Mercurial > ift6266
changeset 366:64fa85d68923
undoing unwanted changes to setup_batches.py
author | humel |
---|---|
date | Thu, 22 Apr 2010 20:06:11 -0400 |
parents | 22919039f7ab (current diff) 14b28e43ce4e (diff) |
children | f24b10e43a6f |
files | deep/crbm/mnist_config.py.example deep/crbm/utils.py |
diffstat | 3 files changed, 262 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/deep/stacked_dae/v_sylvain/sgd_optimization.py Thu Apr 22 19:57:05 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/sgd_optimization.py Thu Apr 22 20:06:11 2010 -0400 @@ -377,6 +377,147 @@ train_losses2 = [test_model(x,y) for x,y in iter2] train_score2 = numpy.mean(train_losses2) print "Training error is: " + str(train_score2) + + #To see the prediction of the model, the real answer and the image to judge + def see_error(self, dataset): + import pylab + #The function to know the prediction + test_model = \ + theano.function( + [self.classifier.x,self.classifier.y], self.classifier.logLayer.y_pred) + user = [] + nb_total = 0 #total number of exemples seen + nb_error = 0 #total number of errors + for x,y in dataset.test(1): + nb_total += 1 + pred = self.translate(test_model(x,y)) + rep = self.translate(y) + error = pred != rep + print 'prediction: ' + str(pred) +'\t answer: ' + str(rep) + '\t right: ' + str(not(error)) + pylab.imshow(x.reshape((32,32))) + pylab.draw() + if error: + nb_error += 1 + user.append(int(raw_input("1 = The error is normal, 0 = The error is not normal : "))) + print '\t\t character is hard to distinguish: ' + str(user[-1]) + else: + time.sleep(3) + print '\n Over the '+str(nb_total)+' exemples, there is '+str(nb_error)+' errors. \nThe percentage of errors is'+ str(float(nb_error)/float(nb_total)) + print 'The percentage of errors done by the model that an human will also do: ' + str(numpy.mean(user)) + + + + + #To translate the numeric prediction in character if necessary + def translate(self,y): + + if y <= 9: + return y[0] + elif y == 10: + return 'A' + elif y == 11: + return 'B' + elif y == 12: + return 'C' + elif y == 13: + return 'D' + elif y == 14: + return 'E' + elif y == 15: + return 'F' + elif y == 16: + return 'G' + elif y == 17: + return 'H' + elif y == 18: + return 'I' + elif y == 19: + return 'J' + elif y == 20: + return 'K' + elif y == 21: + return 'L' + elif y == 22: + return 'M' + elif y == 23: + return 'N' + elif y == 24: + return 'O' + elif y == 25: + return 'P' + elif y == 26: + return 'Q' + elif y == 27: + return 'R' + elif y == 28: + return 'S' + elif y == 28: + return 'T' + elif y == 30: + return 'U' + elif y == 31: + return 'V' + elif y == 32: + return 'W' + elif y == 33: + return 'X' + elif y == 34: + return 'Y' + elif y == 35: + return 'Z' + + elif y == 36: + return 'a' + elif y == 37: + return 'b' + elif y == 38: + return 'c' + elif y == 39: + return 'd' + elif y == 40: + return 'e' + elif y == 41: + return 'f' + elif y == 42: + return 'g' + elif y == 43: + return 'h' + elif y == 44: + return 'i' + elif y == 45: + return 'j' + elif y == 46: + return 'k' + elif y == 47: + return 'l' + elif y == 48: + return 'm' + elif y == 49: + return 'n' + elif y == 50: + return 'o' + elif y == 51: + return 'p' + elif y == 52: + return 'q' + elif y == 53: + return 'r' + elif y == 54: + return 's' + elif y == 55: + return 't' + elif y == 56: + return 'u' + elif y == 57: + return 'v' + elif y == 58: + return 'w' + elif y == 59: + return 'x' + elif y == 60: + return 'y' + elif y == 61: + return 'z'
--- a/deep/stacked_dae/v_sylvain/stacked_dae.py Thu Apr 22 19:57:05 2010 -0400 +++ b/deep/stacked_dae/v_sylvain/stacked_dae.py Thu Apr 22 20:06:11 2010 -0400 @@ -88,7 +88,7 @@ b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) - self.output = (T.tanh(T.dot(input, self.W) + self.b) + 1) /2 + self.output = (T.tanh(T.dot(input, self.W) + self.b) + 1.0)/2.0 # ( *+ 1) /2 is because tanh goes from -1 to 1 and sigmoid goes from 0 to 1 # I want to use tanh, but the image has to stay the same. The correction is necessary. self.params = [self.W, self.b] @@ -185,10 +185,10 @@ #Or use a Tanh everything is always between 0 and 1, the range is #changed so it remain the same as when sigmoid is used - self.y = (T.tanh(T.dot(self.tilde_x, self.W ) + self.b)+1.0)/2.0 + self.y = (T.tanh(T.dot(self.tilde_x, self.W ) + self.b)+1.0)/2.0 z_a = T.dot(self.y, self.W_prime) + self.b_prime - self.z = (T.tanh(z_a + self.b_prime)+1.0) / 2.0 + self.z = (T.tanh(z_a )+1.0) / 2.0 #To ensure to do not have a log(0) operation if self.z <= 0: self.z = 0.000001
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/stacked_dae/v_sylvain/voir_erreurs.py Thu Apr 22 20:06:11 2010 -0400 @@ -0,0 +1,118 @@ +#!/usr/bin/python +# coding: utf-8 + +import ift6266 +import pylearn + +import numpy +import theano +import time + +import pylearn.version +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams + +import copy +import sys +import os +import os.path + +from jobman import DD +import jobman, jobman.sql +from pylearn.io import filetensor + +from utils import produit_cartesien_jobs +from copy import copy + +from sgd_optimization import SdaSgdOptimizer + +#from ift6266.utils.scalar_series import * +from ift6266.utils.seriestables import * +import tables + +from ift6266 import datasets +from config import * + +''' +Function called by jobman upon launching each job +Its path is the one given when inserting jobs: see EXPERIMENT_PATH +''' +def jobman_entrypoint(state, channel): + # record mercurial versions of each package + pylearn.version.record_versions(state,[theano,ift6266,pylearn]) + # TODO: remove this, bad for number of simultaneous requests on DB + channel.save() + + # For test runs, we don't want to use the whole dataset so + # reduce it to fewer elements if asked to. + rtt = None + if state.has_key('reduce_train_to'): + rtt = state['reduce_train_to'] + elif REDUCE_TRAIN_TO: + rtt = REDUCE_TRAIN_TO + + n_ins = 32*32 + n_outs = 62 # 10 digits + 26*2 (lower, capitals) + + examples_per_epoch = NIST_ALL_TRAIN_SIZE + + PATH = PATH_P07 + maximum_exemples=int(100) #Maximum number of exemples seen + + + + print "Creating optimizer with state, ", state + + optimizer = SdaSgdOptimizer(dataset=datasets.nist_all(), + hyperparameters=state, \ + n_ins=n_ins, n_outs=n_outs,\ + examples_per_epoch=examples_per_epoch, \ + max_minibatches=rtt) + + + + + print 'The model is created' + if os.path.exists(PATH+'params_finetune_NIST.txt'): + print ('\n finetune = NIST ') + optimizer.reload_parameters(PATH+'params_finetune_NIST.txt') + print "For" + str(maximum_exemples) + "over the NIST test set: " + optimizer.see_error(datasets.nist_all(maxsize=maximum_exemples)) + + + if os.path.exists(PATH+'params_finetune_P07.txt'): + print ('\n finetune = P07 ') + optimizer.reload_parameters(PATH+'params_finetune_P07.txt') + print "For" + str(maximum_exemples) + "over the P07 test set: " + optimizer.see_error(datasets.nist_P07(maxsize=maximum_exemples)) + + + if os.path.exists(PATH+'params_finetune_NIST_then_P07.txt'): + print ('\n finetune = NIST then P07') + optimizer.reload_parameters(PATH+'params_finetune_NIST_then_P07.txt') + print "For" + str(maximum_exemples) + "over the NIST test set: " + optimizer.see_error(datasets.nist_all(maxsize=maximum_exemples)) + print "For" + str(maximum_exemples) + "over the P07 test set: " + optimizer.see_error(datasets.nist_P07(maxsize=maximum_exemples)) + + if os.path.exists(PATH+'params_finetune_P07_then_NIST.txt'): + print ('\n finetune = P07 then NIST') + optimizer.reload_parameters(PATH+'params_finetune_P07_then_NIST.txt') + print "For" + str(maximum_exemples) + "over the P07 test set: " + optimizer.see_error(datasets.nist_P07(maxsize=maximum_exemples)) + print "For" + str(maximum_exemples) + "over the NIST test set: " + optimizer.see_error(datasets.nist_all(maxsize=maximum_exemples)) + + channel.save() + + return channel.COMPLETE + + + +if __name__ == '__main__': + + + chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) + jobman_entrypoint(DD(DEFAULT_HP_NIST), chanmock) + +