
Journal of Machine Learning Research (2010) Submitted 10/2010; Published XX/2011

Deep Self-Taught Learning for Handwritten Character Recognition

Yoshua Bengio and Frédéric Bastien and Arnaud Bergeron and Nicolas Boulanger-Lewandowski and Thomas
Breuel and Youssouf Chherawala and Moustapha Cisse and Myriam Côté and Dumitru Erhan and Jeremy
Eustache and Xavier Glorot and Xavier Muller and Sylvain Pannetier Lebeuf and Razvan Pascanu and Salah
Rifai and Francois Savard and Guillaume Sicard

Editor:

Running title: Deep Self-Taught Learning
Abstract

Recent theoretical and empirical work in statistical machine learning has demonstrated the potential of learning
algorithms for deep architectures, i.e., function classes obtained by composing multiple levels of representation. Self-
taught learning (exploiting unlabeled examples or examples from other distributions) has already been applied to
deep learners, but mostly to show the advantage of unlabeled examples. Here we explore the advantage brought by
out-of-distribution examples. For this purpose we developed a powerful generator of stochastic variations and noise
processes for character images, including not only affine transformations but also slant, local elastic deformations,
changes in thickness, background images, grey level changes, contrast, occlusion, and various types of noise. The out-
of-distribution examples are obtained from these highly distorted images or by including examples of object classes
different from those in the target test set. We show that deep learners benefit more from out-of-distribution examples
than a corresponding shallow learner, at least in a large-scale handwritten character recognition setting. In fact, we
show that they beat previously published results and reach human-level performance.
Keywords: Deep learning, self-taught learning, out-of-distribution examples, handwritten character recognition,
multi-task learning

1. Introduction
Deep Learning has emerged as a promising new area of research in statistical machine learning (Hinton et al., 2006;
Ranzato et al., 2007; Bengio et al., 2007; Vincent et al., 2008b; Ranzato et al., 2008; Taylor and Hinton, 2009;
Larochelle et al., 2009a; Salakhutdinov and Hinton, 2009; Lee et al., 2009a,b; Jarrett et al., 2009; Taylor et al.,
2010). See Bengio (2009) for a review. Learning algorithms for deep architectures are centered on the learning
of useful representations of data, which are better suited to the task at hand, and are organized in a hierarchy with
multiple levels. This is in part inspired by observations of the mammalian visual cortex, which consists of a chain
of processing elements, each of which is associated with a different representation of the raw visual input. In fact,
it was found recently that the features learnt in deep architectures resemble those observed in the first two of these
stages (in areas V1 and V2 of visual cortex) (Lee et al., 2008), and that they become more and more invariant to
factors of variation (such as camera movement) in higher layers (Goodfellow et al., 2009). Learning a hierarchy of
features increases the ease and practicality of developing representations that are at once tailored to specific tasks,
yet are able to borrow statistical strength from other related tasks (e.g., modeling different kinds of objects). Finally,
learning the feature representation can lead to higher-level (more abstract, more general) features that are more
robust to unanticipated sources of variance extant in real data.

Self-taught learning (Raina et al., 2007) is a paradigm that combines principles of semi-supervised and multi-
task learning: the learner can exploit examples that are unlabeled and possibly come from a distribution different
from the target distribution, e.g., from other classes than those of interest. It has already been shown that deep
learners can clearly take advantage of unsupervised learning and unlabeled examples (Bengio, 2009; Weston et al.,
2008), but more needs to be done to explore the impact of out-of-distribution examples and of the multi-task setting
(one exception is (Collobert and Weston, 2008), which uses a different kind of learning algorithm). In particular
the relative advantage of deep learning for these settings has not been evaluated. The hypothesis discussed in the

c©2010 Yoshua Bengio et al.

conclusion is that in the context of multi-task learning and the availability of out-of-distribution training examples,
a deep hierarchy of features may be better able to provide sharing of statistical strength between different regions in
input space or different tasks, compared to a shallow learner.

Whereas a deep architecture can in principle be more powerful than a shallow one in terms of representation,
depth appears to render the training problem more difficult in terms of optimization and local minima. It is also
only recently that successful algorithms were proposed to overcome some of these difficulties. All are based on
unsupervised learning, often in an greedy layer-wise “unsupervised pre-training” stage (Bengio, 2009). One of
these layer initialization techniques, applied here, is the Denoising Auto-encoder (DA) (Vincent et al., 2008a) (see
Figure 1), which performed similarly or better than previously proposed Restricted Boltzmann Machines in terms of
unsupervised extraction of a hierarchy of features useful for classification. Each layer is trained to denoise its input,
creating a layer of features that can be used as input for the next layer.

The main claim of this paper is that deep learners (with several levels of representation) can benefit more from
self-taught learning than shallow learners (with a single level), both in the context of the multi-task setting and
from out-of-distribution examples in general. Because we are able to improve on state-of-the-art performance and
reach human-level performance on a large-scale task, we consider that this paper is also a contribution to advance
the application of machine learning to handwritten character recognition. More precisely, we ask and answer the
following questions:
• Do the good results previously obtained with deep architectures on the MNIST digit images generalize to the

setting of a similar but much larger and richer dataset, the NIST special database 19, with 62 classes and around
800k examples?
• To what extent does the perturbation of input images (e.g. adding noise, affine transformations, background

images) make the resulting classifiers better not only on similarly perturbed images but also on the original clean
examples? We study this question in the context of the 62-class and 10-class tasks of the NIST special database 19.
• Do deep architectures benefit more from such out-of-distribution examples, i.e. do they benefit more from

the self-taught learning (Raina et al., 2007) framework? We use highly perturbed examples to generate out-of-
distribution examples.
• Similarly, does the feature learning step in deep learning algorithms benefit more from training with mod-

erately different classes (i.e. a multi-task learning scenario) than a corresponding shallow and purely supervised
architecture? We train on 62 classes and test on 10 (digits) or 26 (upper case or lower case) to answer this question.

Our experimental results provide positive evidence towards all of these questions, as well as classifiers that
reach human-level performance on 62-class isolated character recognition and beat previously published results
on the NIST dataset (special database 19). To achieve these results, we introduce in the next section a sophisti-
cated system for stochastically transforming character images and then explain the methodology, which is based
on training with or without these transformed images and testing on clean ones. We measure the relative ad-
vantage of out-of-distribution examples (perturbed or out-of-class) for a deep learner vs a supervised shallow
one. Code for generating these transformations as well as for the deep learning algorithms are made available at
http://hg.assembla.com/ift6266. We also estimate the relative advantage for deep learners of training
with other classes than those of interest, by comparing learners trained with 62 classes with learners trained with
only a subset (on which they are then tested). The conclusion discusses the more general question of why deep
learners may benefit so much from the self-taught learning framework. Since out-of-distribution data (perturbed or
from other related classes) is very common, this conclusion is of practical importance.

2. Perturbed and Transformed Character Images

Original

This section describes the different transformations we used to stochastically transform 32× 32
source images (such as the one on the left) in order to obtain data from a larger distribution which
covers a domain substantially larger than the clean characters distribution from which we start.
Although character transformations have been used before to improve character recognizers, this
effort is on a large scale both in number of classes and in the complexity of the transformations,
hence in the complexity of the learning task. The code for these transformations (mostly python)
is available at http://hg.assembla.com/ift6266. All the modules in the pipeline

2

share a global control parameter (0 ≤ complexity ≤ 1) that allows one to modulate the amount
of deformation or noise introduced. There are two main parts in the pipeline. The first one, from slant to pinch
below, performs transformations. The second part, from blur to contrast, adds different kinds of noise.

2.1 Transformations

THICKNESS

To change character thickness, morphological operators of dilation and erosion (Haralick et al.,
1987; Serra, 1982) are applied. The neighborhood of each pixel is multiplied element-wise with
a structuring element matrix. The pixel value is replaced by the maximum or the minimum of
the resulting matrix, respectively for dilation or erosion. Ten different structural elements with
increasing dimensions (largest is 5 × 5) were used. For each image, randomly sample the operator
type (dilation or erosion) with equal probability and one structural element from a subset of the
n = round(m× complexity) smallest structuring elements where m = 10 for dilation and m = 6
for erosion (to avoid completely erasing thin characters). A neutral element (no transformation) is
always present in the set.

SLANT

To produce slant, each row of the image is shifted proportionally to its height: shift =
round(slant× height). slant ∼ U [−complexity, complexity]. The shift is randomly chosen
to be either to the left or to the right.

AFFINE TRANSFORMATIONS

A 2 × 3 affine transform matrix (with parameters (a, b, c, d, e, f)) is sampled according to the
complexity. Output pixel (x, y) takes the value of input pixel nearest to (ax+ by+ c, dx+ey+f),
producing scaling, translation, rotation and shearing. Marginal distributions of (a, b, c, d, e, f)
have been tuned to forbid large rotations (to avoid confusing classes) but to give good vari-
ability of the transformation: a and d ∼ U [1 − 3complexity, 1 + 3 complexity], b and e
∼ U [−3 complexity, 3 complexity], and c and f ∼ U [−4 complexity, 4 complexity].

LOCAL ELASTIC DEFORMATIONS

The local elastic deformation module induces a “wiggly” effect in the image, following Simard
et al. (2003), which provides more details. The intensity of the displacement fields is given by
α = 3

√
complexity× 10.0, which are convolved with a Gaussian 2D kernel (resulting in a blur) of

standard deviation σ = 10− 7× 3
√
complexity.

3

PINCH

The pinch module applies the “Whirl and pinch” GIMP filter with whirl set to 0. A pinch is “similar
to projecting the image onto an elastic surface and pressing or pulling on the center of the surface”
(GIMP documentation manual). For a square input image, draw a radius-r disk around its center
C. Any pixel P belonging to that disk has its value replaced by the value of a “source” pixel in
the original image, on the line that goes through C and P , but at some other distance d2. Define
d1 = distance(P,C) and d2 = sin(πd12r)−pinch × d1, where pinch is a parameter of the filter. The
actual value is given by bilinear interpolation considering the pixels around the (non-integer) source
position thus found. Here pinch ∼ U [−complexity, 0.7× complexity].

2.2 Injecting Noise

MOTION BLUR

The motion blur module is GIMP’s “linear motion blur”, which has parameters length and
angle. The value of a pixel in the final image is approximately the mean of the first length
pixels found by moving in the angle direction, angle ∼ U [0, 360] degrees, and length ∼
Normal(0, (3× complexity)2).

OCCLUSION

The occlusion module selects a random rectangle from an occluder character image and places
it over the original occluded image. Pixels are combined by taking the max(occluder, occluded),
i.e. keeping the lighter ones. The rectangle corners are sampled so that larger complexity gives
larger rectangles. The destination position in the occluded image are also sampled according to
a normal distribution. This module is skipped with probability 60%.

GAUSSIAN SMOOTHING

With the Gaussian smoothing module, different regions of the image are spatially smoothed. This
is achieved by first convolving the image with an isotropic Gaussian kernel of size and variance
chosen uniformly in the ranges [12, 12+20×complexity] and [2, 2+6×complexity]. This filtered
image is normalized between 0 and 1. We also create an isotropic weighted averaging window, of
the kernel size, with maximum value at the center. For each image we sample uniformly from 3
to 3 + 10 × complexity pixels that will be averaging centers between the original image and the
filtered one. We initialize to zero a mask matrix of the image size. For each selected pixel we add
to the mask the averaging window centered on it. The final image is computed from the following
element-wise operation: image+filtered image×maskmask+1 . This module is skipped with probability 75%.

PERMUTE PIXELS

This module permutes neighbouring pixels. It first selects a fraction complexity
3 of pixels randomly

in the image. Each of these pixels is then sequentially exchanged with a random pixel among its
four nearest neighbors (on its left, right, top or bottom). This module is skipped with probability
80%.

4

GAUSSIAN NOISE

The Gaussian noise module simply adds, to each pixel of the image independently, a noise ∼
Normal(0, (complexity10)2). This module is skipped with probability 70%.

BACKGROUND IMAGE ADDITION

Following Larochelle et al. (2009a), the background image module adds a random background
image behind the letter, from a randomly chosen natural image, with contrast adjustments de-
pending on complexity, to preserve more or less of the original character image.

SALT AND PEPPER NOISE

The salt and pepper noise module adds noise ∼ U [0, 1] to random subsets of pixels. The
number of selected pixels is 0.2× complexity. This module is skipped with probability 75%.

SCRATCHES

The scratches module places line-like white patches on the image. The lines are heavily transformed
images of the digit “1” (one), chosen at random among 500 such 1 images, randomly cropped and
rotated by an angle ∼ Normal(0, (100 × complexity)2 (in degrees), using bi-cubic interpolation.
Two passes of a grey-scale morphological erosion filter are applied, reducing the width of the line
by an amount controlled by complexity. This module is skipped with probability 85%. The proba-
bilities of applying 1, 2, or 3 patches are (50%,30%,20%).

GREY LEVEL AND CONTRAST CHANGES

The grey level and contrast module changes the contrast by changing grey levels, and may in-
vert the image polarity (white to black and black to white). The contrast is C ∼ U [1 − 0.85 ×
complexity, 1] so the image is normalized into [1−C2 , 1 − 1−C

2]. The polarity is inverted with
probability 50%.

3. Experimental Setup
Much previous work on deep learning had been performed on the MNIST digits task (Hinton et al., 2006; Ranzato
et al., 2007; Bengio et al., 2007; Salakhutdinov and Hinton, 2009), with 60 000 examples, and variants involving
10 000 examples (Larochelle et al., 2009b; Vincent et al., 2008b). The focus here is on much larger training sets,
from 10 times to to 1000 times larger, and 62 classes.

The first step in constructing the larger datasets (called NISTP and P07) is to sample from a data source: NIST
(NIST database 19), Fonts, Captchas, and OCR data (scanned machine printed characters). Once a character is
sampled from one of these sources (chosen randomly), the second step is to apply a pipeline of transformations
and/or noise processes described in section 2.

To provide a baseline of error rate comparison we also estimate human performance on both the 62-class task and
the 10-class digits task. We compare the best Multi-Layer Perceptrons (MLP) against the best Stacked Denoising

5

Auto-encoders (SDA), when both models’ hyper-parameters are selected to minimize the validation set error. We
also provide a comparison against a precise estimate of human performance obtained via Amazon’s Mechanical Turk
(AMT) service (http://mturk.com). AMT users are paid small amounts of money to perform tasks for which human
intelligence is required. Mechanical Turk has been used extensively in natural language processing and vision.
AMT users were presented with 10 character images (from a test set) and asked to choose 10 corresponding ASCII
characters. They were forced to choose a single character class (either among the 62 or 10 character classes) for each
image. 80 subjects classified 2500 images per (dataset,task) pair. Different humans labelers sometimes provided a
different label for the same example, and we were able to estimate the error variance due to this effect because each
image was classified by 3 different persons. The average error of humans on the 62-class task NIST test set is 18.2%,
with a standard error of 0.1%.

3.1 Data Sources

NIST. Our main source of characters is the NIST Special Database 19 (Grother, 1995), widely used for training
and testing character recognition systems (Granger et al., 2007; Pérez-Cortes et al., 2000; Oliveira et al., 2002b;
Milgram et al., 2005). The dataset is composed of 814255 digits and characters (upper and lower cases), with hand
checked classifications, extracted from handwritten sample forms of 3600 writers. The characters are labelled by
one of the 62 classes corresponding to “0”-“9”,“A”-“Z” and “a”-“z”. The dataset contains 8 parts (partitions) of
varying complexity. The fourth partition (called hsf4, 82587 examples), experimentally recognized to be the most
difficult one, is the one recommended by NIST as a testing set and is used in our work as well as some previous
work (Granger et al., 2007; Pérez-Cortes et al., 2000; Oliveira et al., 2002b; Milgram et al., 2005) for that purpose.
We randomly split the remainder (731668 examples) into a training set and a validation set for model selection.
The performances reported by previous work on that dataset mostly use only the digits. Here we use all the classes
both in the training and testing phase. This is especially useful to estimate the effect of a multi-task setting. The
distribution of the classes in the NIST training and test sets differs substantially, with relatively many more digits in
the test set, and a more uniform distribution of letters in the test set (whereas in the training set they are distributed
more like in natural text).

Fonts. In order to have a good variety of sources we downloaded an important number of free fonts from:
http://cg.scs.carleton.ca/˜luc/freefonts.html. Including the operating system’s (Windows 7)
fonts, there is a total of 9817 different fonts that we can choose uniformly from. The chosen ttf file is either used
as input of the Captcha generator (see next item) or, by producing a corresponding image, directly as input to our
models.

Captchas. The Captcha data source is an adaptation of the pycaptcha library (a python based captcha generator
library) for generating characters of the same format as the NIST dataset. This software is based on a random
character class generator and various kinds of transformations similar to those described in the previous sections. In
order to increase the variability of the data generated, many different fonts are used for generating the characters.
Transformations (slant, distortions, rotation, translation) are applied to each randomly generated character with a
complexity depending on the value of the complexity parameter provided by the user of the data source.

OCR data. A large set (2 million) of scanned, OCRed and manually verified machine-printed characters where
included as an additional source. This set is part of a larger corpus being collected by the Image Understanding Pat-
tern Recognition Research group led by Thomas Breuel at University of Kaiserslautern (http://www.iupr.com),
and which will be publicly released.

3.2 Data Sets

All data sets contain 32×32 grey-level images (values in [0, 1]) associated with a label from one of the 62 character
classes.

NIST. This is the raw NIST special database 19 (Grother, 1995). It has {651668 / 80000 / 82587} {training /
validation / test} examples.

P07. This dataset is obtained by taking raw characters from all four of the above sources and sending them
through the transformation pipeline described in section 2. For each new example to generate, a data source is

6

selected with probability 10% from the fonts, 25% from the captchas, 25% from the OCR data and 40% from NIST.
We apply all the transformations in the order given above, and for each of them we sample uniformly a complexity
in the range [0, 0.7]. It has {81920000 / 80000 / 20000} {training / validation / test} examples.

NISTP. This one is equivalent to P07 (complexity parameter of 0.7 with the same proportions of data sources)
except that we only apply transformations from slant to pinch. Therefore, the character is transformed but no
additional noise is added to the image, giving images closer to the NIST dataset. It has {81920000 / 80000 / 20000}
{training / validation / test} examples.

3.3 Models and their Hyperparameters

The experiments are performed using MLPs (with a single hidden layer) and SDAs. Hyper-parameters are selected
based on the NISTP validation set error.

Multi-Layer Perceptrons (MLP). Whereas previous work had compared deep architectures to both shallow
MLPs and SVMs, we only compared to MLPs here because of the very large datasets used (making the use of
SVMs computationally challenging because of their quadratic scaling behavior). Preliminary experiments on train-
ing SVMs (libSVM) with subsets of the training set allowing the program to fit in memory yielded substantially
worse results than those obtained with MLPs. For training on nearly a billion examples (with the perturbed data),
the MLPs and SDA are much more convenient than classifiers based on kernel methods. The MLP has a single hid-
den layer with tanh activation functions, and softmax (normalized exponentials) on the output layer for estimating
P (class|image). The number of hidden units is taken in {300, 500, 800, 1000, 1500}. Training examples are pre-
sented in minibatches of size 20. A constant learning rate was chosen among {0.001, 0.01, 0.025, 0.075, 0.1, 0.5}.

Stacked Denoising Auto-Encoders (SDA). Various auto-encoder variants and Restricted Boltzmann Machines
(RBMs) can be used to initialize the weights of each layer of a deep MLP (with many hidden layers) (Hinton
et al., 2006; Ranzato et al., 2007; Bengio et al., 2007), apparently setting parameters in the basin of attraction of
supervised gradient descent yielding better generalization (Erhan et al., 2010). This initial unsupervised pre-training
phase uses all of the training images but not the training labels. Each layer is trained in turn to produce a new
representation of its input (starting from the raw pixels). It is hypothesized that the advantage brought by this
procedure stems from a better prior, on the one hand taking advantage of the link between the input distribution
P (x) and the conditional distribution of interest P (y|x) (like in semi-supervised learning), and on the other hand
taking advantage of the expressive power and bias implicit in the deep architecture (whereby complex concepts are
expressed as compositions of simpler ones through a deep hierarchy).

!

"

#

$

Conclusions and Future Work

• Pre-training adds robustness to a deep architecture.

• Pre-training is a type of regularization: in the sense of restricting the start-
ing points of the optimization to a data-dependent manifold.

• It is not simply a way of getting a good initial marginal distribution: it
captures more intricate dependencies.

• Pre-training seems more effective for lower layers than for higher layers.

• Visualizations confirmed that the solutions corresponding to the two initial-
ization strategies are qualitatively different.

• Is the a pre-training advantage for very large (“infinite”) datasets? i.e. Does
pre-training help with optimization in a deep architecture?

• Future work: “InfiniteMNIST”, non-MNIST data, DBNs.

References
[1] BENGIO, Y. Learning deep architectures for AI. Tech. Rep. 1312, Université de Montréal, dept. IRO, 2007.

[2] BENGIO, Y., LAMBLIN, P., POPOVICI, D., AND LAROCHELLE, H. Greedy layer-wise training of deep networks. In NIPS 19 (2007), B. Schölkopf, J. Platt,
and T. Hoffman, Eds., MIT Press, pp. 153–160.

[3] HINTON, G. E., OSINDERO, S., AND TEH, Y. A fast learning algorithm for deep belief nets. Neural Computation 18 (2006), 1527–1554.

[4] RANZATO, M., POULTNEY, C., CHOPRA, S., AND LECUN, Y. Efficient learning of sparse representations with an energy-based model. In NIPS 19 (2007),
B. Schölkopf, J. Platt, and T. Hoffman, Eds., MIT Press.

[5] VAN DER MAATEN, L., AND HINTON, G. E. Visualizing high-dimensional data using t-sne. Journal of Machine Learning Research (2008).

[6] VINCENT, P., LAROCHELLE, H., BENGIO, Y., AND MANZAGOL, P.-A. Extracting and composing robust features with denoising autoencoders. In Proc.
ICML 2008 (2008), pp. 1096–1103.

!

"

#

$

Functional space approximation
2D approximation of the outputs of the 2-layer networks during supervised
training. Outputs were projected using t-SNE[5].

1. The pre-trained and not pre-trained models start and stay in different re-
gions of function space.

2. All trajectories of a given type (with pre-training or without) initially move
together, but at some point (after about 7 epochs), different trajectories di-
verge and never get back close to each other. This suggests that each tra-
jectory moves into a different local minimum.

!

"

#

$

Error landscape analysis
Training errors obtained on Shapeset when stepping in parameter space
around a converged model in 7 random gradient directions (stepsize of 0.1).
Top/Bottom: no / with pre-training. Left–Right: 1–3 hidden layers.

We seem to be near a local minimum in all directions investigated, as opposed
to a saddle point or a plateau. Figures also suggest that the error landscape is
a bit flatter in the case of pre-training, and flatter for deeper architectures.

!

"

#

$

Pre-Training Different Layers
Hybrid initialization: some layers are
taken from a pre-trained model and
others are initialized randomly in the
usual way.
Results are consistent with the hy-
pothesis [1] that training the lower
layers is harder because gradient in-
formation becomes less informative
as it is backpropagated through more
layers.

!

"

#

$

Effect of Layer Size
We measure the effect of layer size on the changes brought by pre-training.
Experiments on MNIST. Error bars have a height of two standard devia-
tions (over initialization seed). Pre-training hurts for smaller layer sizes
and shallower networks, but it helps for all depths for larger networks.

In this scenario, pre-training acts like an additional regularizer: for smaller
networks, it constrains the capacity even more and hurts performance.

!

"

#

$

A Better Random Initialization?
Alternative hypothesis: pre-training provides a better marginal distribution
of weights compared to random initialization (thus, it is data-indepenent).
We measured the effect of various initialization strategies (MNIST):

initialization. Uniform Histogram Unsup.pre-tr.
1 layer 1.81 ± 0.07 1.94 ± 0.09 1.41 ± 0.07
2 layers 1.77 ± 0.10 1.69 ± 0.11 1.37 ± 0.09

1. independent uniform densities (one per parameter)

2. independent densities from the marginals after pre-training

3. unsupervised pre-training (which samples the parameters in a highly de-
pendent way so that they collaborate to make up good denoising auto-
encoders.)

Clearly, we can’t simply replace the unsupervised initialization with sam-
pling from the marginal distribution induced by it.

!

"

#

$

Pre-training as Regularization
For 2 and 3-layer networks, pre-training seems to act like a regularizer:

• It hurts the training error, yet it helps with generalization.

• Pre-training with denoising auto-encoders can be seen as decreasing the
variance and introducing a bias (towards parameter configurations suit-
able for performing denoising).

• Unlike ordinary regularizers, pre-training changes the distribution of pa-
rameter values before training and does not constrain them during train-
ing (“prior”).

• Unlike ordinary regularizers, pre-training with denoising auto-encoders
does so in a data-dependent manner.

!

"

#

$

Better Optimization or Generalization?
Evolution without pre-training (blue) and with pre-training (red) on
MNIST of the log of the test NLL plotted against the log of the train NLL
as training proceeds. Each of the 2 × 400 curves represents a different
initialization.

Since training error tends to decrease during training, the trajectories run
from right to left. Trajectories moving up (as we go leftward) indicate a
form of overfitting. Note that:

• Pretrained networks start in a better region.

• For 2 and 3-layer networks, pretrained networks converge to a lower test-
ing error, but a higher training error (implying a regularization effect).

!

"

#

$

Effect of depth and pre-training
Effect of depth on performance for 400 models trained (left) without pre-
training and (right) with pre-training, for 1 to 5 hidden layers, using 400
different initialization seeds:

Increasing depth seems to increase the probability of finding poor local
minima (not so for pretrained models).

Histograms presenting the test errors obtained on MNIST using models
trained with or without pre-training. Left: 1 hidden layer. Right: 4 hidden
layers.

!

"

#

$

Experimental setup
Two datasets:

• Shapeset: 10× 10 triangles and squares (50k/10k/10k train/valid/test)

• MNIST: 28× 28 digit images (50k/10k/10k train/valid/test)

Training procedure for pretrained networks:

• 50 epochs of unsupervised pre-training all layers at the same time

• followed by 50 epochs of supervised training

In both cases, initial weights are sampled independently from a
uniform[−1/

√
k, 1/

√
k] (k = fan-in).

Hyperparameters: number of hidden layers, units per layer, unsupervised
and supervised learning rates, L2 weight decay rate. For the optimal hy-
perparameters (as determined by the validation error), we launched exper-
iments using an additional 400 initializations.

!

"

#

$

(Stacked) Denoising Auto-Encoders
A denoising auto-encoder [6]:

fθ

xxx̃

qD

y

z

LH(x, z)
gθ′

with x̂ = sigmoid(c + WTh(C(x))), where C(x) is a stochastic corrup-
tion of x. A simple modification of the auto-encoder that

• improves upon the classical auto-encoder and

• can be used to pretrain a deep network

In our case, KL(x||x̂) is used to learn (b, c,W) and as done by [6], we
set Ci(x) = xi or 0, with a random subset (of a fixed size) selected for
zeroing.

!

"

#

$

Unanswered questions

• Why is it more difficult to train deep architectures?

• What does the cost function landscape of deep architectures look like?

• Is the advantage of unsupervised pre-training related to optimization,
or perhaps some form of regularization?

• What is the effect of random initialization on the learning trajectories?

• Is pretraining certain layers more important than others?

Answering such questions could lead us into further improving the
strategies employed for training deep architectures.

!

"

#

$

Deep Architectures

• Efficient training of deep neural networks (more than 2 hidden layers)
did not seem possible before the Deep Belief Nets (DBN) by [3].

• DBNs use greedy layer-wise unsupervised pre-training via Restricted
Boltzmann Machines to initialize a deep neural network.

• This principle can be extended to auto-associators and related mod-
els [2, 4]

• Applied successfully in classification tasks, regression, dimensional-
ity reduction, modeling textures, information retrieval, robotics, nat-
ural language processing and collaborative filtering

!

"

#

$

Introduction and Motivation

• Automatic learning of deep hierarchies of features is an emerging area
of research in the Machine Learning community.

• Most current approaches are neural-network-based and use unsuper-
vised learning (pre-training) to initialize parameters.

• This approach gives state-of-the-art for a variety of character recog-
nition, vision and some NLP problems.

• Nonetheless, training deep architectures is a difficult problem and un-
supervised pre-training is relatively poorly understood.

• Goal: large-scale empirical evaluations of deep architectures in order
to get further insights into the effect of depth and pre-training.

• One-line summary: pre-training acts like a clever data-dependent reg-
ularizer, in the broad sense of the word.

Dumitru Erhan (UMontreal)
Pierre-Antoine Manzagol (UMontreal)
Yoshua Bengio (UMontreal)
Pascal Vincent (UMontreal)
Samy Bengio (Google)

The Difficulty of Training Deep Architectures and
the Effect of Unsupervised Pre-Training

Figure 1: Illustration of the computations and training criterion for the denoising auto-encoder used to pre-train each
layer of the deep architecture. Input x of the layer (i.e. raw input or output of previous layer) s corrupted
into x̃ and encoded into code y by the encoder fθ(·). The decoder gθ′(·) maps y to reconstruction z,
which is compared to the uncorrupted input x through the loss function LH(x, z), whose expected value
is approximately minimized during training by tuning θ and θ′.

Here we chose to use the Denoising Auto-encoder (Vincent et al., 2008b) as the building block for these
deep hierarchies of features, as it is simple to train and explain (see Figure 1, as well as tutorial and code there:
http://deeplearning.net/tutorial), provides efficient inference, and yielded results comparable or

7

better than RBMs in series of experiments (Vincent et al., 2008b). During training, a Denoising Auto-encoder
is presented with a stochastically corrupted version of the input and trained to reconstruct the uncorrupted input,
forcing the hidden units to represent the leading regularities in the data. Here we use the random binary masking
corruption (which sets to 0 a random subset of the inputs). Once it is trained, in a purely unsupervised way, its hidden
units’ activations can be used as inputs for training a second one, etc. After this unsupervised pre-training stage, the
parameters are used to initialize a deep MLP, which is fine-tuned by the same standard procedure used to train them
(see previous section). The SDA hyper-parameters are the same as for the MLP, with the addition of the amount
of corruption noise (we used the masking noise process, whereby a fixed proportion of the input values, randomly
selected, are zeroed), and a separate learning rate for the unsupervised pre-training stage (selected from the same
above set). The fraction of inputs corrupted was selected among {10%, 20%, 50%}. Another hyper-parameter is the
number of hidden layers but it was fixed to 3 based on previous work with SDAs on MNIST (Vincent et al., 2008b).
The size of the hidden layers was kept constant across hidden layers, and the best results were obtained with the
largest values that we could experiment with given our patience, with 1000 hidden units.

Figure 2: SDAx are the deep models. Error bars indicate a 95% confidence interval. 0 indicates that the model was
trained on NIST, 1 on NISTP, and 2 on P07. Left: overall results of all models, on NIST and NISTP test
sets. Right: error rates on NIST test digits only, along with the previous results from literature (Granger
et al., 2007; Pérez-Cortes et al., 2000; Oliveira et al., 2002b; Milgram et al., 2005) respectively based on
ART, nearest neighbors, MLPs, and SVMs.

4. Experimental Results
The models are either trained on NIST (MLP0 and SDA0), NISTP (MLP1 and SDA1), or P07 (MLP2 and SDA2),
and tested on either NIST, NISTP or P07, either on the 62-class task or on the 10-digits task. Training (including
about half for unsupervised pre-training, for DAs) on the larger datasets takes around one day on a GPU-285.
Figure 2 summarizes the results obtained, comparing humans, the three MLPs (MLP0, MLP1, MLP2) and the three
SDAs (SDA0, SDA1, SDA2), along with the previous results on the digits NIST special database 19 test set from
the literature, respectively based on ARTMAP neural networks (Granger et al., 2007), fast nearest-neighbor search
(Pérez-Cortes et al., 2000), MLPs (Oliveira et al., 2002b), and SVMs (Milgram et al., 2005). More detailed and
complete numerical results (figures and tables, including standard errors on the error rates) can be found in Appendix.
The deep learner not only outperformed the shallow ones and previously published performance (in a statistically
and qualitatively significant way) but when trained with perturbed data reaches human performance on both the

8

Figure 3: Relative improvement in error rate due to self-taught learning. Left: Improvement (or loss, when negative)
induced by out-of-distribution examples (perturbed data). Right: Improvement (or loss, when negative)
induced by multi-task learning (training on all classes and testing only on either digits, upper case, or
lower-case). The deep learner (SDA) benefits more from both self-taught learning scenarios, compared to
the shallow MLP.

62-class task and the 10-class (digits) task. 17% error (SDA1) or 18% error (humans) may seem large but a large
majority of the errors from humans and from SDA1 are from out-of-context confusions (e.g. a vertical bar can be a
“1”, an “l” or an “L”, and a “c” and a “C” are often indistinguishible).

In addition, as shown in the left of Figure 3, the relative improvement in error rate brought by self-taught learning
is greater for the SDA, and these differences with the MLP are statistically and qualitatively significant. The left
side of the figure shows the improvement to the clean NIST test set error brought by the use of out-of-distribution
examples (i.e. the perturbed examples examples from NISTP or P07). Relative percent change is measured by
taking 100%× (original model’s error / perturbed-data model’s error - 1). The right side of Figure 3 shows the
relative improvement brought by the use of a multi-task setting, in which the same model is trained for more classes
than the target classes of interest (i.e. training with all 62 classes when the target classes are respectively the digits,
lower-case, or upper-case characters). Again, whereas the gain from the multi-task setting is marginal or negative
for the MLP, it is substantial for the SDA. Note that to simplify these multi-task experiments, only the original NIST
dataset is used. For example, the MLP-digits bar shows the relative percent improvement in MLP error rate on the
NIST digits test set is 100%× (single-task model’s error / multi-task model’s error - 1). The single-task model is
trained with only 10 outputs (one per digit), seeing only digit examples, whereas the multi-task model is trained with
62 outputs, with all 62 character classes as examples. Hence the hidden units are shared across all tasks. For the
multi-task model, the digit error rate is measured by comparing the correct digit class with the output class associated
with the maximum conditional probability among only the digit classes outputs. The setting is similar for the other
two target classes (lower case characters and upper case characters).

5. Conclusions and Discussion
We have found that the self-taught learning framework is more beneficial to a deep learner than to a traditional
shallow and purely supervised learner. More precisely, the answers are positive for all the questions asked in the
introduction.
• Do the good results previously obtained with deep architectures on the MNIST digits generalize to a

much larger and richer (but similar) dataset, the NIST special database 19, with 62 classes and around 800k
examples? Yes, the SDA systematically outperformed the MLP and all the previously published results on this

9

dataset (the ones that we are aware of), in fact reaching human-level performance at around 17% error on the
62-class task and 1.4% on the digits, and beating previously published results on the same data.
• To what extent do self-taught learning scenarios help deep learners, and do they help them more than

shallow supervised ones? We found that distorted training examples not only made the resulting classifier better
on similarly perturbed images but also on the original clean examples, and more importantly and more novel, that
deep architectures benefit more from such out-of-distribution examples. MLPs were helped by perturbed training
examples when tested on perturbed input images (65% relative improvement on NISTP) but only marginally helped
(5% relative improvement on all classes) or even hurt (10% relative loss on digits) with respect to clean examples
. On the other hand, the deep SDAs were significantly boosted by these out-of-distribution examples. Similarly,
whereas the improvement due to the multi-task setting was marginal or negative for the MLP (from +5.6% to -3.6%
relative change), it was quite significant for the SDA (from +13% to +27% relative change), which may be explained
by the arguments below.

In the original self-taught learning framework (Raina et al., 2007), the out-of-sample examples were used as a
source of unsupervised data, and experiments showed its positive effects in a limited labeled data scenario. However,
many of the results by Raina et al. (2007) (who used a shallow, sparse coding approach) suggest that the relative gain
of self-taught learning vs ordinary supervised learning diminishes as the number of labeled examples increases. We
note instead that, for deep architectures, our experiments show that such a positive effect is accomplished even in
a scenario with a large number of labeled examples, i.e., here, the relative gain of self-taught learning is probably
preserved in the asymptotic regime.

Why would deep learners benefit more from the self-taught learning framework? The key idea is that the
lower layers of the predictor compute a hierarchy of features that can be shared across tasks or across variants of
the input distribution. A theoretical analysis of generalization improvements due to sharing of intermediate features
across tasks already points towards that explanation Baxter (1995). Intermediate features that can be used in different
contexts can be estimated in a way that allows to share statistical strength. Features extracted through many levels are
more likely to be more abstract and more invariant to some of the factors of variation in the underlying distribution (as
the experiments in Goodfellow et al. (2009) suggest), increasing the likelihood that they would be useful for a larger
array of tasks and input conditions. Therefore, we hypothesize that both depth and unsupervised pre-training play a
part in explaining the advantages observed here, and future experiments could attempt at teasing apart these factors.
And why would deep learners benefit from the self-taught learning scenarios even when the number of labeled
examples is very large? We hypothesize that this is related to the hypotheses studied in Erhan et al. (2010). In Erhan
et al. (2010) it was found that online learning on a huge dataset did not make the advantage of the deep learning bias
vanish, and a similar phenomenon may be happening here. We hypothesize that unsupervised pre-training of a deep
hierarchy with self-taught learning initializes the model in the basin of attraction of supervised gradient descent
that corresponds to better generalization. Furthermore, such good basins of attraction are not discovered by pure
supervised learning (with or without self-taught settings) from random initialization, and more labeled examples
does not allow the shallow or purely supervised models to discover the kind of better basins associated with deep
learning and self-taught learning.

A Flash demo of the recognizer (where both the MLP and the SDA can be compared) can be executed on-line at
http://deep.host22.com.

Appendix I: Detailed Numerical Results
These tables correspond to Figures 2 and 3 and contain the raw error rates for each model and dataset considered.
They also contain additional data such as test errors on P07 and standard errors.

10

Table 1: Overall comparison of error rates (± std.err.) on 62 character classes (10 digits + 26 lower + 26 upper),
except for last columns – digits only, between deep architecture with pre-training (SDA=Stacked Denois-
ing Autoencoder) and ordinary shallow architecture (MLP=Multi-Layer Perceptron). The models shown
are all trained using perturbed data (NISTP or P07) and using a validation set to select hyper-parameters
and other training choices. {SDA,MLP}0 are trained on NIST, {SDA,MLP}1 are trained on NISTP, and
{SDA,MLP}2 are trained on P07. The human error rate on digits is a lower bound because it does not
count digits that were recognized as letters. For comparison, the results found in the literature on NIST
digits classification using the same test set are included.

NIST test NISTP test P07 test NIST test digits
Humans 18.2% ±.1% 39.4%±.1% 46.9%±.1% 1.4%
SDA0 23.7% ±.14% 65.2%±.34% 97.45%±.06% 2.7% ±.14%
SDA1 17.1% ±.13% 29.7%±.3% 29.7%±.3% 1.4% ±.1%
SDA2 18.7% ±.13% 33.6%±.3% 39.9%±.17% 1.7% ±.1%
MLP0 24.2% ±.15% 68.8%±.33% 78.70%±.14% 3.45% ±.15%
MLP1 23.0% ±.15% 41.8%±.35% 90.4%±.1% 3.85% ±.16%
MLP2 24.3% ±.15% 46.0%±.35% 54.7%±.17% 4.85% ±.18%
(Granger et al., 2007) 4.95% ±.18%
(Pérez-Cortes et al., 2000) 3.71% ±.16%
(Oliveira et al., 2002a) 2.4% ±.13%
(Milgram et al., 2005) 2.1% ±.12%

Table 2: Relative change in error rates due to the use of perturbed training data, either using NISTP, for the
MLP1/SDA1 models, or using P07, for the MLP2/SDA2 models. A positive value indicates that train-
ing on the perturbed data helped for the given test set (the first 3 columns on the 62-class tasks and the
last one is on the clean 10-class digits). Clearly, the deep learning models did benefit more from perturbed
training data, even when testing on clean data, whereas the MLP trained on perturbed data performed worse
on the clean digits and about the same on the clean characters.

NIST test NISTP test P07 test NIST test digits
SDA0/SDA1-1 38% 84% 228% 93%
SDA0/SDA2-1 27% 94% 144% 59%
MLP0/MLP1-1 5.2% 65% -13% -10%
MLP0/MLP2-1 -0.4% 49% 44% -29%

11

Table 3: Test error rates and relative change in error rates due to the use of a multi-task setting, i.e., training on each
task in isolation vs training for all three tasks together, for MLPs vs SDAs. The SDA benefits much more
from the multi-task setting. All experiments on only on the unperturbed NIST data, using validation error
for model selection. Relative improvement is 1 - single-task error / multi-task error.

single-task multi-task relative
setting setting improvement

MLP-digits 3.77% 3.99% 5.6%
MLP-lower 17.4% 16.8% -4.1%
MLP-upper 7.84% 7.54% -3.6%
SDA-digits 2.6% 3.56% 27%
SDA-lower 12.3% 14.4% 15%
SDA-upper 5.93% 6.78% 13%

12

References
Jonathan Baxter. Learning internal representations. In Proceedings of the 8th International Conference on Com-

putational Learning Theory (COLT’95), pages 311–320, Santa Cruz, California, 1995. ACM Press. URL
http://citeseer.ist.psu.edu/baxter95learning.html.

Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1–127,
2009. Also published as a book. Now Publishers, 2009.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep networks.
In NIPS 19, pages 153–160. MIT Press, 2007.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural networks
with multitask learning. In ICML 2008, pages 160–167, 2008.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio.
Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11:625–660,
2010.

Ian Goodfellow, Quoc Le, Andrew Saxe, and Andrew Ng. Measuring invariances in deep networks. In NIPS’09,
pages 646–654. 2009.

Eric Granger, Robert Sabourin, Luiz S. Oliveira, and Catolica Parana. Supervised learning of fuzzy artmap neural
networks through particle swarm optimization. JPRR, 2(1):27–60, 2007.

P.J. Grother. Handprinted forms and character database, NIST special database 19. In National Institute of Standards
and Technology (NIST) Intelligent Systems Division (NISTIR), 1995.

R. M. Haralick, S. R. Sternberg, and X. Zhuang. Image analysis using mathematical morphology. IEEE Trans.
Pattern. Anal. Mach. Intel., 9(4):532–550, 1987.

Goeffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18:1527–1554, 2006.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best multi-stage architec-
ture for object recognition? In Proc. International Conference on Computer Vision (ICCV’09). IEEE, 2009.

Hugo Larochelle, Yoshua Bengio, Jerome Louradour, and Pascal Lamblin. Exploring strategies for training deep
neural networks. Journal of Machine Learning Research, 10:1–40, 2009a.

Hugo Larochelle, Yoshua Bengio, Jerome Louradour, and Pascal Lamblin. Exploring strategies for training deep
neural networks. JMLR, 10:1–40, 2009b.

Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual area V2. In NIPS’07,
pages 873–880. MIT Press, Cambridge, MA, 2008.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In ICML 2009. Montreal (Qc), Canada, 2009a.

Honglak Lee, Peter Pham, Yan Largman, and Andrew Ng. Unsupervised feature learning for audio classification
using convolutional deep belief networks. In NIPS’09, pages 1096–1104. 2009b.

J. Milgram, M. Cheriet, and R. Sabourin. Estimating accurate multi-class probabilities with support vector machines.
In Int. Joint Conf. on Neural Networks, pages 906–1911, 2005.

L.S. Oliveira, R. Sabourin, F. Bortolozzi, and C.Y. Suen. Automatic recognition of handwritten numerical strings: a
recognition and verification strategy. IEEE Trans. Pattern Analysis and Mach. Intelli., 24(11):1438–1454, Novem-
ber 2002a. ISSN 0162-8828. doi: 10.1109/TPAMI.2002.1046154.

13

L.S. Oliveira, R. Sabourin, F. Bortolozzi, and C.Y. Suen. Automatic recognition of handwritten numerical strings: a
recognition and verification strategy. IEEE Trans. Pattern Analysis and Mach. Intelli., 24(11):1438–1454, 2002b.

Juan Carlos Pérez-Cortes, Rafael Llobet, and Joaquim Arlandis. Fast and accurate handwritten character recognition
using approximate nearest neighbours search on large databases. In IAPR, pages 767–776, London, UK, 2000.
Springer-Verlag. ISBN 3-540-67946-4.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught learning: transfer
learning from unlabeled data. In ICML 2007, pages 759–766, 2007.

M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based
model. In NIPS’06, 2007.

Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for deep belief networks. In
NIPS’07, pages 1185–1192, Cambridge, MA, 2008. MIT Press.

Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep Boltzmann machines. In AISTATS’2009, volume 5, pages
448–455, 2009.

J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

Patrice Simard, David Steinkraus, and John C. Platt. Best practices for convolutional neural networks applied to
visual document analysis. In ICDAR, pages 958–962, 2003.

Graham Taylor and Geoffrey Hinton. Factored conditional restricted Boltzmann machines for modeling motion
style. In Léon Bottou and Michael Littman, editors, Proceedings of the 26th International Conference on Machine
Learning (ICML’09), pages 1025–1032, Montreal, June 2009. Omnipress.

Graham Taylor, Leonid Sigal, David Fleet, and Geoffrey Hinton. Dynamic binary latent variable models for 3D pose
tracking. In Proc. Conference on Computer Vision and Pattern Recognition (CVPR’2010), 2010.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising
autoencoders. In ICML 2008, 2008a.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust
features with denoising autoencoders. In ICML’08, pages 1096–1103. ACM, 2008b.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In ICML 2008, 2008.

14

