changeset 298:a222af1d0598

- Adapt to scdae to input_shape change in pynnet - Use the proper dataset in run_exp
author Arnaud Bergeron <abergeron@gmail.com>
date Mon, 29 Mar 2010 17:36:22 -0400
parents a6b6b1140de9
children a9af079892ce
files deep/convolutional_dae/run_exp.py deep/convolutional_dae/scdae.py
diffstat 2 files changed, 24 insertions(+), 86 deletions(-) [+]
line wrap: on
line diff
--- a/deep/convolutional_dae/run_exp.py	Mon Mar 29 09:18:54 2010 -0400
+++ b/deep/convolutional_dae/run_exp.py	Mon Mar 29 17:36:22 2010 -0400
@@ -47,9 +47,9 @@
         pretrain_lr=state.pretrain_lr,
         train_lr=state.train_lr)
 
+    t_it = repeat_itf(dset.train, state.bsize)
     pretrain_fs, train, valid, test = massage_funcs(
-        repeat_itf(dset.train, state.bsize), 
-        dset, state.bsize, 
+        t_it, t_it, dset, state.bsize, 
         pretrain_funcs, trainf,evalf)
 
     series = create_series()
--- a/deep/convolutional_dae/scdae.py	Mon Mar 29 09:18:54 2010 -0400
+++ b/deep/convolutional_dae/scdae.py	Mon Mar 29 17:36:22 2010 -0400
@@ -1,6 +1,4 @@
 from pynnet import *
-# use hacks also
-from pynnet.utils import *
 
 import numpy
 import theano
@@ -11,37 +9,27 @@
 
 class cdae(LayerStack):
     def __init__(self, filter_size, num_filt, num_in, subsampling, corruption,
-                 dtype, img_shape):
+                 dtype):
         LayerStack.__init__(self, [ConvAutoencoder(filter_size=filter_size, 
                                                    num_filt=num_filt,
                                                    num_in=num_in,
                                                    noisyness=corruption,
-                                                   dtype=dtype,
-                                                   image_shape=img_shape),
+                                                   dtype=dtype),
                                    MaxPoolLayer(subsampling)])
 
-    def build(self, input):
-        LayerStack.build(self, input)
+    def build(self, input, input_shape=None):
+        LayerStack.build(self, input, input_shape)
         self.cost = self.layers[0].cost
+        self.pre_params = self.layers[0].pre_params
 
-def cdae_out_size(in_size, filt_size, num_filt, num_in, subs):
-    out = [None] * 3
-    out[0] = num_filt
-    out[1] = (in_size[1]-filt_size[0]+1)/subs[0]
-    out[2] = (in_size[2]-filt_size[1]+1)/subs[1]
-    return out
-
-def scdae(in_size, num_in, filter_sizes, num_filts,
-          subsamplings, corruptions, dtype):
+def scdae(filter_sizes, num_filts, subsamplings, corruptions, dtype):
     layers = []
     old_nfilt = 1
     for fsize, nfilt, subs, corr in izip(filter_sizes, num_filts,
                                          subsamplings, corruptions):
-        layers.append(cdae(fsize, nfilt, old_nfilt, subs, corr, dtype,
-                           (num_in, in_size[0], in_size[1], in_size[2])))
-        in_size = cdae_out_size(in_size, fsize, nfilt, old_nfilt, subs)
+        layers.append(cdae(fsize, nfilt, old_nfilt, subs, corr, dtype))
         old_nfilt = nfilt
-    return LayerStack(layers), in_size
+    return LayerStack(layers)
 
 def mlp(layer_sizes, dtype):
     layers = []
@@ -53,11 +41,13 @@
     return LayerStack(layers)
 
 def scdae_net(in_size, num_in, filter_sizes, num_filts, subsamplings,
-              corruptions, layer_sizes, out_size, dtype, batch_size):
+              corruptions, layer_sizes, out_size, dtype):
     rl1 = ReshapeLayer((None,)+in_size)
-    ls, outs = scdae(in_size, num_in, filter_sizes, num_filts, subsamplings, 
-                     corruptions, dtype)
-    outs = numpy.prod(outs)
+    ls = scdae(num_in, filter_sizes, num_filts, subsamplings, 
+               corruptions, dtype)
+    x = T.tensor4()
+    ls.build(x, input_shape=(1,)+in_size)
+    outs = numpy.prod(ls.output_shape)
     rl2 = ReshapeLayer((None, outs))
     layer_sizes = [outs]+layer_sizes
     ls2 = mlp(layer_sizes, dtype)
@@ -68,7 +58,7 @@
                 noise, mlp_sizes, out_size, dtype, pretrain_lr, train_lr):
     
     n = scdae_net((1,)+img_size, batch_size, filter_sizes, num_filters, subs,
-                  noise, mlp_sizes, out_size, dtype, batch_size)
+                  noise, mlp_sizes, out_size, dtype)
 
     n.save('start.net')
 
@@ -76,19 +66,18 @@
     y = T.ivector('y')
     
     def pretrainfunc(net, alpha):
-        up = trainers.get_updates(net.params, net.cost, alpha)
+        up = trainers.get_updates(net.pre_params, net.cost, alpha)
         return theano.function([x], net.cost, updates=up)
 
     def trainfunc(net, alpha):
         up = trainers.get_updates(net.params, net.cost, alpha)
         return theano.function([x, y], net.cost, updates=up)
 
-    n.build(x, y)
+    n.build(x, y, input_shape=(bsize, 1)+img_size)
     pretrain_funcs_opt = [pretrainfunc(l, pretrain_lr) for l in n.layers[1].layers]
     trainf_opt = trainfunc(n, train_lr)
     evalf_opt = theano.function([x, y], errors.class_error(n.output, y))
     
-    clear_imgshape(n)
     n.build(x, y)
     pretrain_funcs_reg = [pretrainfunc(l, 0.01) for l in n.layers[1].layers]
     trainf_reg = trainfunc(n, 0.1)
@@ -121,10 +110,11 @@
         for epoch in xrange(pretrain_epochs):
             serie.append((layer, epoch), f())
 
-def massage_funcs(train_it, dset, batch_size, pretrain_funcs, trainf, evalf):
+def massage_funcs(pretrain_it, train_it, dset, batch_size, pretrain_funcs,
+                  trainf, evalf):
     def pretrain_f(f):
         def res():
-            for x, y in train_it:
+            for x, y in pretrain_it:
                 yield f(x)
         it = res()
         return lambda: it.next()
@@ -196,58 +186,6 @@
     
     return series
 
-def run_exp(state, channel):
-    from ift6266 import datasets
-    from sgd_opt import sgd_opt
-    import sys, time
-
-    # params: bsize, pretrain_lr, train_lr, nfilts1, nfilts2, nftils3, nfilts4
-    #         pretrain_rounds
-
-    pylearn.version.record_versions(state, [theano,ift6266,pylearn])
-    # TODO: maybe record pynnet version?
-    channel.save()
-
-    dset = dataset.nist_all(1000)
-
-    nfilts = []
-    if state.nfilts1 != 0:
-        nfilts.append(state.nfilts1)
-        if state.nfilts2 != 0:
-            nfilts.append(state.nfilts2)
-            if state.nfilts3 != 0:
-                nfilts.append(state.nfilts3)
-                if state.nfilts4 != 0:
-                    nfilts.append(state.nfilts4)
-
-    fsizes = [(5,5)]*len(nfilts)
-    subs = [(2,2)]*len(nfilts)
-    noise = [state.noise]*len(nfilts)
-
-    pretrain_funcs, trainf, evalf, net = build_funcs(
-        img_size=(32, 32),
-        batch_size=state.bsize,
-        filter_sizes=fsizes,
-        num_filters=nfilts,
-        subs=subs,
-        noise=noise,
-        mlp_sizes=[state.mlp_sz],
-        out_size=62,
-        dtype=numpy.float32,
-        pretrain_lr=state.pretrain_lr,
-        train_lr=state.train_lr)
-
-    pretrain_fs, train, valid, test = massage_funcs(
-        state.bsize, dset, pretrain_funcs, trainf, evalf)
-
-    series = create_series()
-
-    do_pretrain(pretrain_fs, state.pretrain_rounds, series['recons_error'])
-
-    sgd_opt(train, valid, test, training_epochs=100000, patience=10000,
-            patience_increase=2., improvement_threshold=0.995,
-            validation_frequency=2500, series=series, net=net)
-
 if __name__ == '__main__':
     from ift6266 import datasets
     from sgd_opt import sgd_opt
@@ -263,9 +201,9 @@
         mlp_sizes=[500], out_size=10, dtype=numpy.float32,
         pretrain_lr=0.01, train_lr=0.1)
     
+    t_it = repeat_itf(dset.train, batch_size)
     pretrain_fs, train, valid, test = massage_funcs(
-        repeat_itf(dset.train, batch_size),
-        dset, batch_size,
+        t_it, t_it, dset, batch_size,
         pretrain_funcs, trainf, evalf)
 
     print "pretraining ...",