Mercurial > ift6266
changeset 355:76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
author | xaviermuller |
---|---|
date | Wed, 21 Apr 2010 15:07:09 -0400 |
parents | ffc06af1c543 |
children | b0741ea3ff6f |
files | baseline/mlp/mlp_nist.py |
diffstat | 1 files changed, 34 insertions(+), 26 deletions(-) [+] |
line wrap: on
line diff
--- a/baseline/mlp/mlp_nist.py Wed Apr 21 14:54:54 2010 -0400 +++ b/baseline/mlp/mlp_nist.py Wed Apr 21 15:07:09 2010 -0400 @@ -23,6 +23,7 @@ """ __docformat__ = 'restructedtext en' +import sys import pdb import numpy import pylab @@ -372,8 +373,9 @@ - if verbose == 1: - print 'starting training' + + print 'starting training' + sys.stdout.flush() while(minibatch_index*batch_size<nb_max_exemples): for x, y in dataset.train(batch_size): @@ -391,9 +393,7 @@ learning_rate_list.append(classifier.lr.value) divergence_flag_list.append(divergence_flag) - #save temp results to check during training - numpy.savez('temp_results.npy',config=configuration,total_validation_error_list=total_validation_error_list,\ - learning_rate_list=learning_rate_list, divergence_flag_list=divergence_flag_list) + # compute the validation error this_validation_loss = 0. @@ -406,10 +406,15 @@ this_validation_loss /= temp #save the validation loss total_validation_error_list.append(this_validation_loss) - if verbose == 1: - print(('epoch %i, minibatch %i, learning rate %f current validation error %f ') % - (epoch, minibatch_index+1,classifier.lr.value, - this_validation_loss*100.)) + + print(('epoch %i, minibatch %i, learning rate %f current validation error %f ') % + (epoch, minibatch_index+1,classifier.lr.value, + this_validation_loss*100.)) + sys.stdout.flush() + + #save temp results to check during training + numpy.savez('temp_results.npy',config=configuration,total_validation_error_list=total_validation_error_list,\ + learning_rate_list=learning_rate_list, divergence_flag_list=divergence_flag_list) # if we got the best validation score until now if this_validation_loss < best_validation_loss: @@ -431,11 +436,12 @@ test_score += test_model(xt,yt) temp = temp+1 test_score /= temp - if verbose == 1: - print(('epoch %i, minibatch %i, test error of best ' - 'model %f %%') % - (epoch, minibatch_index+1, - test_score*100.)) + + print(('epoch %i, minibatch %i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, + test_score*100.)) + sys.stdout.flush() # if the validation error is going up, we are overfitting (or oscillating) # check if we are allowed to continue and if we will adjust the learning rate @@ -461,12 +467,13 @@ test_score += test_model(xt,yt) temp=temp+1 test_score /= temp - if verbose == 1: - print ' validation error is going up, possibly stopping soon' - print((' epoch %i, minibatch %i, test error of best ' - 'model %f %%') % - (epoch, minibatch_index+1, - test_score*100.)) + + print ' validation error is going up, possibly stopping soon' + print((' epoch %i, minibatch %i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, + test_score*100.)) + sys.stdout.flush() @@ -491,12 +498,13 @@ # we have finished looping through the training set epoch = epoch+1 end_time = time.clock() - if verbose == 1: - print(('Optimization complete. Best validation score of %f %% ' - 'obtained at iteration %i, with test performance %f %%') % - (best_validation_loss * 100., best_iter, test_score*100.)) - print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) - print minibatch_index + + print(('Optimization complete. Best validation score of %f %% ' + 'obtained at iteration %i, with test performance %f %%') % + (best_validation_loss * 100., best_iter, test_score*100.)) + print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) + print minibatch_index + sys.stdout.flush() #save the model and the weights numpy.savez('model.npy', config=configuration, W1=classifier.W1.value,W2=classifier.W2.value, b1=classifier.b1.value,b2=classifier.b2.value)