Mercurial > ift6266
changeset 456:66b05c6077c7
Ajout d'option pour choisir l'ensemble de donnees (train/valid/test) ainsi que mettre NIST,P07 et PNIST pour tous les modeles testes
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Wed, 26 May 2010 20:24:16 -0400 |
parents | 09e1c5872c2b |
children | 78ed4628071d |
files | deep/stacked_dae/v_sylvain/train_error.py |
diffstat | 1 files changed, 55 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/train_error.py Wed May 26 20:23:02 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/train_error.py Wed May 26 20:24:16 2010 -0400 @@ -7,6 +7,7 @@ import numpy import theano import time +import math import pylearn.version import theano.tensor as T @@ -37,7 +38,7 @@ Function called by jobman upon launching each job Its path is the one given when inserting jobs: see EXPERIMENT_PATH ''' -def jobman_entrypoint(state, channel): +def jobman_entrypoint(state, channel,set_choice): # record mercurial versions of each package pylearn.version.record_versions(state,[theano,ift6266,pylearn]) # TODO: remove this, bad for number of simultaneous requests on DB @@ -57,7 +58,10 @@ examples_per_epoch = NIST_ALL_TRAIN_SIZE PATH = '' - maximum_exemples=int(500000) #Maximum number of exemples seen + if set_choice == 0: + maximum_exemples=int(500000) #Maximum number of exemples seen + else: + maximum_exemples = int(1000000000) #an impossible number @@ -71,57 +75,68 @@ - if os.path.exists(PATH+'params_finetune_NIST.txt'): print ('\n finetune = NIST ') optimizer.reload_parameters(PATH+'params_finetune_NIST.txt') - print "For" + str(maximum_exemples) + "over the NIST training set: " - optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples)) + print "For" + str(maximum_exemples) + "over the NIST set: " + optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the P07 set: " + optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the PNIST07 set: " + optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice) if os.path.exists(PATH+'params_finetune_P07.txt'): print ('\n finetune = P07 ') optimizer.reload_parameters(PATH+'params_finetune_P07.txt') - print "For" + str(maximum_exemples) + "over the P07 training set: " - optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples)) + print "For" + str(maximum_exemples) + "over the NIST set: " + optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the P07 set: " + optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the PNIST07 set: " + optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice) if os.path.exists(PATH+'params_finetune_NIST_then_P07.txt'): print ('\n finetune = NIST then P07') optimizer.reload_parameters(PATH+'params_finetune_NIST_then_P07.txt') - print "For" + str(maximum_exemples) + "over the NIST training set: " - optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples)) - print "For" + str(maximum_exemples) + "over the P07 training set: " - optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples)) + print "For" + str(maximum_exemples) + "over the NIST set: " + optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the P07 set: " + optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the PNIST07 set: " + optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice) if os.path.exists(PATH+'params_finetune_P07_then_NIST.txt'): print ('\n finetune = P07 then NIST') optimizer.reload_parameters(PATH+'params_finetune_P07_then_NIST.txt') - print "For" + str(maximum_exemples) + "over the P07 training set: " - optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples)) - print "For" + str(maximum_exemples) + "over the NIST training set: " - optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples)) + print "For" + str(maximum_exemples) + "over the NIST set: " + optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the P07 set: " + optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the PNIST07 set: " + optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice) if os.path.exists(PATH+'params_finetune_PNIST07.txt'): print ('\n finetune = PNIST07') optimizer.reload_parameters(PATH+'params_finetune_PNIST07.txt') - print "For" + str(maximum_exemples) + "over the NIST training set: " - optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples)) - print "For" + str(maximum_exemples) + "over the P07 training set: " - optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples)) - print "For" + str(maximum_exemples) + "over the PNIST07 training set: " - optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples)) + print "For" + str(maximum_exemples) + "over the NIST set: " + optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the P07 set: " + optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the PNIST07 set: " + optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice) if os.path.exists(PATH+'params_finetune_PNIST07_then_NIST.txt'): print ('\n finetune = PNIST07 then NIST') optimizer.reload_parameters(PATH+'params_finetune_PNIST07_then_NIST.txt') - print "For" + str(maximum_exemples) + "over the NIST training set: " - optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples)) - print "For" + str(maximum_exemples) + "over the P07 training set: " - optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples)) - print "For" + str(maximum_exemples) + "over the PNIST07 training set: " - optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples)) + print "For" + str(maximum_exemples) + "over the NIST set: " + optimizer.training_error(datasets.nist_all(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the P07 set: " + optimizer.training_error(datasets.nist_P07(maxsize=maximum_exemples),set_choice) + print "For" + str(maximum_exemples) + "over the PNIST07 set: " + optimizer.training_error(datasets.PNIST07(maxsize=maximum_exemples),set_choice) channel.save() @@ -130,9 +145,18 @@ if __name__ == '__main__': + + args = sys.argv[1:] + + type = 0 + if len(args) > 0 and args[0] == 'train': + type = 0 + elif len(args) > 0 and args[0] == 'valid': + type = 1 + elif len(args) > 0 and args[0] == 'test': + type = 2 + + chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) + jobman_entrypoint(DD(DEFAULT_HP_NIST), chanmock, type) - chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) - jobman_entrypoint(DD(DEFAULT_HP_NIST), chanmock) - -