Mercurial > ift6266
changeset 365:22919039f7ab
Fixing a wrong commit and committing more files.
author | humel |
---|---|
date | Thu, 22 Apr 2010 19:57:05 -0400 |
parents | c05680f8c92f (current diff) 7bc555cc9aab (diff) |
children | 64fa85d68923 |
files | scripts/setup_batches.py |
diffstat | 3 files changed, 318 insertions(+), 70 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/crbm/mnist_config.py.example Thu Apr 22 19:57:05 2010 -0400 @@ -0,0 +1,111 @@ +# ---------------------------------------------------------------------------- +# BEGIN EXPERIMENT ISOLATION CODE + +# Path to pass to jobman sqlschedule. IMPORTANT TO CHANGE TO REFLECT YOUR CLONE. +# Make sure this is accessible from the default $PYTHONPATH (in your .bashrc) +# (and make sure every subdirectory has its __init__.py file) +EXPERIMENT_PATH = "ift6266_mnistcrbm_exp1.ift6266.deep.crbm.mnist_crbm.jobman_entrypoint" + +def isolate_experiment(): + ''' + This makes sure we use the codebase clone created for this experiment. + I.e. if you want to make modifications to the codebase but don't want your + running experiment code to be impacted by those changes, first copy the + codebase somewhere, and configure this section. It will make sure we import + from the right place. + + MUST BE DONE BEFORE IMPORTING ANYTHING ELSE + (Leave this comment there so others will understand what's going on) + ''' + + # Place where you copied modules that should be frozen for this experiment + codebase_clone_path = "/u/savardf/ift6266/experiment_clones/ift6266_mnistcrbm_exp1" + + # Places where there might be conflicting modules from your $PYTHONPATH + remove_these_from_pythonpath = ["/u/savardf/ift6266/dev_code"] + + import sys + sys.path[0:0] = [codebase_clone_path] + + # remove paths we specifically don't want in $PYTHONPATH + for bad_path in remove_these_from_pythonpath: + sys.path[:] = [el for el in sys.path if not el in (bad_path, bad_path+"/")] + + # Make the imports + import ift6266 + + # Just making sure we're importing from the right place + modules_to_check = [ift6266] + for module in modules_to_check: + if not codebase_clone_path in module.__path__[0]: + raise RuntimeError("Module loaded from incorrect path "+module.__path__[0]) + +# END EXPERIMENT ISOLATION CODE +# ---------------------------------------------------------------------------- + +from jobman import DD + +''' +These are parameters used by mnist_crbm.py. They'll end up as globals in there. + +Rename this file to config.py and configure as needed. +DON'T add the renamed file to the repository, as others might use it +without realizing it, with dire consequences. +''' + +# change "sandbox" when you're ready +JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/yourtablenamehere' + +# Set this to True when you want to run cluster tests, ie. you want +# to run on the cluster, many jobs, but want to reduce the training +# set size and the number of epochs, so you know everything runs +# fine on the cluster. +# Set this PRIOR to inserting your test jobs in the DB. +TEST_CONFIG = False + +# save params at training end +SAVE_PARAMS = True + +IMAGE_OUTPUT_DIR = 'img/' + +# number of minibatches before taking means for valid error etc. +REDUCE_EVERY = 100 + +# print series to stdout too (otherwise just produce the HDF5 file) +SERIES_STDOUT_TOO = False + +VISUALIZE_EVERY = 20000 +GIBBS_STEPS_IN_VIZ_CHAIN = 1000 + +if TEST_CONFIG: + REDUCE_EVERY = 10 + VISUALIZE_EVERY = 20 + +# This is to configure insertion of jobs on the cluster. +# Possible values the hyperparameters can take. These are then +# combined with produit_cartesien_jobs so we get a list of all +# possible combinations, each one resulting in a job inserted +# in the jobman DB. +JOB_VALS = {'learning_rate': [1.0, 0.1, 0.01], + 'sparsity_lambda': [3.0,0.5], + 'sparsity_p': [0.3,0.05], + 'num_filters': [40,15], + 'filter_size': [12,7], + 'minibatch_size': [20], + 'num_epochs': [20]} + +# Just useful for tests... minimal number of epochs +# Useful when launching a single local job +DEFAULT_STATE = DD({'learning_rate': 0.1, + 'sparsity_lambda': 1.0, + 'sparsity_p': 0.05, + 'num_filters': 40, + 'filter_size': 12, + 'minibatch_size': 10, + 'num_epochs': 20}) + +# To reinsert duplicate of jobs that crashed +REINSERT_COLS = ['learning_rate','sparsity_lambda','sparsity_p','num_filters','filter_size','minibatch_size','dupe'] +#REINSERT_JOB_VALS = [\ +# [,2],] +
--- a/deep/crbm/mnist_crbm.py Thu Apr 22 19:50:21 2010 -0400 +++ b/deep/crbm/mnist_crbm.py Thu Apr 22 19:57:05 2010 -0400 @@ -3,6 +3,15 @@ import sys import os, os.path +# do this before importing custom modules +from mnist_config import * + +if not (len(sys.argv) > 1 and sys.argv[1] in \ + ('test_jobman_entrypoint', 'run_local')): + # in those cases don't use isolated code, use dev code + print "Running experiment isolation code" + isolate_experiment() + import numpy as N import theano @@ -10,6 +19,7 @@ from crbm import CRBM, ConvolutionParams +import pylearn, pylearn.version from pylearn.datasets import MNIST from pylearn.io.image_tiling import tile_raster_images @@ -18,68 +28,63 @@ from pylearn.io.seriestables import * import tables -IMAGE_OUTPUT_DIR = 'img/' - -REDUCE_EVERY = 100 +import ift6266 -def filename_from_time(suffix): - import datetime - return str(datetime.datetime.now()) + suffix + ".png" +import utils -# Just a shortcut for a common case where we need a few -# related Error (float) series -def get_accumulator_series_array( \ - hdf5_file, group_name, series_names, - reduce_every, - index_names=('epoch','minibatch'), - stdout_too=True, - skip_hdf5_append=False): - all_series = [] - - hdf5_file.createGroup('/', group_name) +def setup_workdir(): + if not os.path.exists(IMAGE_OUTPUT_DIR): + os.mkdir(IMAGE_OUTPUT_DIR) + if not os.path.exists(IMAGE_OUTPUT_DIR): + print "For some reason mkdir(IMAGE_OUTPUT_DIR) failed!" + sys.exit(1) + print "Created image output dir" + elif os.path.isfile(IMAGE_OUTPUT_DIR): + print "IMAGE_OUTPUT_DIR is not a directory!" + sys.exit(1) - other_targets = [] - if stdout_too: - other_targets = [StdoutAppendTarget()] +#def filename_from_time(suffix): +# import datetime +# return str(datetime.datetime.now()) + suffix + ".png" - for sn in series_names: - series_base = \ - ErrorSeries(error_name=sn, - table_name=sn, - hdf5_file=hdf5_file, - hdf5_group='/'+group_name, - index_names=index_names, - other_targets=other_targets, - skip_hdf5_append=skip_hdf5_append) +def jobman_entrypoint(state, channel): + # record mercurial versions of each package + pylearn.version.record_versions(state,[theano,ift6266,pylearn]) + channel.save() - all_series.append( \ - AccumulatorSeriesWrapper( \ - base_series=series_base, - reduce_every=reduce_every)) + setup_workdir() - ret_wrapper = SeriesArrayWrapper(all_series) + crbm = MnistCrbm(state) + crbm.train() - return ret_wrapper + return channel.COMPLETE class MnistCrbm(object): - def __init__(self): - self.mnist = MNIST.full()#first_10k() + def __init__(self, state): + self.state = state + + if TEST_CONFIG: + self.mnist = MNIST.first_1k() + print "Test config, so loaded MNIST first 1000" + else: + self.mnist = MNIST.full()#first_10k() + print "Loaded MNIST full" self.cp = ConvolutionParams( \ - num_filters=40, + num_filters=state.num_filters, num_input_planes=1, - height_filters=12, - width_filters=12) + height_filters=state.filter_size, + width_filters=state.filter_size) self.image_size = (28,28) - self.minibatch_size = 10 + self.minibatch_size = state.minibatch_size - self.lr = 0.01 - self.sparsity_lambda = 1.0 + self.lr = state.learning_rate + self.sparsity_lambda = state.sparsity_lambda # about 1/num_filters, so only one filter active at a time # 40 * 0.05 = ~2 filters active for any given pixel - self.sparsity_p = 0.05 + self.sparsity_p = state.sparsity_p self.crbm = CRBM( \ minibatch_size=self.minibatch_size, @@ -89,12 +94,11 @@ sparsity_lambda=self.sparsity_lambda, sparsity_p=self.sparsity_p) - self.num_epochs = 10 + self.num_epochs = state.num_epochs self.init_series() def init_series(self): - series = {} basedir = os.getcwd() @@ -103,38 +107,36 @@ cd_series_names = self.crbm.cd_return_desc series['cd'] = \ - get_accumulator_series_array( \ + utils.get_accumulator_series_array( \ h5f, 'cd', cd_series_names, REDUCE_EVERY, - stdout_too=True) + stdout_too=SERIES_STDOUT_TOO) sparsity_series_names = self.crbm.sparsity_return_desc series['sparsity'] = \ - get_accumulator_series_array( \ + utils.get_accumulator_series_array( \ h5f, 'sparsity', sparsity_series_names, REDUCE_EVERY, - stdout_too=True) + stdout_too=SERIES_STDOUT_TOO) # so first we create the names for each table, based on # position of each param in the array - params_stdout = StdoutAppendTarget("\n------\nParams") + params_stdout = [] + if SERIES_STDOUT_TOO: + params_stdout = [StdoutAppendTarget()] series['params'] = SharedParamsStatisticsWrapper( new_group_name="params", base_group="/", arrays_names=['W','b_h','b_x'], hdf5_file=h5f, index_names=('epoch','minibatch'), - other_targets=[params_stdout]) + other_targets=params_stdout) self.series = series def train(self): num_minibatches = len(self.mnist.train.x) / self.minibatch_size - print_every = 1000 - visualize_every = 5000 - gibbs_steps_from_random = 1000 - for epoch in xrange(self.num_epochs): for mb_index in xrange(num_minibatches): mb_x = self.mnist.train.x \ @@ -158,13 +160,22 @@ self.series['params'].append( \ (epoch, mb_index), self.crbm.params) - if total_idx % visualize_every == 0: + if total_idx % VISUALIZE_EVERY == 0: self.visualize_gibbs_result(\ - mb_x, gibbs_steps_from_random) - self.visualize_gibbs_result(mb_x, 1) - self.visualize_filters() + mb_x, GIBBS_STEPS_IN_VIZ_CHAIN, + "gibbs_chain_"+str(epoch)+"_"+str(mb_index)) + self.visualize_gibbs_result(mb_x, 1, + "gibbs_1_"+str(epoch)+"_"+str(mb_index)) + self.visualize_filters( + "filters_"+str(epoch)+"_"+str(mb_index)) + if TEST_CONFIG: + # do a single epoch for cluster tests config + break + + if SAVE_PARAMS: + utils.save_params(self.crbm.params, "params.pkl") - def visualize_gibbs_result(self, start_x, gibbs_steps): + def visualize_gibbs_result(self, start_x, gibbs_steps, filename): # Run minibatch_size chains for gibbs_steps x_samples = None if not start_x is None: @@ -176,15 +187,14 @@ tile = tile_raster_images(x_samples, self.image_size, (1, self.minibatch_size), output_pixel_vals=True) - filepath = os.path.join(IMAGE_OUTPUT_DIR, - filename_from_time("gibbs")) + filepath = os.path.join(IMAGE_OUTPUT_DIR, filename+".png") img = Image.fromarray(tile) img.save(filepath) print "Result of running Gibbs", \ gibbs_steps, "times outputed to", filepath - def visualize_filters(self): + def visualize_filters(self, filename): cp = self.cp # filter size @@ -198,18 +208,27 @@ tile = tile_raster_images(filters_flattened, fsz, tile_shape, output_pixel_vals=True) - filepath = os.path.join(IMAGE_OUTPUT_DIR, - filename_from_time("filters")) + filepath = os.path.join(IMAGE_OUTPUT_DIR, filename+".png") img = Image.fromarray(tile) img.save(filepath) print "Filters (as images) outputed to", filepath - print "b_h is", self.crbm.b_h.value - if __name__ == '__main__': - mc = MnistCrbm() - mc.train() + args = sys.argv[1:] + if len(args) == 0: + print "Bad usage" + elif args[0] == 'jobman_insert': + utils.jobman_insert_job_vals(JOBDB, EXPERIMENT_PATH, JOB_VALS) + elif args[0] == 'test_jobman_entrypoint': + chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) + jobman_entrypoint(DEFAULT_STATE, chanmock) + elif args[0] == 'run_default': + setup_workdir() + mc = MnistCrbm(DEFAULT_STATE) + mc.train() + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/crbm/utils.py Thu Apr 22 19:57:05 2010 -0400 @@ -0,0 +1,118 @@ +#!/usr/bin/python +# coding: utf-8 + +from __future__ import with_statement + +import jobman +from jobman import DD + +from pylearn.io.seriestables import * +import tables + + + +# from pylearn codebase +# useful in __init__(param1, param2, etc.) to save +# values in self.param1, self.param2... just call +# update_locals(self, locals()) +def update_locals(obj, dct): + if 'self' in dct: + del dct['self'] + obj.__dict__.update(dct) + +# from a dictionary of possible values for hyperparameters, e.g. +# hp_values = {'learning_rate':[0.1, 0.01], 'num_layers': [1,2]} +# create a list of other dictionaries representing all the possible +# combinations, thus in this example creating: +# [{'learning_rate': 0.1, 'num_layers': 1}, ...] +# (similarly for combinations (0.1, 2), (0.01, 1), (0.01, 2)) +def produit_cartesien_jobs(val_dict): + job_list = [DD()] + all_keys = val_dict.keys() + + for key in all_keys: + possible_values = val_dict[key] + new_job_list = [] + for val in possible_values: + for job in job_list: + to_insert = job.copy() + to_insert.update({key: val}) + new_job_list.append(to_insert) + job_list = new_job_list + + return job_list + +def jobs_from_reinsert_list(cols, job_vals): + job_list = [] + for vals in job_vals: + job = DD() + for i, col in enumerate(cols): + job[col] = vals[i] + job_list.append(job) + + return job_list + +def save_params(all_params, filename): + import pickle + with open(filename, 'wb') as f: + values = [p.value for p in all_params] + + # -1 for HIGHEST_PROTOCOL + pickle.dump(values, f, -1) + +# Perform insertion into the Postgre DB based on combination +# of hyperparameter values above +# (see comment for produit_cartesien_jobs() to know how it works) +def jobman_insert_job_vals(job_db, experiment_path, job_vals): + jobs = produit_cartesien_jobs(job_vals) + + db = jobman.sql.db(job_db) + for job in jobs: + job.update({jobman.sql.EXPERIMENT: experiment_path}) + jobman.sql.insert_dict(job, db) + +def jobman_insert_specific_jobs(job_db, experiment_path, + insert_cols, insert_vals): + jobs = jobs_from_reinsert_list(insert_cols, insert_vals) + + db = jobman.sql.db(job_db) + for job in jobs: + job.update({jobman.sql.EXPERIMENT: experiment_path}) + jobman.sql.insert_dict(job, db) + +# Just a shortcut for a common case where we need a few +# related Error (float) series +def get_accumulator_series_array( \ + hdf5_file, group_name, series_names, + reduce_every, + index_names=('epoch','minibatch'), + stdout_too=True, + skip_hdf5_append=False): + all_series = [] + + new_group = hdf5_file.createGroup('/', group_name) + + other_targets = [] + if stdout_too: + other_targets = [StdoutAppendTarget()] + + for sn in series_names: + series_base = \ + ErrorSeries(error_name=sn, + table_name=sn, + hdf5_file=hdf5_file, + hdf5_group=new_group._v_pathname, + index_names=index_names, + other_targets=other_targets, + skip_hdf5_append=skip_hdf5_append) + + all_series.append( \ + AccumulatorSeriesWrapper( \ + base_series=series_base, + reduce_every=reduce_every)) + + ret_wrapper = SeriesArrayWrapper(all_series) + + return ret_wrapper + +