Mercurial > ift6266
changeset 404:1509b9bba4cc
added digit/char error
author | xaviermuller |
---|---|
date | Wed, 28 Apr 2010 11:45:14 -0400 |
parents | a11692910312 |
children | 195f95c3d461 fe2e2964e7a3 |
files | baseline/mlp/mlp_nist.py |
diffstat | 1 files changed, 58 insertions(+), 38 deletions(-) [+] |
line wrap: on
line diff
--- a/baseline/mlp/mlp_nist.py Wed Apr 28 11:30:37 2010 -0400 +++ b/baseline/mlp/mlp_nist.py Wed Apr 28 11:45:14 2010 -0400 @@ -169,10 +169,9 @@ - # allocate symbolic variables for the data - x = T.fmatrix() # the data is presented as rasterized images - y = T.lvector() # the labels are presented as 1D vector of - # [long int] labels + + + # load the data set and create an mlp based on the dimensions of the model model=numpy.load(model_name) @@ -180,11 +179,23 @@ W2=model['W2'] b1=model['b1'] b2=model['b2'] - nb_hidden=b1.shape[0] - input_dim=W1.shape[0] - nb_targets=b2.shape[0] - learning_rate=0.1 - + + total_error_count=0.0 + total_exemple_count=0.0 + + nb_error_count=0.0 + nb_exemple_count=0.0 + + char_error_count=0.0 + char_exemple_count=0.0 + + min_error_count=0.0 + min_exemple_count=0.0 + + maj_error_count=0.0 + maj_exemple_count=0.0 + + if data_set==0: dataset=datasets.nist_all() @@ -192,42 +203,51 @@ dataset=datasets.nist_P07() - classifier = MLP( input=x,\ - n_in=input_dim,\ - n_hidden=nb_hidden,\ - n_out=nb_targets, - learning_rate=learning_rate) - - - #overwrite weights with weigths from model - classifier.W1.value=W1 - classifier.W2.value=W2 - classifier.b1.value=b1 - classifier.b2.value=b2 - - - cost = classifier.negative_log_likelihood(y) \ - + 0.0 * classifier.L1 \ - + 0.0 * classifier.L2_sqr - - # compiling a theano function that computes the mistakes that are made by - # the model on a minibatch - test_model = theano.function([x,y], classifier.errors(y)) - - #get the test error #use a batch size of 1 so we can get the sub-class error #without messing with matrices (will be upgraded later) test_score=0 temp=0 - for xt,yt in dataset.test(20): - test_score += test_model(xt,yt) - temp = temp+1 - test_score /= temp + for xt,yt in dataset.test(1): + + total_exemple_count = total_exemple_count +1 + #get activation for layer 1 + a0=numpy.dot(numpy.transpose(W1),numpy.transpose(xt[0])) + b1 + #add non linear function to layer 1 activation + a0_out=numpy.tanh(a0) + + #get activation for output layer + a1= numpy.dot(numpy.transpose(W2),a0_out) + b2 + #add non linear function for output activation (softmax) + a1_exp = numpy.exp(a1) + sum_a1=numpy.sum(a1_exp) + a1_out=a1_exp/sum_a1 + + predicted_class=numpy.argmax(a1_out) + wanted_class=yt[0] + if(predicted_class!=wanted_class): + total_error_count = total_error_count +1 + + #treat digit error + if(wanted_class<10): + nb_exemple_count=nb_exemple_count + 1 + predicted_class=numpy.argmax(a1_out[0:10]) + if(predicted_class!=wanted_class): + nb_error_count = nb_error_count +1 + + if(wanted_class>9): + char_exemple_count=char_exemple_count + 1 + predicted_class=numpy.argmax(a1_out[10:62])+10 + if((predicted_class!=wanted_class) and ((predicted_class+26)!=wanted_class) and ((predicted_class-26)!=wanted_class)): + char_error_count = char_error_count +1 + + - - return test_score*100 + print (('total error = %f') % ((total_error_count/total_exemple_count)*100.0)) + print (('number error = %f') % ((nb_error_count/nb_exemple_count)*100.0)) + print (('char error = %f') % ((char_error_count/char_exemple_count)*100.0)) + return (total_error_count/total_exemple_count)*100.0