Mercurial > ift6266
changeset 209:d982dfa583df
Merge
author | fsavard |
---|---|
date | Fri, 05 Mar 2010 18:08:34 -0500 |
parents | acb942530923 (diff) 43af74a348ac (current diff) |
children | dc0d77c8a878 |
files | |
diffstat | 6 files changed, 417 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/deep/stacked_dae/nist_sda.py Thu Mar 04 20:43:21 2010 -0500 +++ b/deep/stacked_dae/nist_sda.py Fri Mar 05 18:08:34 2010 -0500 @@ -64,7 +64,7 @@ 'pretraining_lr':0.1, 'pretraining_epochs_per_layer':20, 'max_finetuning_epochs':2, - 'hidden_layers_sizes':300, + 'hidden_layers_sizes':800, 'corruption_levels':0.2, 'minibatch_size':20, #'reduce_train_to':300,
--- a/deep/stacked_dae/sgd_optimization.py Thu Mar 04 20:43:21 2010 -0500 +++ b/deep/stacked_dae/sgd_optimization.py Fri Mar 05 18:08:34 2010 -0500 @@ -86,6 +86,8 @@ finetune_lr = self.hp.finetuning_lr,\ input_divider = self.input_divider ) + #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") + sys.stdout.flush() def train(self): @@ -96,6 +98,9 @@ print "STARTING PRETRAINING, time = ", datetime.datetime.now() sys.stdout.flush() + #time_acc_func = 0.0 + #time_acc_total = 0.0 + start_time = time.clock() ## Pre-train layer-wise for i in xrange(self.classifier.n_layers): @@ -103,7 +108,14 @@ for epoch in xrange(self.hp.pretraining_epochs_per_layer): # go through the training set for batch_index in xrange(self.n_train_batches): + #t1 = time.clock() c = self.classifier.pretrain_functions[i](batch_index) + #t2 = time.clock() + + #time_acc_func += t2 - t1 + + #if batch_index % 500 == 0: + # print "acc / total", time_acc_func / (t2 - start_time), time_acc_func self.series_mux.append("reconstruction_error", c)
--- a/deep/stacked_dae/stacked_dae.py Thu Mar 04 20:43:21 2010 -0500 +++ b/deep/stacked_dae/stacked_dae.py Fri Mar 05 18:08:34 2010 -0500 @@ -140,6 +140,11 @@ #self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) #self.L = binary_cross_entropy(target=self.x, output=self.z, sum_axis=1) + # bypassing z to avoid running to log(0) + #self.z_a = T.dot(self.y, self.W_prime) + self.b_prime) + #self.L = -T.sum( self.x * (T.log(1)-T.log(1+T.exp(-self.z_a))) \ + # + (1.0-self.x) * (T.log(1)-T.log(1+T.exp(-self.z_a))), axis=1 ) + # I added this epsilon to avoid getting log(0) and 1/0 in grad # This means conceptually that there'd be no probability of 0, but that # doesn't seem to me as important (maybe I'm wrong?).
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/utils/tables_series/__init__.py Fri Mar 05 18:08:34 2010 -0500 @@ -0,0 +1,2 @@ +from series import ErrorSeries, BasicStatisticsSeries, AccumulatorSeriesWrapper, SeriesArrayWrapper, ParamsStatisticsWrapper +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/utils/tables_series/series.py Fri Mar 05 18:08:34 2010 -0500 @@ -0,0 +1,227 @@ +from tables import * +import numpy + +''' +The way these "IsDescription constructor" work is simple: write the +code as if it were in a file, then exec()ute it, leaving us with +a local-scoped LocalDescription which may be used to call createTable. + +It's a small hack, but it's necessary as the names of the columns +are retrieved based on the variable name, which we can't programmatically set +otherwise. +''' + +def get_beginning_description_n_ints(int_names, int_width=64): + int_constructor = "Int64Col" + if int_width == 32: + int_constructor = "Int32Col" + + toexec = "class LocalDescription(IsDescription):\n" + + pos = 0 + + for n in int_names: + toexec += "\t" + n + " = " + int_constructor + "(pos=" + str(pos) + ")\n" + + return toexec + +def get_description_with_n_ints_n_floats(int_names, float_names, int_width=64, float_width=32): + """ + Constructs a class to be used when constructing a table with PyTables. + + This is useful to construct a series with an index with multiple levels. + E.g. if you want to index your "validation error" with "epoch" first, then + "minibatch_index" second, you'd use two "int_names". + + Parameters + ---------- + int_names : tuple of str + Names of the int (e.g. index) columns + float_names : tuple of str + Names of the float (e.g. error) columns + int_width : {'32', '64'} + Type of ints. + float_width : {'32', '64'} + Type of floats. + + Returns + ------- + A class object, to pass to createTable() + """ + + toexec = get_beginning_description_n_ints(int_names, int_width=int_width) + + float_constructor = "Float32Col" + if float_width == 64: + float_constructor = "Float64Col" + + pos = len(int_names) + + for n in float_names: + toexec += "\t" + n + " = " + float_constructor + "(pos=" + str(pos) + ")\n" + + exec(toexec) + + return LocalDescription + +class Series(): + def __init__(self, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'): + """This is used as metadata in the HDF5 file to identify the series""" + self.table_name = table_name + self.hdf5_file = hdf5_file + self.index_names = index_names + self.title = title + + def append(self, index, element): + raise NotImplementedError + +class ErrorSeries(Series): + def __init__(self, error_name, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'): + Series.__init__(self, table_name, hdf5_file, index_names, title) + + self.error_name = error_name + + table_description = self._get_table_description() + + self._table = hdf5_file.createTable(hdf5_group, self.table_name, table_description, title=title) + + def _get_table_description(self): + return get_description_with_n_ints_n_floats(self.index_names, (self.error_name,)) + + def append(self, index, error): + if len(index) != len(self.index_names): + raise ValueError("index provided does not have the right length (expected " \ + + str(len(self.index_names)) + " got " + str(len(index))) + + newrow = self._table.row + + for col_name, value in zip(self.index_names, index): + newrow[col_name] = value + newrow[self.error_name] = error + + newrow.append() + + self.hdf5_file.flush() + +# Does not inherit from Series because it does not itself need to +# access the hdf5_file and does not need a series_name (provided +# by the base_series.) +class AccumulatorSeriesWrapper(): + """ + + """ + def __init__(self, base_series, reduce_every, reduce_function=numpy.mean): + self.base_series = base_series + self.reduce_function = reduce_function + self.reduce_every = reduce_every + + self._buffer = [] + + + def append(self, index, element): + """ + Parameters + ---------- + index : tuple of int + The index used is the one of the last element reduced. E.g. if + you accumulate over the first 1000 minibatches, the index + passed to the base_series.append() function will be 1000. + """ + self._buffer.append(element) + + if len(self._buffer) == self.reduce_every: + reduced = self.reduce_function(self._buffer) + self.base_series.append(index, reduced) + self._buffer = [] + + # This should never happen, except if lists + # were appended, which should be a red flag. + assert len(self._buffer) < self.reduce_every + +# Outside of class to fix an issue with exec in Python 2.6. +# My sorries to the God of pretty code. +def BasicStatisticsSeries_construct_table_toexec(index_names): + toexec = get_beginning_description_n_ints(index_names) + + bpos = len(index_names) + toexec += "\tmean = Float32Col(pos=" + str(bpos) + ")\n" + toexec += "\tmin = Float32Col(pos=" + str(bpos+1) + ")\n" + toexec += "\tmax = Float32Col(pos=" + str(bpos+2) + ")\n" + toexec += "\tstd = Float32Col(pos=" + str(bpos+3) + ")\n" + + # This creates "LocalDescription", which we may then use + exec(toexec) + + return LocalDescription + +class BasicStatisticsSeries(Series): + """ + Parameters + ---------- + series_name : str + Not optional here. Will be prepended with "Basic statistics for " + """ + def __init__(self, table_name, hdf5_file, index_names=('epoch',), title=None, hdf5_group='/'): + Series.__init__(self, table_name, hdf5_file, index_names, title) + + self.hdf5_group = hdf5_group + + self.construct_table() + + def construct_table(self): + table_description = BasicStatisticsSeries_construct_table_toexec(self.index_names) + + self._table = self.hdf5_file.createTable(self.hdf5_group, self.table_name, table_description) + + def append(self, index, array): + if len(index) != len(self.index_names): + raise ValueError("index provided does not have the right length (expected " \ + + str(len(self.index_names)) + " got " + str(len(index))) + + newrow = self._table.row + + for col_name, value in zip(self.index_names, index): + newrow[col_name] = value + + newrow["mean"] = numpy.mean(array) + newrow["min"] = numpy.min(array) + newrow["max"] = numpy.max(array) + newrow["std"] = numpy.std(array) + + newrow.append() + + self.hdf5_file.flush() + +class SeriesArrayWrapper(): + """ + Simply redistributes any number of elements to sub-series to respective append()s. + """ + + def __init__(self, base_series_list): + self.base_series_list = base_series_list + + def append(self, index, elements): + if len(elements) != len(self.base_series_list): + raise ValueError("not enough or too much elements provided (expected " \ + + str(len(self.base_series_list)) + " got " + str(len(elements))) + + for series, el in zip(self.base_series_list, elements): + series.append(index, el) + +class ParamsStatisticsWrapper(SeriesArrayWrapper): + def __init__(self, arrays_names, new_group_name, hdf5_file, base_group='/', index_names=('epoch',), title=""): + base_series_list = [] + + new_group = hdf5_file.createGroup(base_group, new_group_name, title=title) + + for name in arrays_names: + base_series_list.append( + BasicStatisticsSeries( + table_name=name, + hdf5_file=hdf5_file, + index_names=('epoch','minibatch'), + hdf5_group=new_group._v_pathname)) + + SeriesArrayWrapper.__init__(self, base_series_list) + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/utils/tables_series/test_series.py Fri Mar 05 18:08:34 2010 -0500 @@ -0,0 +1,170 @@ +import tempfile +import numpy +import numpy.random +from tables import * + +from series import * + + +def compare_floats(f1,f2): + if f1-f2 < 1e-3: + return True + return False + +def compare_lists(it1, it2, floats=False): + if len(it1) != len(it2): + return False + + for el1, el2 in zip(it1, it2): + if floats: + if not compare_floats(el1,el2): + return False + elif el1 != el2: + return False + + return True + +def test_ErrorSeries_common_case(h5f=None): + if not h5f: + h5f_path = tempfile.NamedTemporaryFile().name + h5f = openFile(h5f_path, "w") + + validation_error = ErrorSeries(error_name="validation_error", table_name="validation_error", + hdf5_file=h5f, index_names=('epoch','minibatch'), + title="Validation error indexed by epoch and minibatch") + + # (1,1), (1,2) etc. are (epoch, minibatch) index + validation_error.append((1,1), 32.0) + validation_error.append((1,2), 30.0) + validation_error.append((2,1), 28.0) + validation_error.append((2,2), 26.0) + + h5f.close() + + h5f = openFile(h5f_path, "r") + + table = h5f.getNode('/', 'validation_error') + + assert compare_lists(table.cols.epoch[:], [1,1,2,2]) + assert compare_lists(table.cols.minibatch[:], [1,2,1,2]) + assert compare_lists(table.cols.validation_error[:], [32.0, 30.0, 28.0, 26.0]) + +def test_AccumulatorSeriesWrapper_common_case(h5f=None): + if not h5f: + h5f_path = tempfile.NamedTemporaryFile().name + h5f = openFile(h5f_path, "w") + + validation_error = ErrorSeries(error_name="accumulated_validation_error", + table_name="accumulated_validation_error", + hdf5_file=h5f, + index_names=('epoch','minibatch'), + title="Validation error, summed every 3 minibatches, indexed by epoch and minibatch") + + accumulator = AccumulatorSeriesWrapper(base_series=validation_error, + reduce_every=3, reduce_function=numpy.sum) + + # (1,1), (1,2) etc. are (epoch, minibatch) index + accumulator.append((1,1), 32.0) + accumulator.append((1,2), 30.0) + accumulator.append((2,1), 28.0) + accumulator.append((2,2), 26.0) + accumulator.append((3,1), 24.0) + accumulator.append((3,2), 22.0) + + h5f.close() + + h5f = openFile(h5f_path, "r") + + table = h5f.getNode('/', 'accumulated_validation_error') + + assert compare_lists(table.cols.epoch[:], [2,3]) + assert compare_lists(table.cols.minibatch[:], [1,2]) + assert compare_lists(table.cols.accumulated_validation_error[:], [90.0,72.0], floats=True) + +def test_BasicStatisticsSeries_common_case(h5f=None): + if not h5f: + h5f_path = tempfile.NamedTemporaryFile().name + h5f = openFile(h5f_path, "w") + + stats_series = BasicStatisticsSeries(table_name="b_vector_statistics", + hdf5_file=h5f, index_names=('epoch','minibatch'), + title="Basic statistics for b vector indexed by epoch and minibatch") + + # (1,1), (1,2) etc. are (epoch, minibatch) index + stats_series.append((1,1), [0.15, 0.20, 0.30]) + stats_series.append((1,2), [-0.18, 0.30, 0.58]) + stats_series.append((2,1), [0.18, -0.38, -0.68]) + stats_series.append((2,2), [0.15, 0.02, 1.9]) + + h5f.close() + + h5f = openFile(h5f_path, "r") + + table = h5f.getNode('/', 'b_vector_statistics') + + assert compare_lists(table.cols.epoch[:], [1,1,2,2]) + assert compare_lists(table.cols.minibatch[:], [1,2,1,2]) + assert compare_lists(table.cols.mean[:], [0.21666667, 0.23333333, -0.29333332, 0.69], floats=True) + assert compare_lists(table.cols.min[:], [0.15000001, -0.18000001, -0.68000001, 0.02], floats=True) + assert compare_lists(table.cols.max[:], [0.30, 0.58, 0.18, 1.9], floats=True) + assert compare_lists(table.cols.std[:], [0.06236095, 0.31382939, 0.35640177, 0.85724366], floats=True) + +def test_ParamsStatisticsWrapper_commoncase(h5f=None): + import numpy.random + + if not h5f: + h5f_path = tempfile.NamedTemporaryFile().name + h5f = openFile(h5f_path, "w") + + stats = ParamsStatisticsWrapper(new_group_name="params", base_group="/", + arrays_names=('b1','b2','b3'), hdf5_file=h5f, + index_names=('epoch','minibatch')) + + b1 = numpy.random.rand(5) + b2 = numpy.random.rand(5) + b3 = numpy.random.rand(5) + stats.append((1,1), [b1,b2,b3]) + + h5f.close() + + h5f = openFile(h5f_path, "r") + + b1_table = h5f.getNode('/params', 'b1') + b3_table = h5f.getNode('/params', 'b3') + + assert b1_table.cols.mean[0] - numpy.mean(b1) < 1e-3 + assert b3_table.cols.mean[0] - numpy.mean(b3) < 1e-3 + assert b1_table.cols.min[0] - numpy.min(b1) < 1e-3 + assert b3_table.cols.min[0] - numpy.min(b3) < 1e-3 + +def test_get_desc(): + h5f_path = tempfile.NamedTemporaryFile().name + h5f = openFile(h5f_path, "w") + + desc = get_description_with_n_ints_n_floats(("col1","col2"), ("col3","col4")) + + mytable = h5f.createTable('/', 'mytable', desc) + + # just make sure the columns are there... otherwise this will throw an exception + mytable.cols.col1 + mytable.cols.col2 + mytable.cols.col3 + mytable.cols.col4 + + try: + # this should fail... LocalDescription must be local to get_desc_etc + test = LocalDescription + assert False + except: + assert True + + assert True + +if __name__ == '__main__': + import tempfile + test_get_desc() + test_ErrorSeries_common_case() + test_BasicStatisticsSeries_common_case() + test_AccumulatorSeriesWrapper_common_case() + test_ParamsStatisticsWrapper_commoncase() +