changeset 227:acae439d6572

Ajouté une modification sur stacked_dae qui utilise les nouvelles SeriesTables. Je le met dans le repository pour que mes expériences en cours continuent sans perturbation, et pour que Sylvain puisse récupérer la version actuelle; je fusionnerai à moment donné.
author fsavard
date Fri, 12 Mar 2010 10:31:10 -0500
parents bfe20d63f88c
children 851e7ad4a143
files deep/stacked_dae/v2/__init__.py deep/stacked_dae/v2/nist_sda.py deep/stacked_dae/v2/sgd_optimization.py deep/stacked_dae/v2/stacked_dae.py deep/stacked_dae/v2/utils.py
diffstat 4 files changed, 904 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/deep/stacked_dae/v2/nist_sda.py	Fri Mar 12 10:31:10 2010 -0500
@@ -0,0 +1,299 @@
+#!/usr/bin/python
+# coding: utf-8
+
+import ift6266
+import pylearn
+
+import numpy 
+import theano
+import time
+
+import pylearn.version
+import theano.tensor as T
+from theano.tensor.shared_randomstreams import RandomStreams
+
+import copy
+import sys
+import os
+import os.path
+
+from jobman import DD
+import jobman, jobman.sql
+from pylearn.io import filetensor
+
+from utils import produit_cartesien_jobs
+
+from sgd_optimization import SdaSgdOptimizer
+
+#from ift6266.utils.scalar_series import *
+from ift6266.utils.seriestables import *
+import tables
+
+##############################################################################
+# GLOBALS
+
+TEST_CONFIG = False
+
+NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all'
+JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_db/fsavard_sda4'
+EXPERIMENT_PATH = "ift6266.deep.stacked_dae.nist_sda.jobman_entrypoint"
+
+REDUCE_TRAIN_TO = None
+MAX_FINETUNING_EPOCHS = 1000
+# number of minibatches before taking means for valid error etc.
+REDUCE_EVERY = 100
+
+if TEST_CONFIG:
+    REDUCE_TRAIN_TO = 1000
+    MAX_FINETUNING_EPOCHS = 2
+    REDUCE_EVERY = 10
+
+# Possible values the hyperparameters can take. These are then
+# combined with produit_cartesien_jobs so we get a list of all
+# possible combinations, each one resulting in a job inserted
+# in the jobman DB.
+JOB_VALS = {'pretraining_lr': [0.1, 0.01],#, 0.001],#, 0.0001],
+        'pretraining_epochs_per_layer': [10,20],
+        'hidden_layers_sizes': [300,800],
+        'corruption_levels': [0.1,0.2,0.3],
+        'minibatch_size': [20],
+        'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS],
+        'finetuning_lr':[0.1, 0.01], #0.001 was very bad, so we leave it out
+        'num_hidden_layers':[2,3]}
+
+# Just useful for tests... minimal number of epochs
+DEFAULT_HP_NIST = DD({'finetuning_lr':0.1,
+                       'pretraining_lr':0.1,
+                       'pretraining_epochs_per_layer':2,
+                       'max_finetuning_epochs':2,
+                       'hidden_layers_sizes':800,
+                       'corruption_levels':0.2,
+                       'minibatch_size':20,
+                       'reduce_train_to':30000,
+                       'num_hidden_layers':1})
+
+'''
+Function called by jobman upon launching each job
+Its path is the one given when inserting jobs:
+ift6266.deep.stacked_dae.nist_sda.jobman_entrypoint
+'''
+def jobman_entrypoint(state, channel):
+    # record mercurial versions of each package
+    pylearn.version.record_versions(state,[theano,ift6266,pylearn])
+    # TODO: remove this, bad for number of simultaneous requests on DB
+    channel.save()
+
+    workingdir = os.getcwd()
+
+    print "Will load NIST"
+
+    nist = NIST(minibatch_size=20)
+
+    print "NIST loaded"
+
+    # For test runs, we don't want to use the whole dataset so
+    # reduce it to fewer elements if asked to.
+    rtt = None
+    if state.has_key('reduce_train_to'):
+        rtt = state['reduce_train_to']
+    elif REDUCE_TRAIN_TO:
+        rtt = REDUCE_TRAIN_TO
+
+    if rtt:
+        print "Reducing training set to "+str(rtt)+ " examples"
+        nist.reduce_train_set(rtt)
+
+    train,valid,test = nist.get_tvt()
+    dataset = (train,valid,test)
+
+    n_ins = 32*32
+    n_outs = 62 # 10 digits, 26*2 (lower, capitals)
+
+    series = create_series(state.num_hidden_layers)
+
+    print "Creating optimizer with state, ", state
+
+    optimizer = SdaSgdOptimizer(dataset=dataset, hyperparameters=state, \
+                                    n_ins=n_ins, n_outs=n_outs,\
+                                    input_divider=255.0, series=series)
+
+    optimizer.pretrain()
+    channel.save()
+
+    optimizer.finetune()
+    channel.save()
+
+    return channel.COMPLETE
+
+# These Series objects are used to save various statistics
+# during the training.
+def create_series(num_hidden_layers):
+
+    # Replace series we don't want to save with DummySeries, e.g.
+    # series['training_error'] = DummySeries()
+
+    series = {}
+
+    basedir = os.getcwd()
+
+    h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w")
+
+    # reconstruction
+    reconstruction_base = \
+                ErrorSeries(error_name="reconstruction_error",
+                    table_name="reconstruction_error",
+                    hdf5_file=h5f,
+                    index_names=('epoch','minibatch'),
+                    title="Reconstruction error (mean over "+str(REDUCE_EVERY)+" minibatches)")
+    series['reconstruction_error'] = \
+                AccumulatorSeriesWrapper(base_series=reconstruction_base,
+                    reduce_every=REDUCE_EVERY)
+
+    # train
+    training_base = \
+                ErrorSeries(error_name="training_error",
+                    table_name="training_error",
+                    hdf5_file=h5f,
+                    index_names=('epoch','minibatch'),
+                    title="Training error (mean over "+str(REDUCE_EVERY)+" minibatches)")
+    series['training_error'] = \
+                AccumulatorSeriesWrapper(base_series=training_base,
+                    reduce_every=REDUCE_EVERY)
+
+    # valid and test are not accumulated/mean, saved directly
+    series['validation_error'] = \
+                ErrorSeries(error_name="validation_error",
+                    table_name="validation_error",
+                    hdf5_file=h5f,
+                    index_names=('epoch','minibatch'))
+
+    series['test_error'] = \
+                ErrorSeries(error_name="test_error",
+                    table_name="test_error",
+                    hdf5_file=h5f,
+                    index_names=('epoch','minibatch'))
+
+    param_names = []
+    for i in range(num_hidden_layers):
+        param_names += ['layer%d_W'%i, 'layer%d_b'%i, 'layer%d_bprime'%i]
+    param_names += ['logreg_layer_W', 'logreg_layer_b']
+
+    # comment out series we don't want to save
+    series['params'] = SharedParamsStatisticsWrapper(
+                        new_group_name="params",
+                        base_group="/",
+                        arrays_names=param_names,
+                        hdf5_file=h5f,
+                        index_names=('epoch',))
+
+    return series
+
+# Perform insertion into the Postgre DB based on combination
+# of hyperparameter values above
+# (see comment for produit_cartesien_jobs() to know how it works)
+def jobman_insert_nist():
+    jobs = produit_cartesien_jobs(JOB_VALS)
+
+    db = jobman.sql.db(JOBDB)
+    for job in jobs:
+        job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH})
+        jobman.sql.insert_dict(job, db)
+
+    print "inserted"
+
+class NIST:
+    def __init__(self, minibatch_size, basepath=None, reduce_train_to=None):
+        global NIST_ALL_LOCATION
+
+        self.minibatch_size = minibatch_size
+        self.basepath = basepath and basepath or NIST_ALL_LOCATION
+
+        self.set_filenames()
+
+        # arrays of 2 elements: .x, .y
+        self.train = [None, None]
+        self.test = [None, None]
+
+        self.load_train_test()
+
+        self.valid = [[], []]
+        self.split_train_valid()
+        if reduce_train_to:
+            self.reduce_train_set(reduce_train_to)
+
+    def get_tvt(self):
+        return self.train, self.valid, self.test
+
+    def set_filenames(self):
+        self.train_files = ['all_train_data.ft',
+                                'all_train_labels.ft']
+
+        self.test_files = ['all_test_data.ft',
+                            'all_test_labels.ft']
+
+    def load_train_test(self):
+        self.load_data_labels(self.train_files, self.train)
+        self.load_data_labels(self.test_files, self.test)
+
+    def load_data_labels(self, filenames, pair):
+        for i, fn in enumerate(filenames):
+            f = open(os.path.join(self.basepath, fn))
+            pair[i] = filetensor.read(f)
+            f.close()
+
+    def reduce_train_set(self, max):
+        self.train[0] = self.train[0][:max]
+        self.train[1] = self.train[1][:max]
+
+        if max < len(self.test[0]):
+            for ar in (self.test, self.valid):
+                ar[0] = ar[0][:max]
+                ar[1] = ar[1][:max]
+
+    def split_train_valid(self):
+        test_len = len(self.test[0])
+        
+        new_train_x = self.train[0][:-test_len]
+        new_train_y = self.train[1][:-test_len]
+
+        self.valid[0] = self.train[0][-test_len:]
+        self.valid[1] = self.train[1][-test_len:]
+
+        self.train[0] = new_train_x
+        self.train[1] = new_train_y
+
+def test_load_nist():
+    print "Will load NIST"
+
+    import time
+    t1 = time.time()
+    nist = NIST(20)
+    t2 = time.time()
+
+    print "NIST loaded. time delta = ", t2-t1
+
+    tr,v,te = nist.get_tvt()
+
+    print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0])
+
+    raw_input("Press any key")
+
+if __name__ == '__main__':
+
+    import sys
+
+    args = sys.argv[1:]
+
+    if len(args) > 0 and args[0] == 'load_nist':
+        test_load_nist()
+
+    elif len(args) > 0 and args[0] == 'jobman_insert':
+        jobman_insert_nist()
+
+    elif len(args) > 0 and args[0] == 'test_jobman_entrypoint':
+        chanmock = DD({'COMPLETE':0,'save':(lambda:None)})
+        jobman_entrypoint(DEFAULT_HP_NIST, chanmock)
+
+    else:
+        print "Bad arguments"
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/deep/stacked_dae/v2/sgd_optimization.py	Fri Mar 12 10:31:10 2010 -0500
@@ -0,0 +1,246 @@
+#!/usr/bin/python
+# coding: utf-8
+
+# Generic SdA optimization loop, adapted from the deeplearning.net tutorial
+
+import numpy 
+import theano
+import time
+import datetime
+import theano.tensor as T
+import sys
+
+from jobman import DD
+import jobman, jobman.sql
+
+from stacked_dae import SdA
+
+from ift6266.utils.seriestables import *
+
+def shared_dataset(data_xy):
+    data_x, data_y = data_xy
+    if theano.config.device.startswith("gpu"):
+        print "TRANSFERING DATASETS (via shared()) TO GPU"
+        shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX))
+        shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX))
+        shared_y = T.cast(shared_y, 'int32')
+    else:
+        shared_x = theano.shared(data_x)
+        shared_y = theano.shared(data_y)
+    return shared_x, shared_y
+
+default_series = { \
+        'reconstruction_error' : DummySeries(),
+        'training_error' : DummySeries(),
+        'validation_error' : DummySeries(),
+        'test_error' : DummySeries(),
+        'params' : DummySeries()
+        }
+
+class SdaSgdOptimizer:
+    def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0, series=default_series):
+        self.dataset = dataset
+        self.hp = hyperparameters
+        self.n_ins = n_ins
+        self.n_outs = n_outs
+        self.input_divider = input_divider
+   
+        self.series = series
+
+        self.rng = numpy.random.RandomState(1234)
+
+        self.init_datasets()
+        self.init_classifier()
+
+        sys.stdout.flush()
+     
+    def init_datasets(self):
+        print "init_datasets"
+        sys.stdout.flush()
+
+        train_set, valid_set, test_set = self.dataset
+        self.test_set_x, self.test_set_y = shared_dataset(test_set)
+        self.valid_set_x, self.valid_set_y = shared_dataset(valid_set)
+        self.train_set_x, self.train_set_y = shared_dataset(train_set)
+
+        # compute number of minibatches for training, validation and testing
+        self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size
+        self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size
+        # remove last batch in case it's incomplete
+        self.n_test_batches  = (self.test_set_x.value.shape[0]  / self.hp.minibatch_size) - 1
+
+    def init_classifier(self):
+        print "Constructing classifier"
+
+        # we don't want to save arrays in DD objects, so
+        # we recreate those arrays here
+        nhl = self.hp.num_hidden_layers
+        layers_sizes = [self.hp.hidden_layers_sizes] * nhl
+        corruption_levels = [self.hp.corruption_levels] * nhl
+
+        # construct the stacked denoising autoencoder class
+        self.classifier = SdA( \
+                          train_set_x= self.train_set_x, \
+                          train_set_y = self.train_set_y,\
+                          batch_size = self.hp.minibatch_size, \
+                          n_ins= self.n_ins, \
+                          hidden_layers_sizes = layers_sizes, \
+                          n_outs = self.n_outs, \
+                          corruption_levels = corruption_levels,\
+                          rng = self.rng,\
+                          pretrain_lr = self.hp.pretraining_lr, \
+                          finetune_lr = self.hp.finetuning_lr,\
+                          input_divider = self.input_divider )
+
+        #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph")
+
+        sys.stdout.flush()
+
+    def train(self):
+        self.pretrain()
+        self.finetune()
+
+    def pretrain(self):
+        print "STARTING PRETRAINING, time = ", datetime.datetime.now()
+        sys.stdout.flush()
+
+        time_acc_func = 0.0
+        time_acc_total = 0.0
+
+        start_time = time.clock()  
+        ## Pre-train layer-wise 
+        for i in xrange(self.classifier.n_layers):
+            # go through pretraining epochs 
+            for epoch in xrange(self.hp.pretraining_epochs_per_layer):
+                # go through the training set
+                for batch_index in xrange(self.n_train_batches):
+                    t1 = time.clock()
+                    c = self.classifier.pretrain_functions[i](batch_index)
+                    t2 = time.clock()
+
+                    time_acc_func += t2 - t1
+
+                    if batch_index % 500 == 0:
+                        print "acc / total", time_acc_func / (t2 - start_time), time_acc_func
+
+                    self.series["reconstruction_error"].append((epoch, batch_index), c)
+                        
+                print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c
+                sys.stdout.flush()
+
+                self.series['params'].append((epoch,), self.classifier.all_params)
+     
+        end_time = time.clock()
+
+        print ('Pretraining took %f minutes' %((end_time-start_time)/60.))
+        self.hp.update({'pretraining_time': end_time-start_time})
+
+        sys.stdout.flush()
+
+    def finetune(self):
+        print "STARTING FINETUNING, time = ", datetime.datetime.now()
+
+        index   = T.lscalar()    # index to a [mini]batch 
+        minibatch_size = self.hp.minibatch_size
+
+        # create a function to compute the mistakes that are made by the model
+        # on the validation set, or testing set
+        shared_divider = theano.shared(numpy.asarray(self.input_divider, dtype=theano.config.floatX))
+        test_model = theano.function([index], self.classifier.errors,
+                 givens = {
+                   self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider,
+                   self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]})
+
+        validate_model = theano.function([index], self.classifier.errors,
+                givens = {
+                   self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider,
+                   self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]})
+
+
+        # early-stopping parameters
+        patience              = 10000 # look as this many examples regardless
+        patience_increase     = 2.    # wait this much longer when a new best is 
+                                      # found
+        improvement_threshold = 0.995 # a relative improvement of this much is 
+                                      # considered significant
+        validation_frequency  = min(self.n_train_batches, patience/2)
+                                      # go through this many 
+                                      # minibatche before checking the network 
+                                      # on the validation set; in this case we 
+                                      # check every epoch 
+
+        best_params          = None
+        best_validation_loss = float('inf')
+        test_score           = 0.
+        start_time = time.clock()
+
+        done_looping = False
+        epoch = 0
+
+        while (epoch < self.hp.max_finetuning_epochs) and (not done_looping):
+            epoch = epoch + 1
+            for minibatch_index in xrange(self.n_train_batches):
+
+                cost_ij = self.classifier.finetune(minibatch_index)
+                iter    = epoch * self.n_train_batches + minibatch_index
+
+                self.series["training_error"].append((epoch, minibatch_index), cost_ij)
+
+                if (iter+1) % validation_frequency == 0: 
+                    
+                    validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)]
+                    this_validation_loss = numpy.mean(validation_losses)
+
+                    self.series["validation_error"].\
+                        append((epoch, minibatch_index), this_validation_loss*100.)
+
+                    print('epoch %i, minibatch %i/%i, validation error %f %%' % \
+                           (epoch, minibatch_index+1, self.n_train_batches, \
+                            this_validation_loss*100.))
+
+
+                    # if we got the best validation score until now
+                    if this_validation_loss < best_validation_loss:
+
+                        #improve patience if loss improvement is good enough
+                        if this_validation_loss < best_validation_loss *  \
+                               improvement_threshold :
+                            patience = max(patience, iter * patience_increase)
+
+                        # save best validation score and iteration number
+                        best_validation_loss = this_validation_loss
+                        best_iter = iter
+
+                        # test it on the test set
+                        test_losses = [test_model(i) for i in xrange(self.n_test_batches)]
+                        test_score = numpy.mean(test_losses)
+
+                        self.series["test_error"].\
+                            append((epoch, minibatch_index), test_score*100.)
+
+                        print(('     epoch %i, minibatch %i/%i, test error of best '
+                              'model %f %%') % 
+                                     (epoch, minibatch_index+1, self.n_train_batches,
+                                      test_score*100.))
+
+                    sys.stdout.flush()
+
+            self.series['params'].append((epoch,), self.classifier.all_params)
+
+            if patience <= iter :
+                done_looping = True
+                break
+
+        end_time = time.clock()
+        self.hp.update({'finetuning_time':end_time-start_time,\
+                    'best_validation_error':best_validation_loss,\
+                    'test_score':test_score,
+                    'num_finetuning_epochs':epoch})
+
+        print(('Optimization complete with best validation score of %f %%,'
+               'with test performance %f %%') %  
+                     (best_validation_loss * 100., test_score*100.))
+        print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.))
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/deep/stacked_dae/v2/stacked_dae.py	Fri Mar 12 10:31:10 2010 -0500
@@ -0,0 +1,290 @@
+#!/usr/bin/python
+# coding: utf-8
+
+import numpy 
+import theano
+import time
+import theano.tensor as T
+from theano.tensor.shared_randomstreams import RandomStreams
+import copy
+
+from utils import update_locals
+
+# taken from LeDeepNet/daa.py
+# has a special case when taking log(0) (defined =0)
+# modified to not take the mean anymore
+from theano.tensor.xlogx import xlogx, xlogy0
+# it's target*log(output)
+def binary_cross_entropy(target, output, sum_axis=1):
+    XE = xlogy0(target, output) + xlogy0((1 - target), (1 - output))
+    return -T.sum(XE, axis=sum_axis)
+
+class LogisticRegression(object):
+    def __init__(self, input, n_in, n_out):
+        # initialize with 0 the weights W as a matrix of shape (n_in, n_out) 
+        self.W = theano.shared( value=numpy.zeros((n_in,n_out),
+                                            dtype = theano.config.floatX) )
+        # initialize the baises b as a vector of n_out 0s
+        self.b = theano.shared( value=numpy.zeros((n_out,), 
+                                            dtype = theano.config.floatX) )
+        # compute vector of class-membership probabilities in symbolic form
+        self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b)
+        
+        # compute prediction as class whose probability is maximal in 
+        # symbolic form
+        self.y_pred=T.argmax(self.p_y_given_x, axis=1)
+
+        # list of parameters for this layer
+        self.params = [self.W, self.b]
+
+    def negative_log_likelihood(self, y):
+       return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y])
+
+    def errors(self, y):
+        # check if y has same dimension of y_pred 
+        if y.ndim != self.y_pred.ndim:
+            raise TypeError('y should have the same shape as self.y_pred', 
+                ('y', target.type, 'y_pred', self.y_pred.type))
+
+        # check if y is of the correct datatype        
+        if y.dtype.startswith('int'):
+            # the T.neq operator returns a vector of 0s and 1s, where 1
+            # represents a mistake in prediction
+            return T.mean(T.neq(self.y_pred, y))
+        else:
+            raise NotImplementedError()
+
+
+class SigmoidalLayer(object):
+    def __init__(self, rng, input, n_in, n_out):
+        self.input = input
+
+        W_values = numpy.asarray( rng.uniform( \
+              low = -numpy.sqrt(6./(n_in+n_out)), \
+              high = numpy.sqrt(6./(n_in+n_out)), \
+              size = (n_in, n_out)), dtype = theano.config.floatX)
+        self.W = theano.shared(value = W_values)
+
+        b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
+        self.b = theano.shared(value= b_values)
+
+        self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b)
+        self.params = [self.W, self.b]
+
+
+
+class dA(object):
+  def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\
+               input = None, shared_W = None, shared_b = None):
+    self.n_visible = n_visible
+    self.n_hidden  = n_hidden
+    
+    # create a Theano random generator that gives symbolic random values
+    theano_rng = RandomStreams()
+    
+    if shared_W != None and shared_b != None : 
+        self.W = shared_W
+        self.b = shared_b
+    else:
+        # initial values for weights and biases
+        # note : W' was written as `W_prime` and b' as `b_prime`
+
+        # W is initialized with `initial_W` which is uniformely sampled
+        # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible)
+        # the output of uniform if converted using asarray to dtype 
+        # theano.config.floatX so that the code is runable on GPU
+        initial_W = numpy.asarray( numpy.random.uniform( \
+              low = -numpy.sqrt(6./(n_hidden+n_visible)), \
+              high = numpy.sqrt(6./(n_hidden+n_visible)), \
+              size = (n_visible, n_hidden)), dtype = theano.config.floatX)
+        initial_b       = numpy.zeros(n_hidden, dtype = theano.config.floatX)
+    
+    
+        # theano shared variables for weights and biases
+        self.W       = theano.shared(value = initial_W,       name = "W")
+        self.b       = theano.shared(value = initial_b,       name = "b")
+    
+ 
+    initial_b_prime= numpy.zeros(n_visible)
+    # tied weights, therefore W_prime is W transpose
+    self.W_prime = self.W.T 
+    self.b_prime = theano.shared(value = initial_b_prime, name = "b'")
+
+    # if no input is given, generate a variable representing the input
+    if input == None : 
+        # we use a matrix because we expect a minibatch of several examples,
+        # each example being a row
+        self.x = T.dmatrix(name = 'input') 
+    else:
+        self.x = input
+    # Equation (1)
+    # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs
+    # note : first argument of theano.rng.binomial is the shape(size) of 
+    #        random numbers that it should produce
+    #        second argument is the number of trials 
+    #        third argument is the probability of success of any trial
+    #
+    #        this will produce an array of 0s and 1s where 1 has a 
+    #        probability of 1 - ``corruption_level`` and 0 with
+    #        ``corruption_level``
+    self.tilde_x  = theano_rng.binomial( self.x.shape,  1,  1 - corruption_level, dtype=theano.config.floatX) * self.x
+    # Equation (2)
+    # note  : y is stored as an attribute of the class so that it can be 
+    #         used later when stacking dAs. 
+    self.y   = T.nnet.sigmoid(T.dot(self.tilde_x, self.W      ) + self.b)
+    # Equation (3)
+    self.z   = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime)
+    # Equation (4)
+    # note : we sum over the size of a datapoint; if we are using minibatches,
+    #        L will  be a vector, with one entry per example in minibatch
+    #self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) 
+    #self.L = binary_cross_entropy(target=self.x, output=self.z, sum_axis=1)
+
+    # bypassing z to avoid running to log(0)
+    z_a = T.dot(self.y, self.W_prime) + self.b_prime
+    log_sigmoid = T.log(1) - T.log(1+T.exp(-z_a))
+    # log(1-sigmoid(z_a))
+    log_1_sigmoid = -self.x - T.log(1+T.exp(-z_a))
+    self.L = -T.sum( self.x * (log_sigmoid) \
+                    + (1.0-self.x) * (log_1_sigmoid), axis=1 )
+
+    # I added this epsilon to avoid getting log(0) and 1/0 in grad
+    # This means conceptually that there'd be no probability of 0, but that
+    # doesn't seem to me as important (maybe I'm wrong?).
+    #eps = 0.00000001
+    #eps_1 = 1-eps
+    #self.L = - T.sum( self.x * T.log(eps + eps_1*self.z) \
+    #                + (1-self.x)*T.log(eps + eps_1*(1-self.z)), axis=1 )
+    # note : L is now a vector, where each element is the cross-entropy cost 
+    #        of the reconstruction of the corresponding example of the 
+    #        minibatch. We need to compute the average of all these to get 
+    #        the cost of the minibatch
+    self.cost = T.mean(self.L)
+
+    self.params = [ self.W, self.b, self.b_prime ]
+
+
+class SdA(object):
+    def __init__(self, train_set_x, train_set_y, batch_size, n_ins, 
+                 hidden_layers_sizes, n_outs, 
+                 corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0):
+        # Just to make sure those are not modified somewhere else afterwards
+        hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes)
+        corruption_levels = copy.deepcopy(corruption_levels)
+
+        update_locals(self, locals())      
+ 
+        self.layers             = []
+        self.pretrain_functions = []
+        self.params             = []
+        # MODIF: added this so we also get the b_primes
+        # (not used for finetuning... still using ".params")
+        self.all_params         = []
+        self.n_layers           = len(hidden_layers_sizes)
+
+        print "Creating SdA with params:"
+        print "batch_size", batch_size
+        print "hidden_layers_sizes", hidden_layers_sizes
+        print "corruption_levels", corruption_levels
+        print "n_ins", n_ins
+        print "n_outs", n_outs
+        print "pretrain_lr", pretrain_lr
+        print "finetune_lr", finetune_lr
+        print "input_divider", input_divider
+        print "----"
+
+        self.shared_divider = theano.shared(numpy.asarray(input_divider, dtype=theano.config.floatX))
+
+        if len(hidden_layers_sizes) < 1 :
+            raiseException (' You must have at least one hidden layer ')
+
+
+        # allocate symbolic variables for the data
+        index   = T.lscalar()    # index to a [mini]batch 
+        self.x  = T.matrix('x')  # the data is presented as rasterized images
+        self.y  = T.ivector('y') # the labels are presented as 1D vector of 
+                                 # [int] labels
+
+        for i in xrange( self.n_layers ):
+            # construct the sigmoidal layer
+
+            # the size of the input is either the number of hidden units of 
+            # the layer below or the input size if we are on the first layer
+            if i == 0 :
+                input_size = n_ins
+            else:
+                input_size = hidden_layers_sizes[i-1]
+
+            # the input to this layer is either the activation of the hidden
+            # layer below or the input of the SdA if you are on the first
+            # layer
+            if i == 0 : 
+                layer_input = self.x
+            else:
+                layer_input = self.layers[-1].output
+
+            layer = SigmoidalLayer(rng, layer_input, input_size, 
+                                   hidden_layers_sizes[i] )
+            # add the layer to the 
+            self.layers += [layer]
+            self.params += layer.params
+        
+            # Construct a denoising autoencoder that shared weights with this
+            # layer
+            dA_layer = dA(input_size, hidden_layers_sizes[i], \
+                          corruption_level = corruption_levels[0],\
+                          input = layer_input, \
+                          shared_W = layer.W, shared_b = layer.b)
+
+            self.all_params += dA_layer.params
+        
+            # Construct a function that trains this dA
+            # compute gradients of layer parameters
+            gparams = T.grad(dA_layer.cost, dA_layer.params)
+            # compute the list of updates
+            updates = {}
+            for param, gparam in zip(dA_layer.params, gparams):
+                updates[param] = param - gparam * pretrain_lr
+            
+            # create a function that trains the dA
+            update_fn = theano.function([index], dA_layer.cost, \
+                  updates = updates,
+                  givens = { 
+                     self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider})
+            # collect this function into a list
+            self.pretrain_functions += [update_fn]
+
+        
+        # We now need to add a logistic layer on top of the MLP
+        self.logLayer = LogisticRegression(\
+                         input = self.layers[-1].output,\
+                         n_in = hidden_layers_sizes[-1], n_out = n_outs)
+
+        self.params += self.logLayer.params
+        self.all_params += self.logLayer.params
+        # construct a function that implements one step of finetunining
+
+        # compute the cost, defined as the negative log likelihood 
+        cost = self.logLayer.negative_log_likelihood(self.y)
+        # compute the gradients with respect to the model parameters
+        gparams = T.grad(cost, self.params)
+        # compute list of updates
+        updates = {}
+        for param,gparam in zip(self.params, gparams):
+            updates[param] = param - gparam*finetune_lr
+            
+        self.finetune = theano.function([index], cost, 
+                updates = updates,
+                givens = {
+                  self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider,
+                  self.y : train_set_y[index*batch_size:(index+1)*batch_size]} )
+
+        # symbolic variable that points to the number of errors made on the
+        # minibatch given by self.x and self.y
+
+        self.errors = self.logLayer.errors(self.y)
+
+if __name__ == '__main__':
+    import sys
+    args = sys.argv[1:]
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/deep/stacked_dae/v2/utils.py	Fri Mar 12 10:31:10 2010 -0500
@@ -0,0 +1,69 @@
+#!/usr/bin/python
+# coding: utf-8
+
+from __future__ import with_statement
+
+from jobman import DD
+
+# from pylearn codebase
+# useful in __init__(param1, param2, etc.) to save
+# values in self.param1, self.param2... just call
+# update_locals(self, locals())
+def update_locals(obj, dct):
+    if 'self' in dct:
+        del dct['self']
+    obj.__dict__.update(dct)
+
+# from a dictionary of possible values for hyperparameters, e.g.
+# hp_values = {'learning_rate':[0.1, 0.01], 'num_layers': [1,2]}
+# create a list of other dictionaries representing all the possible
+# combinations, thus in this example creating:
+# [{'learning_rate': 0.1, 'num_layers': 1}, ...]
+# (similarly for combinations (0.1, 2), (0.01, 1), (0.01, 2))
+def produit_cartesien_jobs(val_dict):
+    job_list = [DD()]
+    all_keys = val_dict.keys()
+
+    for key in all_keys:
+        possible_values = val_dict[key]
+        new_job_list = []
+        for val in possible_values:
+            for job in job_list:
+                to_insert = job.copy()
+                to_insert.update({key: val})
+                new_job_list.append(to_insert)
+        job_list = new_job_list
+
+    return job_list
+
+def test_produit_cartesien_jobs():
+    vals = {'a': [1,2], 'b': [3,4,5]}
+    print produit_cartesien_jobs(vals)
+
+
+# taken from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python
+"""Simple module for getting amount of memory used by a specified user's
+processes on a UNIX system.
+It uses UNIX ps utility to get the memory usage for a specified username and
+pipe it to awk for summing up per application memory usage and return the total.
+Python's Popen() from subprocess module is used for spawning ps and awk.
+
+"""
+
+import subprocess
+
+class MemoryMonitor(object):
+
+    def __init__(self, username):
+        """Create new MemoryMonitor instance."""
+        self.username = username
+
+    def usage(self):
+        """Return int containing memory used by user's processes."""
+        self.process = subprocess.Popen("ps -u %s -o rss | awk '{sum+=$1} END {print sum}'" % self.username,
+                                        shell=True,
+                                        stdout=subprocess.PIPE,
+                                        )
+        self.stdout_list = self.process.communicate()[0].split('\n')
+        return int(self.stdout_list[0])
+