changeset 336:a79db7cee035

Arrange pour avoir un taux d'apprentissage decroissant decent pour NIST
author sylvainpl
date Thu, 15 Apr 2010 14:41:00 -0400
parents 5ddb1878dfbc
children 8d116d4a7593 8cf52a1c8055
files deep/stacked_dae/v_sylvain/sgd_optimization.py
diffstat 1 files changed, 3 insertions(+), 2 deletions(-) [+]
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/sgd_optimization.py	Thu Apr 15 12:53:03 2010 -0400
+++ b/deep/stacked_dae/v_sylvain/sgd_optimization.py	Thu Apr 15 14:41:00 2010 -0400
@@ -204,7 +204,7 @@
         parameters_finetune=[]
         
         if ind_test == 21:
-            learning_rate = self.hp.finetuning_lr / 10.0
+            learning_rate = self.hp.finetuning_lr / 5.0
         else:
             learning_rate = self.hp.finetuning_lr  #The initial finetune lr
 
@@ -295,7 +295,8 @@
                     break
             
             if decrease == 1:
-                learning_rate /= 2 #divide the learning rate by 2 for each new epoch
+		if (ind_test == 21 & epoch % 100 == 0) | ind_test == 20:
+			learning_rate /= 2 #divide the learning rate by 2 for each new epoch of P07 (or 100 of NIST)
             
             self.series['params'].append((epoch,), self.classifier.all_params)