# HG changeset patch # User Dumitru Erhan # Date 1268513143 18000 # Node ID 4ce1fc11f4b24117facae1a2a2d6c9a3895dc737 # Parent 6f4e3719a3cc01bfd1a0d978d84d94513b6f5cf0# Parent 8a94a5c808cdeed42b51030af344e07b425467fc merge diff -r 6f4e3719a3cc -r 4ce1fc11f4b2 deep/stacked_dae/v2/nist_sda.py --- a/deep/stacked_dae/v2/nist_sda.py Sat Mar 13 15:44:50 2010 -0500 +++ b/deep/stacked_dae/v2/nist_sda.py Sat Mar 13 15:45:43 2010 -0500 @@ -69,7 +69,7 @@ 'hidden_layers_sizes':800, 'corruption_levels':0.2, 'minibatch_size':20, - 'reduce_train_to':30000, + 'reduce_train_to':10000, 'num_hidden_layers':1}) ''' diff -r 6f4e3719a3cc -r 4ce1fc11f4b2 deep/stacked_dae/v2/sgd_optimization.py --- a/deep/stacked_dae/v2/sgd_optimization.py Sat Mar 13 15:44:50 2010 -0500 +++ b/deep/stacked_dae/v2/sgd_optimization.py Sat Mar 13 15:45:43 2010 -0500 @@ -25,6 +25,7 @@ shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) shared_y = T.cast(shared_y, 'int32') else: + print "WILL RUN ON CPU, NOT GPU, SO DATASETS REMAIN IN BYTES" shared_x = theano.shared(data_x) shared_y = theano.shared(data_y) return shared_x, shared_y diff -r 6f4e3719a3cc -r 4ce1fc11f4b2 deep/stacked_dae/v2/stacked_dae.py --- a/deep/stacked_dae/v2/stacked_dae.py Sat Mar 13 15:44:50 2010 -0500 +++ b/deep/stacked_dae/v2/stacked_dae.py Sat Mar 13 15:45:43 2010 -0500 @@ -144,7 +144,7 @@ z_a = T.dot(self.y, self.W_prime) + self.b_prime log_sigmoid = T.log(1.) - T.log(1.+T.exp(-z_a)) # log(1-sigmoid(z_a)) - log_1_sigmoid = -self.z_a - T.log(1.+T.exp(-z_a)) + log_1_sigmoid = -z_a - T.log(1.+T.exp(-z_a)) self.L = -T.sum( self.x * (log_sigmoid) \ + (1.0-self.x) * (log_1_sigmoid), axis=1 ) diff -r 6f4e3719a3cc -r 4ce1fc11f4b2 deep/stacked_dae/v_sylvain/__init__.py diff -r 6f4e3719a3cc -r 4ce1fc11f4b2 deep/stacked_dae/v_sylvain/nist_sda.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/stacked_dae/v_sylvain/nist_sda.py Sat Mar 13 15:45:43 2010 -0500 @@ -0,0 +1,302 @@ +#!/usr/bin/python +# coding: utf-8 + +import ift6266 +import pylearn + +import numpy +import theano +import time + +import pylearn.version +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams + +import copy +import sys +import os +import os.path + +from jobman import DD +import jobman, jobman.sql +from pylearn.io import filetensor + +from ift6266 import datasets + +from utils import produit_cartesien_jobs + +from sgd_optimization import SdaSgdOptimizer + +#from ift6266.utils.scalar_series import * +from ift6266.utils.seriestables import * +import tables + +############################################################################## +# GLOBALS + +TEST_CONFIG = False + +#NIST_ALL_LOCATION = '/data/lisa/data/nist/by_class/all' +JOBDB = 'postgres://ift6266h10@gershwin/ift6266h10_sandbox_db/fsavard_sda_v2' +EXPERIMENT_PATH = "ift6266.deep.stacked_dae.v2.nist_sda.jobman_entrypoint" + +REDUCE_TRAIN_TO = None +MAX_FINETUNING_EPOCHS = 1000 +# number of minibatches before taking means for valid error etc. +REDUCE_EVERY = 100 + +if TEST_CONFIG: + REDUCE_TRAIN_TO = 1000 + MAX_FINETUNING_EPOCHS = 2 + REDUCE_EVERY = 10 + +# Possible values the hyperparameters can take. These are then +# combined with produit_cartesien_jobs so we get a list of all +# possible combinations, each one resulting in a job inserted +# in the jobman DB. +JOB_VALS = {'pretraining_lr': [0.1, 0.01],#, 0.001],#, 0.0001], + 'pretraining_epochs_per_layer': [10,20], + 'hidden_layers_sizes': [300,800], + 'corruption_levels': [0.1,0.2,0.3], + 'minibatch_size': [20], + 'max_finetuning_epochs':[MAX_FINETUNING_EPOCHS], + 'finetuning_lr':[0.1, 0.01], #0.001 was very bad, so we leave it out + 'num_hidden_layers':[2,3]} + +# Just useful for tests... minimal number of epochs +DEFAULT_HP_NIST = DD({'finetuning_lr':0.1, + 'pretraining_lr':0.1, + 'pretraining_epochs_per_layer':2, + 'max_finetuning_epochs':2, + 'hidden_layers_sizes':800, + 'corruption_levels':0.2, + 'minibatch_size':20, + 'reduce_train_to':10000, + 'num_hidden_layers':1}) + +''' +Function called by jobman upon launching each job +Its path is the one given when inserting jobs: see EXPERIMENT_PATH +''' +def jobman_entrypoint(state, channel): + # record mercurial versions of each package + pylearn.version.record_versions(state,[theano,ift6266,pylearn]) + # TODO: remove this, bad for number of simultaneous requests on DB + channel.save() + + workingdir = os.getcwd() + + ########### Il faudrait arranger ici pour train plus petit + +## print "Will load NIST" +## +## nist = NIST(minibatch_size=20) +## +## print "NIST loaded" +## +## # For test runs, we don't want to use the whole dataset so +## # reduce it to fewer elements if asked to. +## rtt = None +## if state.has_key('reduce_train_to'): +## rtt = state['reduce_train_to'] +## elif REDUCE_TRAIN_TO: +## rtt = REDUCE_TRAIN_TO +## +## if rtt: +## print "Reducing training set to "+str(rtt)+ " examples" +## nist.reduce_train_set(rtt) +## +## train,valid,test = nist.get_tvt() +## dataset = (train,valid,test) + + n_ins = 32*32 + n_outs = 62 # 10 digits, 26*2 (lower, capitals) + + series = create_series(state.num_hidden_layers) + + print "Creating optimizer with state, ", state + + optimizer = SdaSgdOptimizer(dataset=datasets.nist_all, hyperparameters=state, \ + n_ins=n_ins, n_outs=n_outs,\ + series=series) + + optimizer.pretrain() + channel.save() + + optimizer.finetune() + channel.save() + + return channel.COMPLETE + +# These Series objects are used to save various statistics +# during the training. +def create_series(num_hidden_layers): + + # Replace series we don't want to save with DummySeries, e.g. + # series['training_error'] = DummySeries() + + series = {} + + basedir = os.getcwd() + + h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w") + + # reconstruction + reconstruction_base = \ + ErrorSeries(error_name="reconstruction_error", + table_name="reconstruction_error", + hdf5_file=h5f, + index_names=('epoch','minibatch'), + title="Reconstruction error (mean over "+str(REDUCE_EVERY)+" minibatches)") + series['reconstruction_error'] = \ + AccumulatorSeriesWrapper(base_series=reconstruction_base, + reduce_every=REDUCE_EVERY) + + # train + training_base = \ + ErrorSeries(error_name="training_error", + table_name="training_error", + hdf5_file=h5f, + index_names=('epoch','minibatch'), + title="Training error (mean over "+str(REDUCE_EVERY)+" minibatches)") + series['training_error'] = \ + AccumulatorSeriesWrapper(base_series=training_base, + reduce_every=REDUCE_EVERY) + + # valid and test are not accumulated/mean, saved directly + series['validation_error'] = \ + ErrorSeries(error_name="validation_error", + table_name="validation_error", + hdf5_file=h5f, + index_names=('epoch','minibatch')) + + series['test_error'] = \ + ErrorSeries(error_name="test_error", + table_name="test_error", + hdf5_file=h5f, + index_names=('epoch','minibatch')) + + param_names = [] + for i in range(num_hidden_layers): + param_names += ['layer%d_W'%i, 'layer%d_b'%i, 'layer%d_bprime'%i] + param_names += ['logreg_layer_W', 'logreg_layer_b'] + + # comment out series we don't want to save + series['params'] = SharedParamsStatisticsWrapper( + new_group_name="params", + base_group="/", + arrays_names=param_names, + hdf5_file=h5f, + index_names=('epoch',)) + + return series + +# Perform insertion into the Postgre DB based on combination +# of hyperparameter values above +# (see comment for produit_cartesien_jobs() to know how it works) +def jobman_insert_nist(): + jobs = produit_cartesien_jobs(JOB_VALS) + + db = jobman.sql.db(JOBDB) + for job in jobs: + job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH}) + jobman.sql.insert_dict(job, db) + + print "inserted" + +class NIST: + def __init__(self, minibatch_size, basepath=None, reduce_train_to=None): + global NIST_ALL_LOCATION + + self.minibatch_size = minibatch_size + self.basepath = basepath and basepath or NIST_ALL_LOCATION + + self.set_filenames() + + # arrays of 2 elements: .x, .y + self.train = [None, None] + self.test = [None, None] + + self.load_train_test() + + self.valid = [[], []] + self.split_train_valid() + if reduce_train_to: + self.reduce_train_set(reduce_train_to) + + def get_tvt(self): + return self.train, self.valid, self.test + + def set_filenames(self): + self.train_files = ['all_train_data.ft', + 'all_train_labels.ft'] + + self.test_files = ['all_test_data.ft', + 'all_test_labels.ft'] + + def load_train_test(self): + self.load_data_labels(self.train_files, self.train) + self.load_data_labels(self.test_files, self.test) + + def load_data_labels(self, filenames, pair): + for i, fn in enumerate(filenames): + f = open(os.path.join(self.basepath, fn)) + pair[i] = filetensor.read(f) + f.close() + + def reduce_train_set(self, max): + self.train[0] = self.train[0][:max] + self.train[1] = self.train[1][:max] + + if max < len(self.test[0]): + for ar in (self.test, self.valid): + ar[0] = ar[0][:max] + ar[1] = ar[1][:max] + + def split_train_valid(self): + test_len = len(self.test[0]) + + new_train_x = self.train[0][:-test_len] + new_train_y = self.train[1][:-test_len] + + self.valid[0] = self.train[0][-test_len:] + self.valid[1] = self.train[1][-test_len:] + + self.train[0] = new_train_x + self.train[1] = new_train_y + +def test_load_nist(): + print "Will load NIST" + + import time + t1 = time.time() + nist = NIST(20) + t2 = time.time() + + print "NIST loaded. time delta = ", t2-t1 + + tr,v,te = nist.get_tvt() + + print "Lenghts: ", len(tr[0]), len(v[0]), len(te[0]) + + raw_input("Press any key") + +if __name__ == '__main__': + + import sys + + args = sys.argv[1:] + + if len(args) > 0 and args[0] == 'load_nist': + test_load_nist() + + elif len(args) > 0 and args[0] == 'jobman_insert': + jobman_insert_nist() + + elif len(args) > 0 and args[0] == 'test_jobman_entrypoint': + chanmock = DD({'COMPLETE':0,'save':(lambda:None)}) + jobman_entrypoint(DEFAULT_HP_NIST, chanmock) + + else: + print "Bad arguments" + diff -r 6f4e3719a3cc -r 4ce1fc11f4b2 deep/stacked_dae/v_sylvain/sgd_optimization.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/stacked_dae/v_sylvain/sgd_optimization.py Sat Mar 13 15:45:43 2010 -0500 @@ -0,0 +1,244 @@ +#!/usr/bin/python +# coding: utf-8 + +# Generic SdA optimization loop, adapted from the deeplearning.net tutorial + +import numpy +import theano +import time +import datetime +import theano.tensor as T +import sys + +from jobman import DD +import jobman, jobman.sql + +from stacked_dae import SdA + +from ift6266.utils.seriestables import * + +##def shared_dataset(data_xy): +## data_x, data_y = data_xy +## if theano.config.device.startswith("gpu"): +## print "TRANSFERING DATASETS (via shared()) TO GPU" +## shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) +## shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) +## shared_y = T.cast(shared_y, 'int32') +## else: +## print "WILL RUN ON CPU, NOT GPU, SO DATASETS REMAIN IN BYTES" +## shared_x = theano.shared(data_x) +## shared_y = theano.shared(data_y) +## return shared_x, shared_y + + ######Les shared seront remplacees utilisant "given" dans les enonces de fonction plus loin +def shared_dataset(batch_size, n_in): + + shared_x = theano.shared(numpy.asarray(numpy.zeros((batch_size,n_in)), dtype=theano.config.floatX)) + shared_y = theano.shared(numpy.asarray(numpy.zeros(batch_size), dtype=theano.config.floatX)) + return shared_x, shared_y + +default_series = { \ + 'reconstruction_error' : DummySeries(), + 'training_error' : DummySeries(), + 'validation_error' : DummySeries(), + 'test_error' : DummySeries(), + 'params' : DummySeries() + } + +class SdaSgdOptimizer: + def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0, series=default_series): + self.dataset = dataset + self.hp = hyperparameters + self.n_ins = n_ins + self.n_outs = n_outs + self.input_divider = input_divider + + self.series = series + + self.rng = numpy.random.RandomState(1234) + + self.init_datasets() + self.init_classifier() + + sys.stdout.flush() + + def init_datasets(self): + print "init_datasets" + sys.stdout.flush() + + #train_set, valid_set, test_set = self.dataset + self.test_set_x, self.test_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins) + self.valid_set_x, self.valid_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins) + self.train_set_x, self.train_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins) + + # compute number of minibatches for training, validation and testing + self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size + self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size + # remove last batch in case it's incomplete + self.n_test_batches = (self.test_set_x.value.shape[0] / self.hp.minibatch_size) - 1 + + def init_classifier(self): + print "Constructing classifier" + + # we don't want to save arrays in DD objects, so + # we recreate those arrays here + nhl = self.hp.num_hidden_layers + layers_sizes = [self.hp.hidden_layers_sizes] * nhl + corruption_levels = [self.hp.corruption_levels] * nhl + + # construct the stacked denoising autoencoder class + self.classifier = SdA( \ + train_set_x= self.train_set_x, \ + train_set_y = self.train_set_y,\ + batch_size = self.hp.minibatch_size, \ + n_ins= self.n_ins, \ + hidden_layers_sizes = layers_sizes, \ + n_outs = self.n_outs, \ + corruption_levels = corruption_levels,\ + rng = self.rng,\ + pretrain_lr = self.hp.pretraining_lr, \ + finetune_lr = self.hp.finetuning_lr,\ + input_divider = self.input_divider ) + + #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph") + + sys.stdout.flush() + + def train(self): + self.pretrain() + self.finetune() + + def pretrain(self): + print "STARTING PRETRAINING, time = ", datetime.datetime.now() + sys.stdout.flush() + + start_time = time.clock() + ## Pre-train layer-wise + for i in xrange(self.classifier.n_layers): + # go through pretraining epochs + for epoch in xrange(self.hp.pretraining_epochs_per_layer): + # go through the training set + for batch_index in xrange(self.n_train_batches): + c = self.classifier.pretrain_functions[i](batch_index) + + self.series["reconstruction_error"].append((epoch, batch_index), c) + + print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c + sys.stdout.flush() + + self.series['params'].append((epoch,), self.classifier.all_params) + + end_time = time.clock() + + print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) + self.hp.update({'pretraining_time': end_time-start_time}) + + sys.stdout.flush() + + def finetune(self): + print "STARTING FINETUNING, time = ", datetime.datetime.now() + + index = T.lscalar() # index to a [mini]batch + minibatch_size = self.hp.minibatch_size + + # create a function to compute the mistakes that are made by the model + # on the validation set, or testing set + shared_divider = theano.shared(numpy.asarray(self.input_divider, dtype=theano.config.floatX)) + test_model = theano.function([index], self.classifier.errors, + givens = { + self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider, + self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + + validate_model = theano.function([index], self.classifier.errors, + givens = { + self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider, + self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) + + + # early-stopping parameters + patience = 10000 # look as this many examples regardless + patience_increase = 2. # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min(self.n_train_batches, patience/2) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch + + best_params = None + best_validation_loss = float('inf') + test_score = 0. + start_time = time.clock() + + done_looping = False + epoch = 0 + + while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(self.n_train_batches): + + cost_ij = self.classifier.finetune(minibatch_index) + iter = epoch * self.n_train_batches + minibatch_index + + self.series["training_error"].append((epoch, minibatch_index), cost_ij) + + if (iter+1) % validation_frequency == 0: + + validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + + self.series["validation_error"].\ + append((epoch, minibatch_index), this_validation_loss*100.) + + print('epoch %i, minibatch %i/%i, validation error %f %%' % \ + (epoch, minibatch_index+1, self.n_train_batches, \ + this_validation_loss*100.)) + + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold : + patience = max(patience, iter * patience_increase) + + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter + + # test it on the test set + test_losses = [test_model(i) for i in xrange(self.n_test_batches)] + test_score = numpy.mean(test_losses) + + self.series["test_error"].\ + append((epoch, minibatch_index), test_score*100.) + + print((' epoch %i, minibatch %i/%i, test error of best ' + 'model %f %%') % + (epoch, minibatch_index+1, self.n_train_batches, + test_score*100.)) + + sys.stdout.flush() + + self.series['params'].append((epoch,), self.classifier.all_params) + + if patience <= iter : + done_looping = True + break + + end_time = time.clock() + self.hp.update({'finetuning_time':end_time-start_time,\ + 'best_validation_error':best_validation_loss,\ + 'test_score':test_score, + 'num_finetuning_epochs':epoch}) + + print(('Optimization complete with best validation score of %f %%,' + 'with test performance %f %%') % + (best_validation_loss * 100., test_score*100.)) + print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) + + + diff -r 6f4e3719a3cc -r 4ce1fc11f4b2 deep/stacked_dae/v_sylvain/stacked_dae.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/stacked_dae/v_sylvain/stacked_dae.py Sat Mar 13 15:45:43 2010 -0500 @@ -0,0 +1,290 @@ +#!/usr/bin/python +# coding: utf-8 + +import numpy +import theano +import time +import theano.tensor as T +from theano.tensor.shared_randomstreams import RandomStreams +import copy + +from utils import update_locals + +# taken from LeDeepNet/daa.py +# has a special case when taking log(0) (defined =0) +# modified to not take the mean anymore +from theano.tensor.xlogx import xlogx, xlogy0 +# it's target*log(output) +def binary_cross_entropy(target, output, sum_axis=1): + XE = xlogy0(target, output) + xlogy0((1 - target), (1 - output)) + return -T.sum(XE, axis=sum_axis) + +class LogisticRegression(object): + def __init__(self, input, n_in, n_out): + # initialize with 0 the weights W as a matrix of shape (n_in, n_out) + self.W = theano.shared( value=numpy.zeros((n_in,n_out), + dtype = theano.config.floatX) ) + # initialize the baises b as a vector of n_out 0s + self.b = theano.shared( value=numpy.zeros((n_out,), + dtype = theano.config.floatX) ) + # compute vector of class-membership probabilities in symbolic form + self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) + + # compute prediction as class whose probability is maximal in + # symbolic form + self.y_pred=T.argmax(self.p_y_given_x, axis=1) + + # list of parameters for this layer + self.params = [self.W, self.b] + + def negative_log_likelihood(self, y): + return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) + + def errors(self, y): + # check if y has same dimension of y_pred + if y.ndim != self.y_pred.ndim: + raise TypeError('y should have the same shape as self.y_pred', + ('y', target.type, 'y_pred', self.y_pred.type)) + + # check if y is of the correct datatype + if y.dtype.startswith('int'): + # the T.neq operator returns a vector of 0s and 1s, where 1 + # represents a mistake in prediction + return T.mean(T.neq(self.y_pred, y)) + else: + raise NotImplementedError() + + +class SigmoidalLayer(object): + def __init__(self, rng, input, n_in, n_out): + self.input = input + + W_values = numpy.asarray( rng.uniform( \ + low = -numpy.sqrt(6./(n_in+n_out)), \ + high = numpy.sqrt(6./(n_in+n_out)), \ + size = (n_in, n_out)), dtype = theano.config.floatX) + self.W = theano.shared(value = W_values) + + b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) + self.b = theano.shared(value= b_values) + + self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b) + self.params = [self.W, self.b] + + + +class dA(object): + def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\ + input = None, shared_W = None, shared_b = None): + self.n_visible = n_visible + self.n_hidden = n_hidden + + # create a Theano random generator that gives symbolic random values + theano_rng = RandomStreams() + + if shared_W != None and shared_b != None : + self.W = shared_W + self.b = shared_b + else: + # initial values for weights and biases + # note : W' was written as `W_prime` and b' as `b_prime` + + # W is initialized with `initial_W` which is uniformely sampled + # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) + # the output of uniform if converted using asarray to dtype + # theano.config.floatX so that the code is runable on GPU + initial_W = numpy.asarray( numpy.random.uniform( \ + low = -numpy.sqrt(6./(n_hidden+n_visible)), \ + high = numpy.sqrt(6./(n_hidden+n_visible)), \ + size = (n_visible, n_hidden)), dtype = theano.config.floatX) + initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX) + + + # theano shared variables for weights and biases + self.W = theano.shared(value = initial_W, name = "W") + self.b = theano.shared(value = initial_b, name = "b") + + + initial_b_prime= numpy.zeros(n_visible) + # tied weights, therefore W_prime is W transpose + self.W_prime = self.W.T + self.b_prime = theano.shared(value = initial_b_prime, name = "b'") + + # if no input is given, generate a variable representing the input + if input == None : + # we use a matrix because we expect a minibatch of several examples, + # each example being a row + self.x = T.dmatrix(name = 'input') + else: + self.x = input + # Equation (1) + # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs + # note : first argument of theano.rng.binomial is the shape(size) of + # random numbers that it should produce + # second argument is the number of trials + # third argument is the probability of success of any trial + # + # this will produce an array of 0s and 1s where 1 has a + # probability of 1 - ``corruption_level`` and 0 with + # ``corruption_level`` + self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level, dtype=theano.config.floatX) * self.x + # Equation (2) + # note : y is stored as an attribute of the class so that it can be + # used later when stacking dAs. + self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b) + # Equation (3) + #self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) + # Equation (4) + # note : we sum over the size of a datapoint; if we are using minibatches, + # L will be a vector, with one entry per example in minibatch + #self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) + #self.L = binary_cross_entropy(target=self.x, output=self.z, sum_axis=1) + + # bypassing z to avoid running to log(0) + z_a = T.dot(self.y, self.W_prime) + self.b_prime + log_sigmoid = T.log(1.) - T.log(1.+T.exp(-z_a)) + # log(1-sigmoid(z_a)) + log_1_sigmoid = -z_a - T.log(1.+T.exp(-z_a)) + self.L = -T.sum( self.x * (log_sigmoid) \ + + (1.0-self.x) * (log_1_sigmoid), axis=1 ) + + # I added this epsilon to avoid getting log(0) and 1/0 in grad + # This means conceptually that there'd be no probability of 0, but that + # doesn't seem to me as important (maybe I'm wrong?). + #eps = 0.00000001 + #eps_1 = 1-eps + #self.L = - T.sum( self.x * T.log(eps + eps_1*self.z) \ + # + (1-self.x)*T.log(eps + eps_1*(1-self.z)), axis=1 ) + # note : L is now a vector, where each element is the cross-entropy cost + # of the reconstruction of the corresponding example of the + # minibatch. We need to compute the average of all these to get + # the cost of the minibatch + self.cost = T.mean(self.L) + + self.params = [ self.W, self.b, self.b_prime ] + + +class SdA(object): + def __init__(self, train_set_x, train_set_y, batch_size, n_ins, + hidden_layers_sizes, n_outs, + corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0): + # Just to make sure those are not modified somewhere else afterwards + hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes) + corruption_levels = copy.deepcopy(corruption_levels) + + update_locals(self, locals()) + + self.layers = [] + self.pretrain_functions = [] + self.params = [] + # MODIF: added this so we also get the b_primes + # (not used for finetuning... still using ".params") + self.all_params = [] + self.n_layers = len(hidden_layers_sizes) + + print "Creating SdA with params:" + print "batch_size", batch_size + print "hidden_layers_sizes", hidden_layers_sizes + print "corruption_levels", corruption_levels + print "n_ins", n_ins + print "n_outs", n_outs + print "pretrain_lr", pretrain_lr + print "finetune_lr", finetune_lr + print "input_divider", input_divider + print "----" + + self.shared_divider = theano.shared(numpy.asarray(input_divider, dtype=theano.config.floatX)) + + if len(hidden_layers_sizes) < 1 : + raiseException (' You must have at least one hidden layer ') + + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + self.x = T.matrix('x') # the data is presented as rasterized images + self.y = T.ivector('y') # the labels are presented as 1D vector of + # [int] labels + + for i in xrange( self.n_layers ): + # construct the sigmoidal layer + + # the size of the input is either the number of hidden units of + # the layer below or the input size if we are on the first layer + if i == 0 : + input_size = n_ins + else: + input_size = hidden_layers_sizes[i-1] + + # the input to this layer is either the activation of the hidden + # layer below or the input of the SdA if you are on the first + # layer + if i == 0 : + layer_input = self.x + else: + layer_input = self.layers[-1].output + + layer = SigmoidalLayer(rng, layer_input, input_size, + hidden_layers_sizes[i] ) + # add the layer to the + self.layers += [layer] + self.params += layer.params + + # Construct a denoising autoencoder that shared weights with this + # layer + dA_layer = dA(input_size, hidden_layers_sizes[i], \ + corruption_level = corruption_levels[0],\ + input = layer_input, \ + shared_W = layer.W, shared_b = layer.b) + + self.all_params += dA_layer.params + + # Construct a function that trains this dA + # compute gradients of layer parameters + gparams = T.grad(dA_layer.cost, dA_layer.params) + # compute the list of updates + updates = {} + for param, gparam in zip(dA_layer.params, gparams): + updates[param] = param - gparam * pretrain_lr + + # create a function that trains the dA + update_fn = theano.function([index], dA_layer.cost, \ + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider}) + # collect this function into a list + self.pretrain_functions += [update_fn] + + + # We now need to add a logistic layer on top of the MLP + self.logLayer = LogisticRegression(\ + input = self.layers[-1].output,\ + n_in = hidden_layers_sizes[-1], n_out = n_outs) + + self.params += self.logLayer.params + self.all_params += self.logLayer.params + # construct a function that implements one step of finetunining + + # compute the cost, defined as the negative log likelihood + cost = self.logLayer.negative_log_likelihood(self.y) + # compute the gradients with respect to the model parameters + gparams = T.grad(cost, self.params) + # compute list of updates + updates = {} + for param,gparam in zip(self.params, gparams): + updates[param] = param - gparam*finetune_lr + + self.finetune = theano.function([index], cost, + updates = updates, + givens = { + self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider, + self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) + + # symbolic variable that points to the number of errors made on the + # minibatch given by self.x and self.y + + self.errors = self.logLayer.errors(self.y) + +if __name__ == '__main__': + import sys + args = sys.argv[1:] + diff -r 6f4e3719a3cc -r 4ce1fc11f4b2 deep/stacked_dae/v_sylvain/utils.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/deep/stacked_dae/v_sylvain/utils.py Sat Mar 13 15:45:43 2010 -0500 @@ -0,0 +1,69 @@ +#!/usr/bin/python +# coding: utf-8 + +from __future__ import with_statement + +from jobman import DD + +# from pylearn codebase +# useful in __init__(param1, param2, etc.) to save +# values in self.param1, self.param2... just call +# update_locals(self, locals()) +def update_locals(obj, dct): + if 'self' in dct: + del dct['self'] + obj.__dict__.update(dct) + +# from a dictionary of possible values for hyperparameters, e.g. +# hp_values = {'learning_rate':[0.1, 0.01], 'num_layers': [1,2]} +# create a list of other dictionaries representing all the possible +# combinations, thus in this example creating: +# [{'learning_rate': 0.1, 'num_layers': 1}, ...] +# (similarly for combinations (0.1, 2), (0.01, 1), (0.01, 2)) +def produit_cartesien_jobs(val_dict): + job_list = [DD()] + all_keys = val_dict.keys() + + for key in all_keys: + possible_values = val_dict[key] + new_job_list = [] + for val in possible_values: + for job in job_list: + to_insert = job.copy() + to_insert.update({key: val}) + new_job_list.append(to_insert) + job_list = new_job_list + + return job_list + +def test_produit_cartesien_jobs(): + vals = {'a': [1,2], 'b': [3,4,5]} + print produit_cartesien_jobs(vals) + + +# taken from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python +"""Simple module for getting amount of memory used by a specified user's +processes on a UNIX system. +It uses UNIX ps utility to get the memory usage for a specified username and +pipe it to awk for summing up per application memory usage and return the total. +Python's Popen() from subprocess module is used for spawning ps and awk. + +""" + +import subprocess + +class MemoryMonitor(object): + + def __init__(self, username): + """Create new MemoryMonitor instance.""" + self.username = username + + def usage(self): + """Return int containing memory used by user's processes.""" + self.process = subprocess.Popen("ps -u %s -o rss | awk '{sum+=$1} END {print sum}'" % self.username, + shell=True, + stdout=subprocess.PIPE, + ) + self.stdout_list = self.process.communicate()[0].split('\n') + return int(self.stdout_list[0]) +