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Conclusions and Future Work

• Pre-training adds robustness to a deep architecture.
• Pre-training is a type of regularization: in the sense of restricting the start-

ing points of the optimization to a data-dependent manifold.
• It is not simply a way of getting a good initial marginal distribution: it

captures more intricate dependencies.
• Pre-training seems more effective for lower layers than for higher layers.
• Visualizations confirmed that the solutions corresponding to the two initial-

ization strategies are qualitatively different.
• Is the a pre-training advantage for very large (“infinite”) datasets? i.e. Does

pre-training help with optimization in a deep architecture?
• Future work: “InfiniteMNIST”, non-MNIST data, DBNs.
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Functional space approximation
2D approximation of the outputs of the 2-layer networks during supervised
training. Outputs were projected using t-SNE[5].

1. The pre-trained and not pre-trained models start and stay in different re-
gions of function space.

2. All trajectories of a given type (with pre-training or without) initially move
together, but at some point (after about 7 epochs), different trajectories di-
verge and never get back close to each other. This suggests that each tra-
jectory moves into a different local minimum.
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Error landscape analysis
Training errors obtained on Shapeset when stepping in parameter space
around a converged model in 7 random gradient directions (stepsize of 0.1).
Top/Bottom: no / with pre-training. Left–Right: 1–3 hidden layers.

We seem to be near a local minimum in all directions investigated, as opposed
to a saddle point or a plateau. Figures also suggest that the error landscape is
a bit flatter in the case of pre-training, and flatter for deeper architectures.
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Pre-Training Different Layers
Hybrid initialization: some layers are
taken from a pre-trained model and
others are initialized randomly in the
usual way.
Results are consistent with the hy-
pothesis [1] that training the lower
layers is harder because gradient in-
formation becomes less informative
as it is backpropagated through more
layers.
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Effect of Layer Size
We measure the effect of layer size on the changes brought by pre-training.
Experiments on MNIST. Error bars have a height of two standard devia-
tions (over initialization seed). Pre-training hurts for smaller layer sizes
and shallower networks, but it helps for all depths for larger networks.

In this scenario, pre-training acts like an additional regularizer: for smaller
networks, it constrains the capacity even more and hurts performance.
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A Better Random Initialization?
Alternative hypothesis: pre-training provides a better marginal distribution
of weights compared to random initialization (thus, it is data-indepenent).
We measured the effect of various initialization strategies (MNIST):

initialization. Uniform Histogram Unsup.pre-tr.
1 layer 1.81 ± 0.07 1.94 ± 0.09 1.41 ± 0.07
2 layers 1.77 ± 0.10 1.69 ± 0.11 1.37 ± 0.09

1. independent uniform densities (one per parameter)
2. independent densities from the marginals after pre-training
3. unsupervised pre-training (which samples the parameters in a highly de-

pendent way so that they collaborate to make up good denoising auto-
encoders.)

Clearly, we can’t simply replace the unsupervised initialization with sam-
pling from the marginal distribution induced by it.
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Pre-training as Regularization
For 2 and 3-layer networks, pre-training seems to act like a regularizer:
• It hurts the training error, yet it helps with generalization.
• Pre-training with denoising auto-encoders can be seen as decreasing the

variance and introducing a bias (towards parameter configurations suit-
able for performing denoising).

• Unlike ordinary regularizers, pre-training changes the distribution of pa-
rameter values before training and does not constrain them during train-
ing (“prior”).

• Unlike ordinary regularizers, pre-training with denoising auto-encoders
does so in a data-dependent manner.
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Better Optimization or Generalization?
Evolution without pre-training (blue) and with pre-training (red) on
MNIST of the log of the test NLL plotted against the log of the train NLL
as training proceeds. Each of the 2 × 400 curves represents a different
initialization.

Since training error tends to decrease during training, the trajectories run
from right to left. Trajectories moving up (as we go leftward) indicate a
form of overfitting. Note that:
• Pretrained networks start in a better region.
• For 2 and 3-layer networks, pretrained networks converge to a lower test-

ing error, but a higher training error (implying a regularization effect).
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Effect of depth and pre-training
Effect of depth on performance for 400 models trained (left) without pre-
training and (right) with pre-training, for 1 to 5 hidden layers, using 400
different initialization seeds:

Increasing depth seems to increase the probability of finding poor local
minima (not so for pretrained models).

Histograms presenting the test errors obtained on MNIST using models
trained with or without pre-training. Left: 1 hidden layer. Right: 4 hidden
layers.
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Experimental setup
Two datasets:
• Shapeset: 10× 10 triangles and squares (50k/10k/10k train/valid/test)
• MNIST: 28× 28 digit images (50k/10k/10k train/valid/test)

Training procedure for pretrained networks:
• 50 epochs of unsupervised pre-training all layers at the same time
• followed by 50 epochs of supervised training

In both cases, initial weights are sampled independently from a
uniform[−1/

√
k, 1/

√
k] (k = fan-in).

Hyperparameters: number of hidden layers, units per layer, unsupervised
and supervised learning rates, L2 weight decay rate. For the optimal hy-
perparameters (as determined by the validation error), we launched exper-
iments using an additional 400 initializations.
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(Stacked) Denoising Auto-Encoders
A denoising auto-encoder [6]:

fθ

xxx̃

qD

y

z

LH(x, z)
gθ′

with x̂ = sigmoid(c + WTh(C(x))), where C(x) is a stochastic corrup-
tion of x. A simple modification of the auto-encoder that
• improves upon the classical auto-encoder and
• can be used to pretrain a deep network

In our case, KL(x||x̂) is used to learn (b, c,W ) and as done by [6], we
set Ci(x) = xi or 0, with a random subset (of a fixed size) selected for
zeroing.
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Unanswered questions

• Why is it more difficult to train deep architectures?
• What does the cost function landscape of deep architectures look like?
• Is the advantage of unsupervised pre-training related to optimization,

or perhaps some form of regularization?
• What is the effect of random initialization on the learning trajectories?
• Is pretraining certain layers more important than others?

Answering such questions could lead us into further improving the
strategies employed for training deep architectures.
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Deep Architectures

• Efficient training of deep neural networks (more than 2 hidden layers)
did not seem possible before the Deep Belief Nets (DBN) by [3].

• DBNs use greedy layer-wise unsupervised pre-training via Restricted
Boltzmann Machines to initialize a deep neural network.

• This principle can be extended to auto-associators and related mod-
els [2, 4]

• Applied successfully in classification tasks, regression, dimensional-
ity reduction, modeling textures, information retrieval, robotics, nat-
ural language processing and collaborative filtering
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Introduction and Motivation

• Automatic learning of deep hierarchies of features is an emerging area
of research in the Machine Learning community.

• Most current approaches are neural-network-based and use unsuper-
vised learning (pre-training) to initialize parameters.

• This approach gives state-of-the-art for a variety of character recog-
nition, vision and some NLP problems.

• Nonetheless, training deep architectures is a difficult problem and un-
supervised pre-training is relatively poorly understood.

• Goal: large-scale empirical evaluations of deep architectures in order
to get further insights into the effect of depth and pre-training.

• One-line summary: pre-training acts like a clever data-dependent reg-
ularizer, in the broad sense of the word.
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