Mercurial > ift6266
changeset 489:ee9836baade3
merge
author | dumitru@dumitru.mtv.corp.google.com |
---|---|
date | Mon, 31 May 2010 19:07:59 -0700 |
parents | 6c9ff48e15cd (diff) 21787ac4e5a0 (current diff) |
children | 19eab4daf212 |
files | writeup/nips2010_submission.tex |
diffstat | 2 files changed, 99 insertions(+), 79 deletions(-) [+] |
line wrap: on
line diff
--- a/writeup/nips2010_submission.tex Mon May 31 22:04:44 2010 -0400 +++ b/writeup/nips2010_submission.tex Mon May 31 19:07:59 2010 -0700 @@ -604,84 +604,5 @@ %\bibliographystyle{apalike} } -\newpage - -\centerline{APPENDIX FOR {\bf Deep Self-Taught Learning for Handwritten Character Recognition}} - -\vspace*{1cm} - -\begin{table}[h] -\caption{Overall comparison of error rates ($\pm$ std.err.) on 62 character classes (10 digits + -26 lower + 26 upper), except for last columns -- digits only, between deep architecture with pre-training -(SDA=Stacked Denoising Autoencoder) and ordinary shallow architecture -(MLP=Multi-Layer Perceptron). The models shown are all trained using perturbed data (NISTP or P07) -and using a validation set to select hyper-parameters and other training choices. -\{SDA,MLP\}0 are trained on NIST, -\{SDA,MLP\}1 are trained on NISTP, and \{SDA,MLP\}2 are trained on P07. -The human error rate on digits is a lower bound because it does not count digits that were -recognized as letters. For comparison, the results found in the literature -on NIST digits classification using the same test set are included.} -\label{tab:sda-vs-mlp-vs-humans} -\begin{center} -\begin{tabular}{|l|r|r|r|r|} \hline - & NIST test & NISTP test & P07 test & NIST test digits \\ \hline -Humans& 18.2\% $\pm$.1\% & 39.4\%$\pm$.1\% & 46.9\%$\pm$.1\% & $1.4\%$ \\ \hline -SDA0 & 23.7\% $\pm$.14\% & 65.2\%$\pm$.34\% & 97.45\%$\pm$.06\% & 2.7\% $\pm$.14\%\\ \hline -SDA1 & 17.1\% $\pm$.13\% & 29.7\%$\pm$.3\% & 29.7\%$\pm$.3\% & 1.4\% $\pm$.1\%\\ \hline -SDA2 & 18.7\% $\pm$.13\% & 33.6\%$\pm$.3\% & 39.9\%$\pm$.17\% & 1.7\% $\pm$.1\%\\ \hline -MLP0 & 24.2\% $\pm$.15\% & 68.8\%$\pm$.33\% & 78.70\%$\pm$.14\% & 3.45\% $\pm$.15\% \\ \hline -MLP1 & 23.0\% $\pm$.15\% & 41.8\%$\pm$.35\% & 90.4\%$\pm$.1\% & 3.85\% $\pm$.16\% \\ \hline -MLP2 & 24.3\% $\pm$.15\% & 46.0\%$\pm$.35\% & 54.7\%$\pm$.17\% & 4.85\% $\pm$.18\% \\ \hline -\citep{Granger+al-2007} & & & & 4.95\% $\pm$.18\% \\ \hline -\citep{Cortes+al-2000} & & & & 3.71\% $\pm$.16\% \\ \hline -\citep{Oliveira+al-2002} & & & & 2.4\% $\pm$.13\% \\ \hline -\citep{Milgram+al-2005} & & & & 2.1\% $\pm$.12\% \\ \hline -\end{tabular} -\end{center} -\end{table} - -\begin{table}[h] -\caption{Relative change in error rates due to the use of perturbed training data, -either using NISTP, for the MLP1/SDA1 models, or using P07, for the MLP2/SDA2 models. -A positive value indicates that training on the perturbed data helped for the -given test set (the first 3 columns on the 62-class tasks and the last one is -on the clean 10-class digits). Clearly, the deep learning models did benefit more -from perturbed training data, even when testing on clean data, whereas the MLP -trained on perturbed data performed worse on the clean digits and about the same -on the clean characters. } -\label{tab:perturbation-effect} -\begin{center} -\begin{tabular}{|l|r|r|r|r|} \hline - & NIST test & NISTP test & P07 test & NIST test digits \\ \hline -SDA0/SDA1-1 & 38\% & 84\% & 228\% & 93\% \\ \hline -SDA0/SDA2-1 & 27\% & 94\% & 144\% & 59\% \\ \hline -MLP0/MLP1-1 & 5.2\% & 65\% & -13\% & -10\% \\ \hline -MLP0/MLP2-1 & -0.4\% & 49\% & 44\% & -29\% \\ \hline -\end{tabular} -\end{center} -\end{table} - -\begin{table}[h] -\caption{Test error rates and relative change in error rates due to the use of -a multi-task setting, i.e., training on each task in isolation vs training -for all three tasks together, for MLPs vs SDAs. The SDA benefits much -more from the multi-task setting. All experiments on only on the -unperturbed NIST data, using validation error for model selection. -Relative improvement is 1 - single-task error / multi-task error.} -\label{tab:multi-task} -\begin{center} -\begin{tabular}{|l|r|r|r|} \hline - & single-task & multi-task & relative \\ - & setting & setting & improvement \\ \hline -MLP-digits & 3.77\% & 3.99\% & 5.6\% \\ \hline -MLP-lower & 17.4\% & 16.8\% & -4.1\% \\ \hline -MLP-upper & 7.84\% & 7.54\% & -3.6\% \\ \hline -SDA-digits & 2.6\% & 3.56\% & 27\% \\ \hline -SDA-lower & 12.3\% & 14.4\% & 15\% \\ \hline -SDA-upper & 5.93\% & 6.78\% & 13\% \\ \hline -\end{tabular} -\end{center} -\end{table} - \end{document}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/writeup/nips2010_submission_supplementary.tex Mon May 31 19:07:59 2010 -0700 @@ -0,0 +1,99 @@ +\documentclass{article} % For LaTeX2e +\usepackage{nips10submit_e,times} + +\usepackage{amsthm,amsmath,amssymb,bbold,bbm} +\usepackage{algorithm,algorithmic} +\usepackage[utf8]{inputenc} +\usepackage{graphicx,subfigure} +\usepackage[numbers]{natbib} + +\title{Deep Self-Taught Learning for Handwritten Character Recognition\\ +\emph{Supplementary Material}} + +\begin{document} + +\maketitle + +These tables correspond to Figures 3 and 4 and contain the raw error rates for each model and dataset considered. + +\begin{table}[h] +\caption{Overall comparison of error rates ($\pm$ std.err.) on 62 character classes (10 digits + +26 lower + 26 upper), except for last columns -- digits only, between deep architecture with pre-training +(SDA=Stacked Denoising Autoencoder) and ordinary shallow architecture +(MLP=Multi-Layer Perceptron). The models shown are all trained using perturbed data (NISTP or P07) +and using a validation set to select hyper-parameters and other training choices. +\{SDA,MLP\}0 are trained on NIST, +\{SDA,MLP\}1 are trained on NISTP, and \{SDA,MLP\}2 are trained on P07. +The human error rate on digits is a lower bound because it does not count digits that were +recognized as letters. For comparison, the results found in the literature +on NIST digits classification using the same test set are included.} +\label{tab:sda-vs-mlp-vs-humans} +\begin{center} +\begin{tabular}{|l|r|r|r|r|} \hline + & NIST test & NISTP test & P07 test & NIST test digits \\ \hline +Humans& 18.2\% $\pm$.1\% & 39.4\%$\pm$.1\% & 46.9\%$\pm$.1\% & $1.4\%$ \\ \hline +SDA0 & 23.7\% $\pm$.14\% & 65.2\%$\pm$.34\% & 97.45\%$\pm$.06\% & 2.7\% $\pm$.14\%\\ \hline +SDA1 & 17.1\% $\pm$.13\% & 29.7\%$\pm$.3\% & 29.7\%$\pm$.3\% & 1.4\% $\pm$.1\%\\ \hline +SDA2 & 18.7\% $\pm$.13\% & 33.6\%$\pm$.3\% & 39.9\%$\pm$.17\% & 1.7\% $\pm$.1\%\\ \hline +MLP0 & 24.2\% $\pm$.15\% & 68.8\%$\pm$.33\% & 78.70\%$\pm$.14\% & 3.45\% $\pm$.15\% \\ \hline +MLP1 & 23.0\% $\pm$.15\% & 41.8\%$\pm$.35\% & 90.4\%$\pm$.1\% & 3.85\% $\pm$.16\% \\ \hline +MLP2 & 24.3\% $\pm$.15\% & 46.0\%$\pm$.35\% & 54.7\%$\pm$.17\% & 4.85\% $\pm$.18\% \\ \hline +\citep{Granger+al-2007} & & & & 4.95\% $\pm$.18\% \\ \hline +\citep{Cortes+al-2000} & & & & 3.71\% $\pm$.16\% \\ \hline +\citep{Oliveira+al-2002} & & & & 2.4\% $\pm$.13\% \\ \hline +\citep{Milgram+al-2005} & & & & 2.1\% $\pm$.12\% \\ \hline +\end{tabular} +\end{center} +\end{table} + +\begin{table}[h] +\caption{Relative change in error rates due to the use of perturbed training data, +either using NISTP, for the MLP1/SDA1 models, or using P07, for the MLP2/SDA2 models. +A positive value indicates that training on the perturbed data helped for the +given test set (the first 3 columns on the 62-class tasks and the last one is +on the clean 10-class digits). Clearly, the deep learning models did benefit more +from perturbed training data, even when testing on clean data, whereas the MLP +trained on perturbed data performed worse on the clean digits and about the same +on the clean characters. } +\label{tab:perturbation-effect} +\begin{center} +\begin{tabular}{|l|r|r|r|r|} \hline + & NIST test & NISTP test & P07 test & NIST test digits \\ \hline +SDA0/SDA1-1 & 38\% & 84\% & 228\% & 93\% \\ \hline +SDA0/SDA2-1 & 27\% & 94\% & 144\% & 59\% \\ \hline +MLP0/MLP1-1 & 5.2\% & 65\% & -13\% & -10\% \\ \hline +MLP0/MLP2-1 & -0.4\% & 49\% & 44\% & -29\% \\ \hline +\end{tabular} +\end{center} +\end{table} + +\begin{table}[h] +\caption{Test error rates and relative change in error rates due to the use of +a multi-task setting, i.e., training on each task in isolation vs training +for all three tasks together, for MLPs vs SDAs. The SDA benefits much +more from the multi-task setting. All experiments on only on the +unperturbed NIST data, using validation error for model selection. +Relative improvement is 1 - single-task error / multi-task error.} +\label{tab:multi-task} +\begin{center} +\begin{tabular}{|l|r|r|r|} \hline + & single-task & multi-task & relative \\ + & setting & setting & improvement \\ \hline +MLP-digits & 3.77\% & 3.99\% & 5.6\% \\ \hline +MLP-lower & 17.4\% & 16.8\% & -4.1\% \\ \hline +MLP-upper & 7.84\% & 7.54\% & -3.6\% \\ \hline +SDA-digits & 2.6\% & 3.56\% & 27\% \\ \hline +SDA-lower & 12.3\% & 14.4\% & 15\% \\ \hline +SDA-upper & 5.93\% & 6.78\% & 13\% \\ \hline +\end{tabular} +\end{center} +\end{table} + +{\small +\bibliography{strings,ml,aigaion,specials} +%\bibliographystyle{plainnat} +\bibliographystyle{unsrtnat} +%\bibliographystyle{apalike} +} + +\end{document}