Mercurial > ift6266
changeset 318:8de3bef71458
Ajoute plus de fonctionnalite
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Fri, 02 Apr 2010 09:12:40 -0400 |
parents | 067e747fd9c0 |
children | 7a12d2c3d06b |
files | deep/stacked_dae/v_sylvain/nist_sda.py |
diffstat | 1 files changed, 18 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/nist_sda.py Thu Apr 01 20:09:14 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/nist_sda.py Fri Apr 02 09:12:40 2010 -0400 @@ -55,8 +55,18 @@ n_outs = 62 # 10 digits, 26*2 (lower, capitals) examples_per_epoch = NIST_ALL_TRAIN_SIZE + + #To be sure variables will not be only in the if statement + PATH = '' + nom_reptrain = '' + nom_serie = "" + if state['pretrain_choice'] == 0: + nom_serie="series_NIST.h5" + elif state['pretrain_choice'] == 1: + nom_serie="series_P07.h5" - series = create_series(state.num_hidden_layers) + series = create_series(state.num_hidden_layers,nom_serie) + print "Creating optimizer with state, ", state @@ -127,21 +137,25 @@ if finetune_choice==-1: - print('\nSERIE OF 3 DIFFERENT FINETUNINGS') + print('\nSERIE OF 4 DIFFERENT FINETUNINGS') print('\n\n\tfinetune with NIST\n\n') + sys.stdout.flush() optimizer.reload_parameters('params_pretrain.txt') optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1) channel.save() print('\n\n\tfinetune with P07\n\n') + sys.stdout.flush() optimizer.reload_parameters('params_pretrain.txt') optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0) channel.save() print('\n\n\tfinetune with NIST (done earlier) followed by P07 (written here)\n\n') + sys.stdout.flush() optimizer.reload_parameters('params_finetune_NIST.txt') optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20) channel.save() print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\ All hidden units output are input of the logistic regression\n\n') + sys.stdout.flush() optimizer.reload_parameters('params_pretrain.txt') optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1) channel.save() @@ -152,7 +166,7 @@ # These Series objects are used to save various statistics # during the training. -def create_series(num_hidden_layers): +def create_series(num_hidden_layers, nom_serie): # Replace series we don't want to save with DummySeries, e.g. # series['training_error'] = DummySeries() @@ -161,7 +175,7 @@ basedir = os.getcwd() - h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w") + h5f = tables.openFile(os.path.join(basedir, nom_serie), "w") # reconstruction reconstruction_base = \