Mercurial > ift6266
changeset 168:5e0e5f1860ec
Pipeline code shuffle
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 14:23:47 -0500 |
parents | 1f5937e9e530 |
children | d37c944133c3 |
files | data_generation/pipeline/pipeline.py data_generation/pipeline/testtransformations.py data_generation/pipeline/visualizer.py data_generation/transformations/pipeline.py data_generation/transformations/testtransformations.py data_generation/transformations/visualizer.py |
diffstat | 6 files changed, 620 insertions(+), 620 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/data_generation/pipeline/pipeline.py Fri Feb 26 14:23:47 2010 -0500 @@ -0,0 +1,391 @@ +#!/usr/bin/python +# coding: utf-8 + +from __future__ import with_statement + +# This is intended to be run as a GIMP script +#from gimpfu import * + +import sys, os, getopt +import numpy +import filetensor as ft +import random + +# To debug locally, also call with -s 100 (to stop after ~100) +# (otherwise we allocate all needed memory, might be loonnng and/or crash +# if, lucky like me, you have an age-old laptop creaking from everywhere) +DEBUG = False +DEBUG_X = False +if DEBUG: + DEBUG_X = False # Debug under X (pylab.show()) + +DEBUG_IMAGES_PATH = None +if DEBUG: + # UNTESTED YET + # To avoid loading NIST if you don't have it handy + # (use with debug_images_iterator(), see main()) + # To use NIST, leave as = None + DEBUG_IMAGES_PATH = None#'/home/francois/Desktop/debug_images' + +# Directory where to dump images to visualize results +# (create it, otherwise it'll crash) +DEBUG_OUTPUT_DIR = 'debug_out' + +DEFAULT_NIST_PATH = '/data/lisa/data/ift6266h10/train_data.ft' +DEFAULT_LABEL_PATH = '/data/lisa/data/ift6266h10/train_labels.ft' +DEFAULT_OCR_PATH = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-shuffled.ft' +DEFAULT_OCRLABEL_PATH = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-labels-shuffled.ft' +ARGS_FILE = os.environ['PIPELINE_ARGS_TMPFILE'] + +# PARSE COMMAND LINE ARGUMENTS +def get_argv(): + with open(ARGS_FILE) as f: + args = [l.rstrip() for l in f.readlines()] + return args + +def usage(): + print ''' +Usage: run_pipeline.sh [-m ...] [-z ...] [-o ...] [-p ...] + -m, --max-complexity: max complexity to generate for an image + -z, --probability-zero: probability of using complexity=0 for an image + -o, --output-file: full path to file to use for output of images + -p, --params-output-file: path to file to output params to + -x, --labels-output-file: path to file to output labels to + -f, --data-file: path to filetensor (.ft) data file (NIST) + -l, --label-file: path to filetensor (.ft) labels file (NIST labels) + -c, --ocr-file: path to filetensor (.ft) data file (OCR) + -d, --ocrlabel-file: path to filetensor (.ft) labels file (OCR labels) + -a, --prob-font: probability of using a raw font image + -b, --prob-captcha: probability of using a captcha image + -g, --prob-ocr: probability of using an ocr image + -y, --seed: the job seed + ''' + +try: + opts, args = getopt.getopt(get_argv(), "rm:z:o:p:x:s:f:l:c:d:a:b:g:y:", ["reload","max-complexity=", "probability-zero=", "output-file=", "params-output-file=", "labels-output-file=", +"stop-after=", "data-file=", "label-file=", "ocr-file=", "ocrlabel-file=", "prob-font=", "prob-captcha=", "prob-ocr=", "seed="]) +except getopt.GetoptError, err: + # print help information and exit: + print str(err) # will print something like "option -a not recognized" + usage() + pdb.gimp_quit(0) + sys.exit(2) + +for o, a in opts: + if o in ('-y','--seed'): + random.seed(int(a)) + numpy.random.seed(int(a)) + +if DEBUG_X: + import pylab + pylab.ion() + +from PoivreSel import PoivreSel +from thick import Thick +from BruitGauss import BruitGauss +from DistorsionGauss import DistorsionGauss +from PermutPixel import PermutPixel +from gimp_script import GIMP1 +from Rature import Rature +from contrast import Contrast +from local_elastic_distortions import LocalElasticDistorter +from slant import Slant +from Occlusion import Occlusion +from add_background_image import AddBackground +from affine_transform import AffineTransformation +from ttf2jpg import ttf2jpg +from Facade import generateCaptcha + +if DEBUG: + from visualizer import Visualizer + # Either put the visualizer as in the MODULES_INSTANCES list + # after each module you want to visualize, or in the + # AFTER_EACH_MODULE_HOOK list (but not both, it's redundant) + VISUALIZER = Visualizer(to_dir=DEBUG_OUTPUT_DIR, on_screen=False) + +###---------------------order of transformation module +MODULE_INSTANCES = [Slant(),Thick(),AffineTransformation(),LocalElasticDistorter(),GIMP1(),Rature(),Occlusion(), PermutPixel(),DistorsionGauss(),AddBackground(), PoivreSel(), BruitGauss(), Contrast()] + +# These should have a "after_transform_callback(self, image)" method +# (called after each call to transform_image in a module) +AFTER_EACH_MODULE_HOOK = [] +if DEBUG: + AFTER_EACH_MODULE_HOOK = [VISUALIZER] + +# These should have a "end_transform_callback(self, final_image" method +# (called after all modules have been called) +END_TRANSFORM_HOOK = [] +if DEBUG: + END_TRANSFORM_HOOK = [VISUALIZER] + +class Pipeline(): + def __init__(self, modules, num_img, image_size=(32,32)): + self.modules = modules + self.num_img = num_img + self.num_params_stored = 0 + self.image_size = image_size + + self.init_memory() + + def init_num_params_stored(self): + # just a dummy call to regenerate_parameters() to get the + # real number of params (only those which are stored) + self.num_params_stored = 0 + for m in self.modules: + self.num_params_stored += len(m.regenerate_parameters(0.0)) + + def init_memory(self): + self.init_num_params_stored() + + total = self.num_img + num_px = self.image_size[0] * self.image_size[1] + + self.res_data = numpy.empty((total, num_px), dtype=numpy.uint8) + # +1 to store complexity + self.params = numpy.empty((total, self.num_params_stored+len(self.modules))) + self.res_labels = numpy.empty(total, dtype=numpy.int32) + + def run(self, img_iterator, complexity_iterator): + img_size = self.image_size + + should_hook_after_each = len(AFTER_EACH_MODULE_HOOK) != 0 + should_hook_at_the_end = len(END_TRANSFORM_HOOK) != 0 + + for img_no, (img, label) in enumerate(img_iterator): + sys.stdout.flush() + + global_idx = img_no + + img = img.reshape(img_size) + + param_idx = 0 + mod_idx = 0 + for mod in self.modules: + # This used to be done _per batch_, + # ie. out of the "for img" loop + complexity = complexity_iterator.next() + #better to do a complexity sampling for each transformations in order to have more variability + #otherwise a lot of images similar to the source are generated (i.e. when complexity is close to 0 (1/8 of the time)) + #we need to save the complexity of each transformations and the sum of these complexity is a good indicator of the overall + #complexity + self.params[global_idx, mod_idx] = complexity + mod_idx += 1 + + p = mod.regenerate_parameters(complexity) + self.params[global_idx, param_idx+len(self.modules):param_idx+len(p)+len(self.modules)] = p + param_idx += len(p) + + img = mod.transform_image(img) + + if should_hook_after_each: + for hook in AFTER_EACH_MODULE_HOOK: + hook.after_transform_callback(img) + + self.res_data[global_idx] = \ + img.reshape((img_size[0] * img_size[1],))*255 + self.res_labels[global_idx] = label + + if should_hook_at_the_end: + for hook in END_TRANSFORM_HOOK: + hook.end_transform_callback(img) + + def write_output(self, output_file_path, params_output_file_path, labels_output_file_path): + with open(output_file_path, 'wb') as f: + ft.write(f, self.res_data) + + numpy.save(params_output_file_path, self.params) + + with open(labels_output_file_path, 'wb') as f: + ft.write(f, self.res_labels) + + +############################################################################## +# COMPLEXITY ITERATORS +# They're called once every img, to get the complexity to use for that img +# they must be infinite (should never throw StopIteration when calling next()) + +# probability of generating 0 complexity, otherwise +# uniform over 0.0-max_complexity +def range_complexity_iterator(probability_zero, max_complexity): + assert max_complexity <= 1.0 + n = numpy.random.uniform(0.0, 1.0) + while True: + if n < probability_zero: + yield 0.0 + else: + yield numpy.random.uniform(0.0, max_complexity) + +############################################################################## +# DATA ITERATORS +# They can be used to interleave different data sources etc. + +''' +# Following code (DebugImages and iterator) is untested + +def load_image(filepath): + _RGB_TO_GRAYSCALE = [0.3, 0.59, 0.11, 0.0] + img = Image.open(filepath) + img = numpy.asarray(img) + if len(img.shape) > 2: + img = (img * _RGB_TO_GRAYSCALE).sum(axis=2) + return (img / 255.0).astype('float') + +class DebugImages(): + def __init__(self, images_dir_path): + import glob, os.path + self.filelist = glob.glob(os.path.join(images_dir_path, "*.png")) + +def debug_images_iterator(debug_images): + for path in debug_images.filelist: + yield load_image(path) +''' + +class NistData(): + def __init__(self, nist_path, label_path, ocr_path, ocrlabel_path): + self.train_data = open(nist_path, 'rb') + self.train_labels = open(label_path, 'rb') + self.dim = tuple(ft._read_header(self.train_data)[3]) + # in order to seek to the beginning of the file + self.train_data.close() + self.train_data = open(nist_path, 'rb') + self.ocr_data = open(ocr_path, 'rb') + self.ocr_labels = open(ocrlabel_path, 'rb') + +# cet iterator load tout en ram +def nist_supp_iterator(nist, prob_font, prob_captcha, prob_ocr, num_img): + img = ft.read(nist.train_data) + labels = ft.read(nist.train_labels) + if prob_ocr: + ocr_img = ft.read(nist.ocr_data) + ocr_labels = ft.read(nist.ocr_labels) + ttf = ttf2jpg() + L = [chr(ord('0')+x) for x in range(10)] + [chr(ord('A')+x) for x in range(26)] + [chr(ord('a')+x) for x in range(26)] + + for i in xrange(num_img): + r = numpy.random.rand() + if r <= prob_font: + yield ttf.generate_image() + elif r <=prob_font + prob_captcha: + (arr, charac) = generateCaptcha(0,1) + yield arr.astype(numpy.float32)/255, L.index(charac[0]) + elif r <= prob_font + prob_captcha + prob_ocr: + j = numpy.random.randint(len(ocr_labels)) + yield ocr_img[j].astype(numpy.float32)/255, ocr_labels[j] + else: + j = numpy.random.randint(len(labels)) + yield img[j].astype(numpy.float32)/255, labels[j] + + +# Mostly for debugging, for the moment, just to see if we can +# reload the images and parameters. +def reload(output_file_path, params_output_file_path): + images_ft = open(output_file_path, 'rb') + images_ft_dim = tuple(ft._read_header(images_ft)[3]) + + print "Images dimensions: ", images_ft_dim + + params = numpy.load(params_output_file_path) + + print "Params dimensions: ", params.shape + print params + + +############################################################################## +# MAIN + + +# Might be called locally or through dbidispatch. In all cases it should be +# passed to the GIMP executable to be able to use GIMP filters. +# Ex: +def _main(): + #global DEFAULT_NIST_PATH, DEFAULT_LABEL_PATH, DEFAULT_OCR_PATH, DEFAULT_OCRLABEL_PATH + #global getopt, get_argv + + max_complexity = 0.5 # default + probability_zero = 0.1 # default + output_file_path = None + params_output_file_path = None + labels_output_file_path = None + nist_path = DEFAULT_NIST_PATH + label_path = DEFAULT_LABEL_PATH + ocr_path = DEFAULT_OCR_PATH + ocrlabel_path = DEFAULT_OCRLABEL_PATH + prob_font = 0.0 + prob_captcha = 0.0 + prob_ocr = 0.0 + stop_after = None + reload_mode = False + + for o, a in opts: + if o in ('-m', '--max-complexity'): + max_complexity = float(a) + assert max_complexity >= 0.0 and max_complexity <= 1.0 + elif o in ('-r', '--reload'): + reload_mode = True + elif o in ("-z", "--probability-zero"): + probability_zero = float(a) + assert probability_zero >= 0.0 and probability_zero <= 1.0 + elif o in ("-o", "--output-file"): + output_file_path = a + elif o in ('-p', "--params-output-file"): + params_output_file_path = a + elif o in ('-x', "--labels-output-file"): + labels_output_file_path = a + elif o in ('-s', "--stop-after"): + stop_after = int(a) + elif o in ('-f', "--data-file"): + nist_path = a + elif o in ('-l', "--label-file"): + label_path = a + elif o in ('-c', "--ocr-file"): + ocr_path = a + elif o in ('-d', "--ocrlabel-file"): + ocrlabel_path = a + elif o in ('-a', "--prob-font"): + prob_font = float(a) + elif o in ('-b', "--prob-captcha"): + prob_captcha = float(a) + elif o in ('-g', "--prob-ocr"): + prob_ocr = float(a) + elif o in ('-y', "--seed"): + pass + else: + assert False, "unhandled option" + + if output_file_path == None or params_output_file_path == None or labels_output_file_path == None: + print "Must specify the three output files." + usage() + pdb.gimp_quit(0) + sys.exit(2) + + if reload_mode: + reload(output_file_path, params_output_file_path) + else: + if DEBUG_IMAGES_PATH: + ''' + # This code is yet untested + debug_images = DebugImages(DEBUG_IMAGES_PATH) + num_img = len(debug_images.filelist) + pl = Pipeline(modules=MODULE_INSTANCES, num_img=num_img, image_size=(32,32)) + img_it = debug_images_iterator(debug_images) + ''' + else: + nist = NistData(nist_path, label_path, ocr_path, ocrlabel_path) + num_img = 819200 # 800 Mb file + if stop_after: + num_img = stop_after + pl = Pipeline(modules=MODULE_INSTANCES, num_img=num_img, image_size=(32,32)) + img_it = nist_supp_iterator(nist, prob_font, prob_captcha, prob_ocr, num_img) + + cpx_it = range_complexity_iterator(probability_zero, max_complexity) + pl.run(img_it, cpx_it) + pl.write_output(output_file_path, params_output_file_path, labels_output_file_path) + +_main() + +if DEBUG_X: + pylab.ioff() + pylab.show() + +pdb.gimp_quit(0) +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/data_generation/pipeline/testtransformations.py Fri Feb 26 14:23:47 2010 -0500 @@ -0,0 +1,156 @@ +#!/usr/bin/env python + + + +from pylearn.io import filetensor as ft +import copy +import pygame +import time +import numpy as N + +from ttf2jpg import ttf2jpg + +#from gimpfu import * + + +from PoivreSel import PoivreSel +from thick import Thick +from BruitGauss import BruitGauss +from DistorsionGauss import DistorsionGauss +from PermutPixel import PermutPixel +from gimp_script import GIMP1 +from Rature import Rature +from contrast import Contrast +from local_elastic_distortions import LocalElasticDistorter +from slant import Slant +from Occlusion import Occlusion +from add_background_image import AddBackground +from affine_transform import AffineTransformation + +###---------------------order of transformation module +MODULE_INSTANCES = [Slant(),Thick(),AffineTransformation(),LocalElasticDistorter(),GIMP1(),Rature(),Occlusion(), PermutPixel(),DistorsionGauss(),AddBackground(), PoivreSel(), BruitGauss(), Contrast()] + +###---------------------complexity associated to each of them +complexity = 0.7 +#complexity = [0.5]*len(MODULE_INSTANCES) +#complexity = [0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.] +n=100 + +def createimage(path,d): + for i in range(n): + screen.fill(0) + a=d[i,:] + off1=4*32 + off2=0 + for u in range(n): + b=N.asarray(N.reshape(a,(32,32))) + c=N.asarray([N.reshape(a*255.0,(32,32))]*3).T + new=pygame.surfarray.make_surface(c) + new=pygame.transform.scale2x(new) + new=pygame.transform.scale2x(new) + #new.set_palette(anglcolorpalette) + screen.blit(new,(0,0)) + exemple.blit(new,(0,0)) + + offset = 4*32 + offset2 = 0 + ct = 0 + ctmp = N.random.rand()*complexity + print u + for j in MODULE_INSTANCES: + #max dilation + #ctmp = N.random.rand()*complexity[ct] + ctmp = N.random.rand()*complexity + #print j.get_settings_names(), j.regenerate_parameters(ctmp) + th=j.regenerate_parameters(ctmp) + + b=j.transform_image(b) + c=N.asarray([b*255]*3).T + new=pygame.surfarray.make_surface(c) + new=pygame.transform.scale2x(new) + new=pygame.transform.scale2x(new) + if u==0: + #new.set_palette(anglcolorpalette) + screen.blit(new,(offset,offset2)) + font = pygame.font.SysFont('liberationserif',18) + text = font.render('%s '%(int(ctmp*100.0)/100.0) + j.__module__,0,(255,255,255),(0,0,0)) + #if j.__module__ == 'Rature': + # text = font.render('%s,%s'%(th[-1],int(ctmp*100.0)/100.0) + j.__module__,0,(255,255,255),(0,0,0)) + screen.blit(text,(offset,offset2+4*32)) + if ct == len(MODULE_INSTANCES)/2-1: + offset = 0 + offset2 = 4*32+20 + else: + offset += 4*32 + ct+=1 + exemple.blit(new,(off1,off2)) + if off1 != 9*4*32: + off1+=4*32 + else: + off1=0 + off2+=4*32 + pygame.image.save(exemple,path+'/perimages/%s.PNG'%i) + pygame.image.save(screen,path+'/exemples/%s.PNG'%i) + + + + +nbmodule = len(MODULE_INSTANCES) + +pygame.surfarray.use_arraytype('numpy') + +#pygame.display.init() +screen = pygame.Surface((4*(nbmodule+1)/2*32,2*(4*32+20)),depth=32) +exemple = pygame.Surface((N.ceil(N.sqrt(n))*4*32,N.ceil(N.sqrt(n))*4*32),depth=32) + +anglcolorpalette=[(x,x,x) for x in xrange(0,256)] +#pygame.Surface.set_palette(anglcolorpalette) +#screen.set_palette(anglcolorpalette) + +pygame.font.init() + +d = N.zeros((n,1024)) + +datapath = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-shuffled.ft' +f = open(datapath) +d = ft.read(f) +d = d[0:n,:]/255.0 +createimage('/u/glorotxa/transf/OCR',d) + + + +datapath = '/data/lisa/data/nist/by_class/' +f = open(datapath+'digits_reshuffled/digits_reshuffled_train_data.ft') +d = ft.read(f) +d = d[0:n,:]/255.0 +createimage('/u/glorotxa/transf/NIST_digits',d) + + + +datapath = '/data/lisa/data/nist/by_class/' +f = open(datapath+'upper/upper_train_data.ft') +d = ft.read(f) +d = d[0:n,:]/255.0 +createimage('/u/glorotxa/transf/NIST_upper',d) + +from Facade import * + +for i in range(n): + d[i,:]=N.asarray(N.reshape(generateCaptcha(0.8,0),(1,1024))/255.0,dtype='float32') + +createimage('/u/glorotxa/transf/capcha',d) + + +for i in range(n): + myttf2jpg = ttf2jpg() + d[i,:]=N.reshape(myttf2jpg.generate_image()[0],(1,1024)) +createimage('/u/glorotxa/transf/fonts',d) + +datapath = '/data/lisa/data/nist/by_class/' +f = open(datapath+'lower/lower_train_data.ft') +d = ft.read(f) +d = d[0:n,:]/255.0 +createimage('/u/glorotxa/transf/NIST_lower',d) + + +#pygame.display.quit()
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/data_generation/pipeline/visualizer.py Fri Feb 26 14:23:47 2010 -0500 @@ -0,0 +1,73 @@ +#!/usr/bin/python + +import numpy +import Image +from image_tiling import tile_raster_images +import pylab +import time + +class Visualizer(): + def __init__(self, num_columns=10, image_size=(32,32), to_dir=None, on_screen=False): + self.list = [] + self.image_size = image_size + self.num_columns = num_columns + + self.on_screen = on_screen + self.to_dir = to_dir + + self.cur_grid_image = None + + self.cur_index = 0 + + def visualize_stop_and_flush(self): + self.make_grid_image() + + if self.on_screen: + self.visualize() + if self.to_dir: + self.dump_to_disk() + + self.stop_and_wait() + self.flush() + + self.cur_index += 1 + + def make_grid_image(self): + num_rows = len(self.list) / self.num_columns + if len(self.list) % self.num_columns != 0: + num_rows += 1 + grid_shape = (num_rows, self.num_columns) + self.cur_grid_image = tile_raster_images(numpy.array(self.list), self.image_size, grid_shape, tile_spacing=(5,5), output_pixel_vals=False) + + def visualize(self): + pylab.imshow(self.cur_grid_image) + pylab.draw() + + def dump_to_disk(self): + gi = Image.fromarray((self.cur_grid_image * 255).astype('uint8'), "L") + gi.save(self.to_dir + "/grid_" + str(self.cur_index) + ".png") + + def stop_and_wait(self): + # can't raw_input under gimp, so sleep) + print "New image generated, sleeping 5 secs" + time.sleep(5) + + def flush(self): + self.list = [] + + def get_parameters_names(self): + return [] + + def regenerate_parameters(self): + return [] + + def after_transform_callback(self, image): + self.transform_image(image) + + def end_transform_callback(self, final_image): + self.visualize_stop_and_flush() + + def transform_image(self, image): + sz = self.image_size + self.list.append(image.copy().reshape((sz[0] * sz[1]))) +
--- a/data_generation/transformations/pipeline.py Fri Feb 26 14:15:38 2010 -0500 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,391 +0,0 @@ -#!/usr/bin/python -# coding: utf-8 - -from __future__ import with_statement - -# This is intended to be run as a GIMP script -#from gimpfu import * - -import sys, os, getopt -import numpy -import filetensor as ft -import random - -# To debug locally, also call with -s 100 (to stop after ~100) -# (otherwise we allocate all needed memory, might be loonnng and/or crash -# if, lucky like me, you have an age-old laptop creaking from everywhere) -DEBUG = False -DEBUG_X = False -if DEBUG: - DEBUG_X = False # Debug under X (pylab.show()) - -DEBUG_IMAGES_PATH = None -if DEBUG: - # UNTESTED YET - # To avoid loading NIST if you don't have it handy - # (use with debug_images_iterator(), see main()) - # To use NIST, leave as = None - DEBUG_IMAGES_PATH = None#'/home/francois/Desktop/debug_images' - -# Directory where to dump images to visualize results -# (create it, otherwise it'll crash) -DEBUG_OUTPUT_DIR = 'debug_out' - -DEFAULT_NIST_PATH = '/data/lisa/data/ift6266h10/train_data.ft' -DEFAULT_LABEL_PATH = '/data/lisa/data/ift6266h10/train_labels.ft' -DEFAULT_OCR_PATH = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-shuffled.ft' -DEFAULT_OCRLABEL_PATH = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-labels-shuffled.ft' -ARGS_FILE = os.environ['PIPELINE_ARGS_TMPFILE'] - -# PARSE COMMAND LINE ARGUMENTS -def get_argv(): - with open(ARGS_FILE) as f: - args = [l.rstrip() for l in f.readlines()] - return args - -def usage(): - print ''' -Usage: run_pipeline.sh [-m ...] [-z ...] [-o ...] [-p ...] - -m, --max-complexity: max complexity to generate for an image - -z, --probability-zero: probability of using complexity=0 for an image - -o, --output-file: full path to file to use for output of images - -p, --params-output-file: path to file to output params to - -x, --labels-output-file: path to file to output labels to - -f, --data-file: path to filetensor (.ft) data file (NIST) - -l, --label-file: path to filetensor (.ft) labels file (NIST labels) - -c, --ocr-file: path to filetensor (.ft) data file (OCR) - -d, --ocrlabel-file: path to filetensor (.ft) labels file (OCR labels) - -a, --prob-font: probability of using a raw font image - -b, --prob-captcha: probability of using a captcha image - -g, --prob-ocr: probability of using an ocr image - -y, --seed: the job seed - ''' - -try: - opts, args = getopt.getopt(get_argv(), "rm:z:o:p:x:s:f:l:c:d:a:b:g:y:", ["reload","max-complexity=", "probability-zero=", "output-file=", "params-output-file=", "labels-output-file=", -"stop-after=", "data-file=", "label-file=", "ocr-file=", "ocrlabel-file=", "prob-font=", "prob-captcha=", "prob-ocr=", "seed="]) -except getopt.GetoptError, err: - # print help information and exit: - print str(err) # will print something like "option -a not recognized" - usage() - pdb.gimp_quit(0) - sys.exit(2) - -for o, a in opts: - if o in ('-y','--seed'): - random.seed(int(a)) - numpy.random.seed(int(a)) - -if DEBUG_X: - import pylab - pylab.ion() - -from PoivreSel import PoivreSel -from thick import Thick -from BruitGauss import BruitGauss -from DistorsionGauss import DistorsionGauss -from PermutPixel import PermutPixel -from gimp_script import GIMP1 -from Rature import Rature -from contrast import Contrast -from local_elastic_distortions import LocalElasticDistorter -from slant import Slant -from Occlusion import Occlusion -from add_background_image import AddBackground -from affine_transform import AffineTransformation -from ttf2jpg import ttf2jpg -from Facade import generateCaptcha - -if DEBUG: - from visualizer import Visualizer - # Either put the visualizer as in the MODULES_INSTANCES list - # after each module you want to visualize, or in the - # AFTER_EACH_MODULE_HOOK list (but not both, it's redundant) - VISUALIZER = Visualizer(to_dir=DEBUG_OUTPUT_DIR, on_screen=False) - -###---------------------order of transformation module -MODULE_INSTANCES = [Slant(),Thick(),AffineTransformation(),LocalElasticDistorter(),GIMP1(),Rature(),Occlusion(), PermutPixel(),DistorsionGauss(),AddBackground(), PoivreSel(), BruitGauss(), Contrast()] - -# These should have a "after_transform_callback(self, image)" method -# (called after each call to transform_image in a module) -AFTER_EACH_MODULE_HOOK = [] -if DEBUG: - AFTER_EACH_MODULE_HOOK = [VISUALIZER] - -# These should have a "end_transform_callback(self, final_image" method -# (called after all modules have been called) -END_TRANSFORM_HOOK = [] -if DEBUG: - END_TRANSFORM_HOOK = [VISUALIZER] - -class Pipeline(): - def __init__(self, modules, num_img, image_size=(32,32)): - self.modules = modules - self.num_img = num_img - self.num_params_stored = 0 - self.image_size = image_size - - self.init_memory() - - def init_num_params_stored(self): - # just a dummy call to regenerate_parameters() to get the - # real number of params (only those which are stored) - self.num_params_stored = 0 - for m in self.modules: - self.num_params_stored += len(m.regenerate_parameters(0.0)) - - def init_memory(self): - self.init_num_params_stored() - - total = self.num_img - num_px = self.image_size[0] * self.image_size[1] - - self.res_data = numpy.empty((total, num_px), dtype=numpy.uint8) - # +1 to store complexity - self.params = numpy.empty((total, self.num_params_stored+len(self.modules))) - self.res_labels = numpy.empty(total, dtype=numpy.int32) - - def run(self, img_iterator, complexity_iterator): - img_size = self.image_size - - should_hook_after_each = len(AFTER_EACH_MODULE_HOOK) != 0 - should_hook_at_the_end = len(END_TRANSFORM_HOOK) != 0 - - for img_no, (img, label) in enumerate(img_iterator): - sys.stdout.flush() - - global_idx = img_no - - img = img.reshape(img_size) - - param_idx = 0 - mod_idx = 0 - for mod in self.modules: - # This used to be done _per batch_, - # ie. out of the "for img" loop - complexity = complexity_iterator.next() - #better to do a complexity sampling for each transformations in order to have more variability - #otherwise a lot of images similar to the source are generated (i.e. when complexity is close to 0 (1/8 of the time)) - #we need to save the complexity of each transformations and the sum of these complexity is a good indicator of the overall - #complexity - self.params[global_idx, mod_idx] = complexity - mod_idx += 1 - - p = mod.regenerate_parameters(complexity) - self.params[global_idx, param_idx+len(self.modules):param_idx+len(p)+len(self.modules)] = p - param_idx += len(p) - - img = mod.transform_image(img) - - if should_hook_after_each: - for hook in AFTER_EACH_MODULE_HOOK: - hook.after_transform_callback(img) - - self.res_data[global_idx] = \ - img.reshape((img_size[0] * img_size[1],))*255 - self.res_labels[global_idx] = label - - if should_hook_at_the_end: - for hook in END_TRANSFORM_HOOK: - hook.end_transform_callback(img) - - def write_output(self, output_file_path, params_output_file_path, labels_output_file_path): - with open(output_file_path, 'wb') as f: - ft.write(f, self.res_data) - - numpy.save(params_output_file_path, self.params) - - with open(labels_output_file_path, 'wb') as f: - ft.write(f, self.res_labels) - - -############################################################################## -# COMPLEXITY ITERATORS -# They're called once every img, to get the complexity to use for that img -# they must be infinite (should never throw StopIteration when calling next()) - -# probability of generating 0 complexity, otherwise -# uniform over 0.0-max_complexity -def range_complexity_iterator(probability_zero, max_complexity): - assert max_complexity <= 1.0 - n = numpy.random.uniform(0.0, 1.0) - while True: - if n < probability_zero: - yield 0.0 - else: - yield numpy.random.uniform(0.0, max_complexity) - -############################################################################## -# DATA ITERATORS -# They can be used to interleave different data sources etc. - -''' -# Following code (DebugImages and iterator) is untested - -def load_image(filepath): - _RGB_TO_GRAYSCALE = [0.3, 0.59, 0.11, 0.0] - img = Image.open(filepath) - img = numpy.asarray(img) - if len(img.shape) > 2: - img = (img * _RGB_TO_GRAYSCALE).sum(axis=2) - return (img / 255.0).astype('float') - -class DebugImages(): - def __init__(self, images_dir_path): - import glob, os.path - self.filelist = glob.glob(os.path.join(images_dir_path, "*.png")) - -def debug_images_iterator(debug_images): - for path in debug_images.filelist: - yield load_image(path) -''' - -class NistData(): - def __init__(self, nist_path, label_path, ocr_path, ocrlabel_path): - self.train_data = open(nist_path, 'rb') - self.train_labels = open(label_path, 'rb') - self.dim = tuple(ft._read_header(self.train_data)[3]) - # in order to seek to the beginning of the file - self.train_data.close() - self.train_data = open(nist_path, 'rb') - self.ocr_data = open(ocr_path, 'rb') - self.ocr_labels = open(ocrlabel_path, 'rb') - -# cet iterator load tout en ram -def nist_supp_iterator(nist, prob_font, prob_captcha, prob_ocr, num_img): - img = ft.read(nist.train_data) - labels = ft.read(nist.train_labels) - if prob_ocr: - ocr_img = ft.read(nist.ocr_data) - ocr_labels = ft.read(nist.ocr_labels) - ttf = ttf2jpg() - L = [chr(ord('0')+x) for x in range(10)] + [chr(ord('A')+x) for x in range(26)] + [chr(ord('a')+x) for x in range(26)] - - for i in xrange(num_img): - r = numpy.random.rand() - if r <= prob_font: - yield ttf.generate_image() - elif r <=prob_font + prob_captcha: - (arr, charac) = generateCaptcha(0,1) - yield arr.astype(numpy.float32)/255, L.index(charac[0]) - elif r <= prob_font + prob_captcha + prob_ocr: - j = numpy.random.randint(len(ocr_labels)) - yield ocr_img[j].astype(numpy.float32)/255, ocr_labels[j] - else: - j = numpy.random.randint(len(labels)) - yield img[j].astype(numpy.float32)/255, labels[j] - - -# Mostly for debugging, for the moment, just to see if we can -# reload the images and parameters. -def reload(output_file_path, params_output_file_path): - images_ft = open(output_file_path, 'rb') - images_ft_dim = tuple(ft._read_header(images_ft)[3]) - - print "Images dimensions: ", images_ft_dim - - params = numpy.load(params_output_file_path) - - print "Params dimensions: ", params.shape - print params - - -############################################################################## -# MAIN - - -# Might be called locally or through dbidispatch. In all cases it should be -# passed to the GIMP executable to be able to use GIMP filters. -# Ex: -def _main(): - #global DEFAULT_NIST_PATH, DEFAULT_LABEL_PATH, DEFAULT_OCR_PATH, DEFAULT_OCRLABEL_PATH - #global getopt, get_argv - - max_complexity = 0.5 # default - probability_zero = 0.1 # default - output_file_path = None - params_output_file_path = None - labels_output_file_path = None - nist_path = DEFAULT_NIST_PATH - label_path = DEFAULT_LABEL_PATH - ocr_path = DEFAULT_OCR_PATH - ocrlabel_path = DEFAULT_OCRLABEL_PATH - prob_font = 0.0 - prob_captcha = 0.0 - prob_ocr = 0.0 - stop_after = None - reload_mode = False - - for o, a in opts: - if o in ('-m', '--max-complexity'): - max_complexity = float(a) - assert max_complexity >= 0.0 and max_complexity <= 1.0 - elif o in ('-r', '--reload'): - reload_mode = True - elif o in ("-z", "--probability-zero"): - probability_zero = float(a) - assert probability_zero >= 0.0 and probability_zero <= 1.0 - elif o in ("-o", "--output-file"): - output_file_path = a - elif o in ('-p', "--params-output-file"): - params_output_file_path = a - elif o in ('-x', "--labels-output-file"): - labels_output_file_path = a - elif o in ('-s', "--stop-after"): - stop_after = int(a) - elif o in ('-f', "--data-file"): - nist_path = a - elif o in ('-l', "--label-file"): - label_path = a - elif o in ('-c', "--ocr-file"): - ocr_path = a - elif o in ('-d', "--ocrlabel-file"): - ocrlabel_path = a - elif o in ('-a', "--prob-font"): - prob_font = float(a) - elif o in ('-b', "--prob-captcha"): - prob_captcha = float(a) - elif o in ('-g', "--prob-ocr"): - prob_ocr = float(a) - elif o in ('-y', "--seed"): - pass - else: - assert False, "unhandled option" - - if output_file_path == None or params_output_file_path == None or labels_output_file_path == None: - print "Must specify the three output files." - usage() - pdb.gimp_quit(0) - sys.exit(2) - - if reload_mode: - reload(output_file_path, params_output_file_path) - else: - if DEBUG_IMAGES_PATH: - ''' - # This code is yet untested - debug_images = DebugImages(DEBUG_IMAGES_PATH) - num_img = len(debug_images.filelist) - pl = Pipeline(modules=MODULE_INSTANCES, num_img=num_img, image_size=(32,32)) - img_it = debug_images_iterator(debug_images) - ''' - else: - nist = NistData(nist_path, label_path, ocr_path, ocrlabel_path) - num_img = 819200 # 800 Mb file - if stop_after: - num_img = stop_after - pl = Pipeline(modules=MODULE_INSTANCES, num_img=num_img, image_size=(32,32)) - img_it = nist_supp_iterator(nist, prob_font, prob_captcha, prob_ocr, num_img) - - cpx_it = range_complexity_iterator(probability_zero, max_complexity) - pl.run(img_it, cpx_it) - pl.write_output(output_file_path, params_output_file_path, labels_output_file_path) - -_main() - -if DEBUG_X: - pylab.ioff() - pylab.show() - -pdb.gimp_quit(0) -
--- a/data_generation/transformations/testtransformations.py Fri Feb 26 14:15:38 2010 -0500 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,156 +0,0 @@ -#!/usr/bin/env python - - - -from pylearn.io import filetensor as ft -import copy -import pygame -import time -import numpy as N - -from ttf2jpg import ttf2jpg - -#from gimpfu import * - - -from PoivreSel import PoivreSel -from thick import Thick -from BruitGauss import BruitGauss -from DistorsionGauss import DistorsionGauss -from PermutPixel import PermutPixel -from gimp_script import GIMP1 -from Rature import Rature -from contrast import Contrast -from local_elastic_distortions import LocalElasticDistorter -from slant import Slant -from Occlusion import Occlusion -from add_background_image import AddBackground -from affine_transform import AffineTransformation - -###---------------------order of transformation module -MODULE_INSTANCES = [Slant(),Thick(),AffineTransformation(),LocalElasticDistorter(),GIMP1(),Rature(),Occlusion(), PermutPixel(),DistorsionGauss(),AddBackground(), PoivreSel(), BruitGauss(), Contrast()] - -###---------------------complexity associated to each of them -complexity = 0.7 -#complexity = [0.5]*len(MODULE_INSTANCES) -#complexity = [0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.] -n=100 - -def createimage(path,d): - for i in range(n): - screen.fill(0) - a=d[i,:] - off1=4*32 - off2=0 - for u in range(n): - b=N.asarray(N.reshape(a,(32,32))) - c=N.asarray([N.reshape(a*255.0,(32,32))]*3).T - new=pygame.surfarray.make_surface(c) - new=pygame.transform.scale2x(new) - new=pygame.transform.scale2x(new) - #new.set_palette(anglcolorpalette) - screen.blit(new,(0,0)) - exemple.blit(new,(0,0)) - - offset = 4*32 - offset2 = 0 - ct = 0 - ctmp = N.random.rand()*complexity - print u - for j in MODULE_INSTANCES: - #max dilation - #ctmp = N.random.rand()*complexity[ct] - ctmp = N.random.rand()*complexity - #print j.get_settings_names(), j.regenerate_parameters(ctmp) - th=j.regenerate_parameters(ctmp) - - b=j.transform_image(b) - c=N.asarray([b*255]*3).T - new=pygame.surfarray.make_surface(c) - new=pygame.transform.scale2x(new) - new=pygame.transform.scale2x(new) - if u==0: - #new.set_palette(anglcolorpalette) - screen.blit(new,(offset,offset2)) - font = pygame.font.SysFont('liberationserif',18) - text = font.render('%s '%(int(ctmp*100.0)/100.0) + j.__module__,0,(255,255,255),(0,0,0)) - #if j.__module__ == 'Rature': - # text = font.render('%s,%s'%(th[-1],int(ctmp*100.0)/100.0) + j.__module__,0,(255,255,255),(0,0,0)) - screen.blit(text,(offset,offset2+4*32)) - if ct == len(MODULE_INSTANCES)/2-1: - offset = 0 - offset2 = 4*32+20 - else: - offset += 4*32 - ct+=1 - exemple.blit(new,(off1,off2)) - if off1 != 9*4*32: - off1+=4*32 - else: - off1=0 - off2+=4*32 - pygame.image.save(exemple,path+'/perimages/%s.PNG'%i) - pygame.image.save(screen,path+'/exemples/%s.PNG'%i) - - - - -nbmodule = len(MODULE_INSTANCES) - -pygame.surfarray.use_arraytype('numpy') - -#pygame.display.init() -screen = pygame.Surface((4*(nbmodule+1)/2*32,2*(4*32+20)),depth=32) -exemple = pygame.Surface((N.ceil(N.sqrt(n))*4*32,N.ceil(N.sqrt(n))*4*32),depth=32) - -anglcolorpalette=[(x,x,x) for x in xrange(0,256)] -#pygame.Surface.set_palette(anglcolorpalette) -#screen.set_palette(anglcolorpalette) - -pygame.font.init() - -d = N.zeros((n,1024)) - -datapath = '/data/lisa/data/ocr_breuel/filetensor/unlv-corrected-2010-02-01-shuffled.ft' -f = open(datapath) -d = ft.read(f) -d = d[0:n,:]/255.0 -createimage('/u/glorotxa/transf/OCR',d) - - - -datapath = '/data/lisa/data/nist/by_class/' -f = open(datapath+'digits_reshuffled/digits_reshuffled_train_data.ft') -d = ft.read(f) -d = d[0:n,:]/255.0 -createimage('/u/glorotxa/transf/NIST_digits',d) - - - -datapath = '/data/lisa/data/nist/by_class/' -f = open(datapath+'upper/upper_train_data.ft') -d = ft.read(f) -d = d[0:n,:]/255.0 -createimage('/u/glorotxa/transf/NIST_upper',d) - -from Facade import * - -for i in range(n): - d[i,:]=N.asarray(N.reshape(generateCaptcha(0.8,0),(1,1024))/255.0,dtype='float32') - -createimage('/u/glorotxa/transf/capcha',d) - - -for i in range(n): - myttf2jpg = ttf2jpg() - d[i,:]=N.reshape(myttf2jpg.generate_image()[0],(1,1024)) -createimage('/u/glorotxa/transf/fonts',d) - -datapath = '/data/lisa/data/nist/by_class/' -f = open(datapath+'lower/lower_train_data.ft') -d = ft.read(f) -d = d[0:n,:]/255.0 -createimage('/u/glorotxa/transf/NIST_lower',d) - - -#pygame.display.quit()
--- a/data_generation/transformations/visualizer.py Fri Feb 26 14:15:38 2010 -0500 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,73 +0,0 @@ -#!/usr/bin/python - -import numpy -import Image -from image_tiling import tile_raster_images -import pylab -import time - -class Visualizer(): - def __init__(self, num_columns=10, image_size=(32,32), to_dir=None, on_screen=False): - self.list = [] - self.image_size = image_size - self.num_columns = num_columns - - self.on_screen = on_screen - self.to_dir = to_dir - - self.cur_grid_image = None - - self.cur_index = 0 - - def visualize_stop_and_flush(self): - self.make_grid_image() - - if self.on_screen: - self.visualize() - if self.to_dir: - self.dump_to_disk() - - self.stop_and_wait() - self.flush() - - self.cur_index += 1 - - def make_grid_image(self): - num_rows = len(self.list) / self.num_columns - if len(self.list) % self.num_columns != 0: - num_rows += 1 - grid_shape = (num_rows, self.num_columns) - self.cur_grid_image = tile_raster_images(numpy.array(self.list), self.image_size, grid_shape, tile_spacing=(5,5), output_pixel_vals=False) - - def visualize(self): - pylab.imshow(self.cur_grid_image) - pylab.draw() - - def dump_to_disk(self): - gi = Image.fromarray((self.cur_grid_image * 255).astype('uint8'), "L") - gi.save(self.to_dir + "/grid_" + str(self.cur_index) + ".png") - - def stop_and_wait(self): - # can't raw_input under gimp, so sleep) - print "New image generated, sleeping 5 secs" - time.sleep(5) - - def flush(self): - self.list = [] - - def get_parameters_names(self): - return [] - - def regenerate_parameters(self): - return [] - - def after_transform_callback(self, image): - self.transform_image(image) - - def end_transform_callback(self, final_image): - self.visualize_stop_and_flush() - - def transform_image(self, image): - sz = self.image_size - self.list.append(image.copy().reshape((sz[0] * sz[1]))) -