Mercurial > ift6266
changeset 384:8117c0e70db9
Ajout de la faculte de prendre PNIST07
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Tue, 27 Apr 2010 08:20:37 -0400 |
parents | 5c3935aa3f8a |
children | 442fc117e886 |
files | deep/stacked_dae/v_sylvain/sgd_optimization.py |
diffstat | 1 files changed, 25 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/sgd_optimization.py Tue Apr 27 08:20:12 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/sgd_optimization.py Tue Apr 27 08:20:37 2010 -0400 @@ -156,7 +156,7 @@ f.close() - def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0,decrease=0): + def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0,decrease=0,dataset_test2=None): if special != 0 and special != 1: sys.exit('Bad value for variable special. Must be in {0,1}') @@ -166,6 +166,10 @@ if ind_test == 0 or ind_test == 20: nom_test = "NIST" nom_train="P07" + elif ind_test == 2: + nom_train = "PNIST07" + nom_test = "NIST" + nom_test2 = "P07" else: nom_test = "P07" nom_train = "NIST" @@ -238,8 +242,8 @@ if (total_mb_index+1) % validation_frequency == 0: #minibatch_index += 1 #The validation set is always NIST (we want the model to be good on NIST) - if ind_test == 0 | ind_test == 20: - iter=dataset_test.valid(minibatch_size,bufsize=buffersize) + if ind_test == 0 | ind_test == 20 | ind_test == 2: + iter=dataset_test.valid(minibatch_size,bufsize=buffersize) else: iter = dataset.valid(minibatch_size,bufsize=buffersize) if self.max_minibatches: @@ -281,6 +285,13 @@ iter2 = itermax(iter2, self.max_minibatches) test_losses2 = [test_model(x,y) for x,y in iter2] test_score2 = numpy.mean(test_losses2) + + #test it on the third test set if there is one + iter3 = dataset_test2.test(minibatch_size, bufsize=buffersize) + if self.max_minibatches: + iter3 = itermax(iter3, self.max_minibatches) + test_losses3 = [test_model(x,y) for x,y in iter3] + test_score3 = numpy.mean(test_losses3) self.series["test_error"].\ append((epoch, minibatch_index), test_score*100.) @@ -294,6 +305,10 @@ 'model %f %%') % (epoch, minibatch_index+1,nom_test, test_score2*100.)) + print((' epoch %i, minibatch %i, test error on dataset %s of best ' + 'model %f %%') % + (epoch, minibatch_index+1,nom_test2, + test_score3*100.)) if patience <= total_mb_index: done_looping = True @@ -306,7 +321,7 @@ break if decrease == 1: - if (ind_test == 21 & epoch % 100 == 0) | ind_test == 20: + if (ind_test == 21 & epoch % 100 == 0) | ind_test == 20 | ind_test == 2: learning_rate /= 2 #divide the learning rate by 2 for each new epoch of P07 (or 100 of NIST) self.series['params'].append((epoch,), self.classifier.all_params) @@ -324,6 +339,7 @@ 'with test performance %f %% on dataset %s ') % (best_validation_loss * 100., test_score*100.,nom_train)) print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.)) + print(('The test score on the %s dataset is %f')%(nom_test2,test_score3*100.)) print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) @@ -351,6 +367,10 @@ f = open('params_finetune_P07_then_NIST.txt', 'w') cPickle.dump(parameters_finetune,f,protocol=-1) f.close() + elif ind_test == 2: + f = open('params_finetune_PNIST07.txt', 'w') + cPickle.dump(parameters_finetune,f,protocol=-1) + f.close() #Set parameters like they where right after pre-train or finetune @@ -376,7 +396,7 @@ iter2 = dataset.train(self.hp.minibatch_size,bufsize=buffersize) train_losses2 = [test_model(x,y) for x,y in iter2] train_score2 = numpy.mean(train_losses2) - print "Training error is: " + str(train_score2) + print(('The training error is %f')%(train_score2*100.)) #To see the prediction of the model, the real answer and the image to judge def see_error(self, dataset):