neural Systems"} + +@String{jama = "Journal of Mathematical Analysis and Applications"} + +@String{jasa = "Journal of the Acoustical Society of America"} + +@String{jcomp = "Journal of Complexity"} + +@String{jcp = "Journal of Chemical Physics"} + +@String{jmathb = "Journal of Mathematical Biology"} + +@String{jmlr = "Journal of Machine Learning Research"} + +@String{jmolecb = "Journal of Molecular Biology"} + +@String{jmp = "Journal of Mathematical Physics"} + +@String{jmpsych = "Journal of Mathematical Psychology"} + +@String{jneuro = "Journal of Neuroscience"} + +@String{jprr = "Journal of Pattern Recognition Research"} + +@String{jpa = "Journal of Physics A"} + +@String{jphysiol = "Journal of Physiology (London)"} + +@String{jpp = "Journal de Physique (Paris)"} + +@String{jppl = "Journal de Physique Lettres (Paris)"} + +@String{jtb = "Journal of Theoretical Biology"} + +@String{kyb = "Kybernetik"} + +@String{mbio = "Mathematical Biosciences"} + +@String{mcss = "Mathematics of Control, Signals, and Systems"} + +@String{mlearn = "Machine Learning"} + +@String{nature = "Nature"} + +@String{network = "Network"} + +@String{nc = "Neural Computation"} + +@String{nipc_hmit96 = "Proceedings of the 1996 American Nuclear Society, + International Topical Meeting on Nuclear Plant + Instrumentation, Control and Human-Machine Interface + Technologies"} + +@STRING{NIPS = "Advances in Neural Information Processing Systems (NIPS)"} +@String{nips87 = "Neural Information Processing Systems (NIPS)"} +@String{nips87ed = "D. Z. Anderson"} + +@STRING{NIPS1ed = "D.S.~Touretzky"} +@STRING{NIPS1publ = "Morgan Kaufmann"} +@STRING{NIPS1 = "Advances in Neural Information Processing Systems 1 (NIPS'88)"} + +@STRING{NIPS2ed = "D.S.~Touretzky"} +@STRING{NIPS2publ = "Morgan Kaufmann"} +@STRING{NIPS2 = "Advances in Neural Information Processing Systems 2 (NIPS'89)"} + +@STRING{NIPS3ed = "R.P.~Lippman and J.M.~Moody and D.S.~Touretzky"} +@STRING{NIPS3publ = "Morgan Kaufmann"} +@STRING{NIPS3 = "Advances in Neural Information Processing Systems 3 (NIPS'90)"} + +@STRING{NIPS4ed = "J.E. Moody S.J. Hanson and R.P. Lippmann"} +@STRING{NIPS4publ = "Morgan Kaufmann"} +@STRING{NIPS4 = "Advances in Neural Information Processing Systems 4 (NIPS'91)"} + +@STRING{NIPS5ed = "C.L.~Giles and S.J.~Hanson and J.D.~Cowan"} +%editor = {Cowan, Jack D. and Tesauro, Gerald and Alspector, Joshua }, +@STRING{NIPS5publ = "Morgan Kaufmann"} +@STRING{NIPS5 = "Advances in Neural Information Processing Systems 5 (NIPS'92)"} + +@STRING{NIPS6ed = "D. Cowan and G. Tesauro and J. Alspector"}, +@STRING{NIPS6publ = "MIT Press"} +@STRING{NIPS6 = "Advances in Neural Information Processing Systems 6 (NIPS'93)"} + +@STRING{NIPS7ed = "G.~Tesauro and D.S.~Touretzky and T.K.~Leen"} +@STRING{NIPS7publ = "MIT Press"} +@STRING{NIPS7 = "Advances in Neural Information Processing Systems 7 (NIPS'94)"} + +@STRING{NIPS8ed = "D.S.~Touretzky and M.C.~Mozer and M.E.~Hasselmo"} +@STRING{NIPS8publ = "MIT Press"} +@STRING{NIPS8 = "Advances in Neural Information Processing Systems 8 (NIPS'95)"} + +@STRING{NIPS9ed = "M.C.~Mozer and M.I.~Jordan and T.~Petsche"} +@STRING{NIPS9publ = "MIT Press"} +@STRING{NIPS9 = "Advances in Neural Information Processing Systems 9 (NIPS'96)"} + +@STRING{NIPS10ed = "M.I.~Jordan and M.J.~Kearns and S.A.~Solla"} +@STRING{NIPS10publ = "MIT Press"} +@STRING{NIPS10 = "Advances in Neural Information Processing Systems 10 (NIPS'97)"} + +@STRING{NIPS11ed = "M.S.~Kearns and S.A.~Solla and D.A.~Cohn"} +@STRING{NIPS11publ = "MIT Press"} +@STRING{NIPS11 = "Advances in Neural Information Processing Systems 11 (NIPS'98)"} + +@STRING{NIPS12ed = "S.A.~Solla and T.K.~Leen and K-R.~M{\"u}ller"} +@STRING{NIPS12publ = "MIT Press"} +@STRING{NIPS12 = "Advances in Neural Information Processing Systems 12 (NIPS'99)"} + +@STRING{NIPS13ed = "T.K.~Leen and T.G.~Dietterich and V.~Tresp"} +@STRING{NIPS13publ = "MIT Press"} +@STRING{NIPS13 = "Advances in Neural Information Processing Systems 13 (NIPS'00)"} + +@STRING{NIPS14ed = "T.G.~Dietterich and S.~Becker and Z.~Ghahramani"} +@STRING{NIPS14publ = "MIT Press"} +@STRING{NIPS14 = "Advances in Neural Information Processing Systems 14 (NIPS'01)"} + +@STRING{NIPS15ed = "S.~Becker and S.~Thrun and K.~Obermayer"} +@STRING{NIPS15publ = "MIT Press"} +@STRING{NIPS15 = "Advances in Neural Information Processing Systems 15 (NIPS'02)"} + +@STRING{NIPS16ed = "S.~Thrun and L.~Saul and B.~Sch{\"o}lkopf"} +@STRING{NIPS16publ = "MIT Press"} +@STRING{NIPS16 = "Advances in Neural Information Processing Systems 16 (NIPS'03)"} +@string{NIPS16addr = "Cambridge, MA"} + +@STRING{NIPS17ed = "L.K.~Saul and Y.~Weiss and L.~Bottou"} +@STRING{NIPS17publ = ""} +@STRING{NIPS17 = "Advances in Neural Information Processing Systems 17 (NIPS'04)"} + +@STRING{NIPS18 = "Advances in Neural Information Processing Systems 18 (NIPS'05)"} +@STRING{NIPS18ed = "Y. Weiss and B. Sch{\"o}lkopf and J. Platt"} +@STRING{NIPS18publ = "MIT Press"} + +@STRING{NIPS19 = "Advances in Neural Information Processing Systems 19 (NIPS'06)"} +%%full name editor = "Bernhard Schölkopf and John Platt and Thomas Hoffman", +@STRING{NIPS19ed = "B. Sch{\"o}lkopf and J. Platt and T. Hoffman"} +@STRING{NIPS19publ = "MIT Press"} + +@STRING{NIPS20 = "Advances in Neural Information Processing Systems 20 (NIPS'07)"} +@STRING{NIPS20ed = "J.C. Platt and D. Koller and Y. Singer and S. Roweis"} +@STRING{NIPS20publ = "MIT Press"} + +@STRING{NIPS21 = "Advances in Neural Information Processing Systems 21 (NIPS'08)"} +@STRING{NIPS21ed = "Daphne Koller and Dale Schuurmans and Yoshua Bengio and Leon Bottou"} +@STRING{NIPS21publ = ""} + +@STRING{NIPS22 = "Advances in Neural Information Processing Systems 22 (NIPS'09)"} +@STRING{NIPS22ed = "Yoshua Bengio and Dale Schuurmans and Christopher Williams and John Lafferty and Aron Culotta"} +@STRING{NIPS22publ = ""} + +@String{ijprai = "International Journal of Pattern Recognition and Artificial Intelligence"} + +@String{ICML96 = "Proceedings of the Thirteenth International Conference on Machine Learning (ICML'96)"} +@String{ICML96ed = {L. Saitta}} +@String{ICML96publ = "Morgan Kaufmann"} + +@String{ICML97 = "Proceedings of the Fourteenth International Conference on Machine Learning (ICML'97)"} +@String{ICML97ed = {Douglas H. Fisher}} +@String{ICML97publ = "Morgan Kaufmann"} + +@String{ICML98 = "Proceedings of the Fifteenth International Conference on Machine Learning (ICML'98)"} +@String{ICML98ed = {Jude W. Shavlik}} +@String{ICML98publ = "Morgan Kaufmann"} + +@String{ICML99 = "Proceedings of the Sixteenth International Conference on Machine Learning (ICML'99)"} +@String{ICML99ed = {Ivan Bratko and Saso Dzeroski}} +@String{ICML99publ = "Morgan Kaufmann"} + +@String{ICML01 = "Proceedings of the Eighteenth International Conference on Machine Learning (ICML'01)"} +@String{ICML01ed = {Carla E. Brodley and Andrea Pohoreckyj Danyluk}} +@String{ICML01publ = "Morgan Kaufmann"} + +@String{ICML02 = "Proceedings of the Nineteenth International Conference on Machine Learning (ICML'02)"} +@String{ICML02ed = {Claude Sammut and Achim G. Hoffmann}} +@String{ICML02publ = "Morgan Kaufmann"} + +@String{ICML03 = "Proceedings of the Twenty International Conference on Machine Learning (ICML'03)"} +@String{ICML03ed = {Tom Fawcett and Nina Mishra}} +@String{ICML03publ = "AAAI Press"} + +@String{ICML04 = "Proceedings of the Twenty-first International Conference on Machine Learning (ICML'04)"} +@String{ICML04ed = {Carla E. Brodley}} +@String{ICML04publ = "ACM"} + +@String{ICML05 = "Proceedings of the Twenty-second International Conference on Machine Learning (ICML'05)"} +@String{ICML05ed = {Luc De Raedt and Stefan Wrobel}} +@String{ICML05publ = "ACM"} + +@String{ICML06 = "Proceedings of the Twenty-three International Conference on Machine Learning (ICML'06)"} +@String{ICML06ed = {William W. Cohen and Andrew Moore}} +@String{ICML06publ = "ACM"} + +@String{ICML07 = "Proceedings of the Twenty-fourth International Conference on Machine Learning (ICML'07)"} +@String{ICML07ed = {Zoubin Ghahramani}} +@String{ICML07publ = "ACM"} + +@String{ICML08 = "Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08)"} +@String{ICML08ed = "William W. Cohen and Andrew McCallum and Sam T. Roweis"} +@String{ICML08publ = "ACM"} + +@String{ICML09 = "Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML'09)"} +@String{ICML09ed = {L\'{e}on Bottou and Michael Littman}} +@String{ICML09publ = "ACM"} +@string{icml09loc = {Montreal, Quebec, Canada}} + +@String{nipc-hmit96 = "The 1996 American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies"} + +@String{nn = "Neural Networks"} + +@String{nnsupp = "Neural Networks Supplement"} + +@String{opteng = "Optical Engineering"} + +@String{optlett = "Optics Letters"} + +@String{opres = "Operations Research"} + +@String{pdp = "Parallel Distributed Processing"} + +@String{percep = "Perception (London)"} + +@String{physicaA = "Physica A"} + +@String{physicaD = "Physica D"} + +@String{plettA = "Physics Letters A"} + +@String{PNAS = "Proceedings of the National Academy of Sciences, USA"} + +@String{prA = "Physical Review A"} + +@String{prB = "Physical Review B"} + +@String{prel = "Pattern Recognition Letters"} + +@String{prl = "Physical Review Letters"} + +@String{PRSLB = "Proceedings of the Royal Society of London B"} + +@String{pscrip = "Physica Scripta"} + +@String{psyrev = "Psychological Review"} + +@String{PTRSL = "Philosophical Transactions of the Royal Society of London B"} + +@String{qrb = "Quarterly Reviews of Biophysics"} + +@String{rmp = "Reviews of Modern Physics"} + +@String{SAML = "Skrifter for Anvendt Matematik og Lingvistik"} + +@String{sciam = "Scientific American"} + +@String{science = "Science"} + +@String{SIGLEX97 = {Proceedings of the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and How?}} + +@String{snowbird = "Neural Networks for Computing"} + +@String{spcomm = "Speech Communication"} +@String{SVM02 = "Pattern Recognition with Support Vector Machines"} +@String{tprobapp = "Theory of Probability and Its Applications"} + +@String{UAI00 = {Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence (UAI'00)} } +@String{UAI03 = {Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence (UAI'03)} } +@String{UAI05 = {Proceedings of the 21th Conference in Uncertainty in Artificial Intelligence (UAI'07)} } +@String{UAI07 = {Proceedings of the 23th Conference in Uncertainty in Artificial Intelligence (UAI'07)} } +@String{UAI09 = {Proceedings of the 25th Conference in Uncertainty in Artificial Intelligence (UAI'09)} } + +@String{zpb = "Zeitschrift fur Physik B"} + +@string{PhysioNetAuthors = {Goldberger, A. L. and Amaral, L. A. N. and Glass, L. and + Hausdorff, J. M. and Ivanov, P. Ch. and Mark, R. G. and + Mietus, J. E. and Moody, G. B. and Peng, C.-K. and Stanley, H. E.}} +@string{PhysioNetNote = "Circulation Electronic Pages: + http://circ.ahajournals.org/cgi/content/full/101/23/e215"} +@string{PhysioNetYear = "2000 (June 13)"} + +@string{IEEE_trans_biomed = "{IEEE} Transactions on Bio-medical Engineering"} +@string{IJCAS = "International Journal of Control, Automation, and Systems"} +@string{DSP = "Digital Signal Processing"} +@string{IEEE_trans_SP = "{IEEE} Transactions on Signal Processing"} +@string{BME = "Biomedical Engineering: Applications, Basis \& Communications"} +@string{SSDBM2009 = "{SSDBM} 2009: Proceedings of the 21st International Conference on Scientific and Statistical Database Management"} +@string{PRL = "Pattern Recognition Letters"} +@string{FTML = "Foundations and Trends in Machine Learning"} +@string{Bengio2009FTML_note = "Also published as a book. Now Publishers, 2009."} +@string{JEC = "Journal of Electrocardiology"} +@string{DMKD = "Data Mining and Knowledge Discovery"} +@string{IEEE_trans_NN = "IEEE Transactions on Neural Networks"} +@string{eng_med_bio = "Engineering in Medicine and Biology Magazine, IEEE"} +@string{ICTAI06 = "IEEE International Conference on Tools with Artificial Intelligence"} \ No newline at end of file