Mercurial > ift6266
changeset 237:9b6e0af062af
corrected a bug in jobman interface
author | xaviermuller |
---|---|
date | Mon, 15 Mar 2010 10:09:50 -0400 |
parents | 7be1f086a89e |
children | 9fc641d7adda |
files | baseline/mlp/mlp_get_error_from_model.py baseline/mlp/mlp_nist.py |
diffstat | 2 files changed, 34 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/baseline/mlp/mlp_get_error_from_model.py Mon Mar 15 09:22:52 2010 -0400 +++ b/baseline/mlp/mlp_get_error_from_model.py Mon Mar 15 10:09:50 2010 -0400 @@ -8,8 +8,8 @@ from pylearn.io import filetensor as ft data_path = '/data/lisa/data/nist/by_class/' -test_data = 'all/all_test_data.ft' -test_labels = 'all/all_test_labels.ft' +test_data = 'all/all_train_data.ft' +test_labels = 'all/all_train_labels.ft' def read_test_data(mlp_model): @@ -40,7 +40,7 @@ b1=everything[1] W2=everything[2] b2=everything[3] - test_data=everything[4]/255.0 + test_data=everything[4] test_labels=everything[5] total_error_count=0 total_exemple_count=0 @@ -60,7 +60,7 @@ for i in range(test_labels.size): total_exemple_count = total_exemple_count +1 #get activation for layer 1 - a0=np.dot(np.transpose(W1),np.transpose(test_data[i])) + b1 + a0=np.dot(np.transpose(W1),np.transpose(test_data[i]/255.0)) + b1 #add non linear function to layer 1 activation a0_out=np.tanh(a0) @@ -78,17 +78,44 @@ total_error_count = total_error_count +1 #get grouped based error + #with a priori +# if(wanted_class>9 and wanted_class<35): +# min_exemple_count=min_exemple_count+1 +# predicted_class=np.argmax(a1_out[10:35])+10 +# if(predicted_class!=wanted_class): +# min_error_count=min_error_count+1 +# if(wanted_class<10): +# nb_exemple_count=nb_exemple_count+1 +# predicted_class=np.argmax(a1_out[0:10]) +# if(predicted_class!=wanted_class): +# nb_error_count=nb_error_count+1 +# if(wanted_class>34): +# maj_exemple_count=maj_exemple_count+1 +# predicted_class=np.argmax(a1_out[35:])+35 +# if(predicted_class!=wanted_class): +# maj_error_count=maj_error_count+1 +# +# if(wanted_class>9): +# char_exemple_count=char_exemple_count+1 +# predicted_class=np.argmax(a1_out[10:])+10 +# if(predicted_class!=wanted_class): +# char_error_count=char_error_count+1 + + + + #get grouped based error + #with no a priori if(wanted_class>9 and wanted_class<35): min_exemple_count=min_exemple_count+1 predicted_class=np.argmax(a1_out) if(predicted_class!=wanted_class): min_error_count=min_error_count+1 - elif(wanted_class<10): + if(wanted_class<10): nb_exemple_count=nb_exemple_count+1 predicted_class=np.argmax(a1_out) if(predicted_class!=wanted_class): nb_error_count=nb_error_count+1 - elif(wanted_class>34): + if(wanted_class>34): maj_exemple_count=maj_exemple_count+1 predicted_class=np.argmax(a1_out) if(predicted_class!=wanted_class):
--- a/baseline/mlp/mlp_nist.py Mon Mar 15 09:22:52 2010 -0400 +++ b/baseline/mlp/mlp_nist.py Mon Mar 15 10:09:50 2010 -0400 @@ -463,7 +463,7 @@ nb_max_exemples=state.nb_max_exemples,\ nb_hidden=state.nb_hidden,\ adaptive_lr=state.adaptive_lr,\ - tau=tau) + tau=state.tau) state.train_error=train_error state.validation_error=validation_error state.test_error=test_error