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Abstract

Recent theoretical and empirical work in statistical machine learning has demon-
strated the importance of learning algorithms for deep architectures, i.e., function
classes obtained by composing multiple non-linear transformations. Self-taught
learning (exploiting unlabeled examples or examples from other distributions) has
already been applied to deep learners, but mostly to show the advantage of un-
labeled examples. Here we explore the advantage brought by out-of-distribution
examples. For this purpose we developed a powerful generator of stochastic vari-
ations and noise processes for character images, including not only affine trans-
formations but also slant, local elastic deformations, changes in thickness, back-
ground images, grey level changes, contrast, occlusion, and various types of noise.
The out-of-distribution examples are obtained from these highly distorted images
or by including examples of object classes different from those in the target test
set. We show that deep learners benefit more from them than a corresponding
shallow learner, at least in the area of handwritten character recognition. In fact,
we show that they reach human-level performance on both handwritten digit clas-
sification and 62-class handwritten character recognition.

1 Introduction

Deep Learning has emerged as a promising new area of research in statistical machine learning
(see Bengio [1] for a review). Learning algorithms for deep architectures are centered on the learning
of useful representations of data, which are better suited to the task at hand. This is in part inspired by
observations of the mammalian visual cortex, which consists of a chain of processing elements, each
of which is associated with a different representation of the raw visual input. In fact, it was found
recently that the features learnt in deep architectures resemble those observed in the first two of these
stages (in areas V1 and V2 of visual cortex) [2], and that they become more and more invariant to
factors of variation (such as camera movement) in higher layers [3]. Learning a hierarchy of features
increases the ease and practicality of developing representations that are at once tailored to specific
tasks, yet are able to borrow statistical strength from other related tasks (e.g., modeling different
kinds of objects). Finally, learning the feature representation can lead to higher-level (more abstract,
more general) features that are more robust to unanticipated sources of variance extant in real data.

Self-taught learning [4] is a paradigm that combines principles of semi-supervised and multi-task
learning: the learner can exploit examples that are unlabeled and possibly come from a distribution
different from the target distribution, e.g., from other classes than those of interest. It has already
been shown that deep learners can clearly take advantage of unsupervised learning and unlabeled
examples [1, 5], but more needs to be done to explore the impact of out-of-distribution examples and
of the multi-task setting (one exception is [6], which uses a different kind of learning algorithm).
In particular the relative advantage of deep learning for these settings has not been evaluated. The
hypothesis discussed in the conclusion is that a deep hierarchy of features may be better able to
provide sharing of statistical strength between different regions in input space or different tasks.
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In this paper we ask the following questions:

• Do the good results previously obtained with deep architectures on the MNIST digit images gen-
eralize to the setting of a much larger and richer (but similar) dataset, the NIST special database 19,
with 62 classes and around 800k examples?

• To what extent does the perturbation of input images (e.g. adding noise, affine transformations,
background images) make the resulting classifiers better not only on similarly perturbed images
but also on the original clean examples? We study this question in the context of the 62-class and
10-class tasks of the NIST special database 19.

• Do deep architectures benefit more from such out-of-distribution examples, i.e. do they benefit
more from the self-taught learning [4] framework? We use highly perturbed examples to generate
out-of-distribution examples.

• Similarly, does the feature learning step in deep learning algorithms benefit more from training
with moderately different classes (i.e. a multi-task learning scenario) than a corresponding shallow
and purely supervised architecture? We train on 62 classes and test on 10 (digits) or 26 (upper case
or lower case) to answer this question.

Our experimental results provide positive evidence towards all of these questions. To achieve these
results, we introduce in the next section a sophisticated system for stochastically transforming
character images and then explain the methodology, which is based on training with or without
these transformed images and testing on clean ones. We measure the relative advantage of out-of-
distribution examples for a deep learner vs a supervised shallow one. Code for generating these
transformations as well as for the deep learning algorithms are made available. We also estimate the
relative advantage for deep learners of training with other classes than those of interest, by compar-
ing learners trained with 62 classes with learners trained with only a subset (on which they are then
tested). The conclusion discusses the more general question of why deep learners may benefit so
much from the self-taught learning framework.

2 Perturbation and Transformation of Character Images

Original

This section describes the different transformations we used to stochastically trans-
form 32×32 source images (such as the one on the left) in order to obtain data from
a larger distribution which covers a domain substantially larger than the clean char-
acters distribution from which we start. Although character transformations have
been used before to improve character recognizers, this effort is on a large scale
both in number of classes and in the complexity of the transformations, hence
in the complexity of the learning task. More details can be found in this tech-
nical report [7]. The code for these transformations (mostly python) is available

at http://anonymous.url.net. All the modules in the pipeline share a global control pa-
rameter (0 ≤ complexity ≤ 1) that allows one to modulate the amount of deformation or noise
introduced. There are two main parts in the pipeline. The first one, from slant to pinch below,
performs transformations. The second part, from blur to contrast, adds different kinds of noise.

2.1 Transformations

Thickness

To change character thickness, morphological operators of dilation and erosion [8,
9] are applied. The neighborhood of each pixel is multiplied element-wise with
a structuring element matrix. The pixel value is replaced by the maximum or
the minimum of the resulting matrix, respectively for dilation or erosion. Ten
different structural elements with increasing dimensions (largest is 5 × 5) were
used. For each image, randomly sample the operator type (dilation or erosion) with
equal probability and one structural element from a subset of the n = round(m×

complexity) smallest structuring elements where m = 10 for dilation and m = 6 for erosion (to
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avoid completely erasing thin characters). A neutral element (no transformation) is always present
in the set.

Slant

To produce slant, each row of the image is shifted proportionally to its height:
shift = round(slant × height). slant ∼ U [−complexity, complexity]. The
shift is randomly chosen to be either to the left or to the right.

Affine
Transformation

A 2 × 3 affine transform matrix (with parameters (a, b, c, d, e, f)) is sam-
pled according to the complexity. Output pixel (x, y) takes the value of
input pixel nearest to (ax + by + c, dx + ey + f), producing scaling, trans-
lation, rotation and shearing. Marginal distributions of (a, b, c, d, e, f) have
been tuned to forbid large rotations (to avoid confusing classes) but to give
good variability of the transformation: a and d ∼ U [1 − 3complexity, 1 +
3 complexity], b and e ∼ U [−3 complexity, 3 complexity], and c and
f ∼ U [−4 complexity, 4 complexity].

!

b

Pinch

The pinch module applies the “Whirl and pinch” GIMP filter with whirl set to 0. A pinch is
“similar to projecting the image onto an elastic surface and pressing or pulling on the center of the
surface” (GIMP documentation manual). For a square input image, draw a radius-r disk around its
center C. Any pixel P belonging to that disk has its value replaced by the value of a “source” pixel
in the original image, on the line that goes through C and P , but at some other distance d2. Define
d1 = distance(P,C) and d2 = sin(πd12r )−pinch × d1, where pinch is a parameter of the filter. The
actual value is given by bilinear interpolation considering the pixels around the (non-integer) source
position thus found. Here pinch ∼ U [−complexity, 0.7× complexity].
2.2 Injecting Noise

Motion Blur

The motion blur module is GIMP’s “linear motion blur”, which has parameters
length and angle. The value of a pixel in the final image is approximately the
mean of the first length pixels found by moving in the angle direction, angle ∼
U [0, 360] degrees, and length ∼ Normal(0, (3× complexity)2).

Occlusion

The occlusion module selects a random rectangle from an occluder character image
and places it over the original occluded image. Pixels are combined by taking the
max(occluder, occluded), i.e. keeping the lighter ones. The rectangle corners are
sampled so that larger complexity gives larger rectangles. The destination position
in the occluded image are also sampled according to a normal distribution (more
details in authors [7]). This module is skipped with probability 60%.

Gaussian
Smoothing

With the Gaussian smoothing module, different regions of the image are spatially
smoothed. This is achieved by first convolving the image with an isotropic Gaus-
sian kernel of size and variance chosen uniformly in the ranges [12, 12 + 20 ×

3
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complexity] and [2, 2 + 6 × complexity]. This filtered image is normalized be-
tween 0 and 1. We also create an isotropic weighted averaging window, of the ker-
nel size, with maximum value at the center. For each image we sample uniformly
from 3 to 3 + 10 × complexity pixels that will be averaging centers between the
original image and the filtered one. We initialize to zero a mask matrix of the im-

age size. For each selected pixel we add to the mask the averaging window centered on it. The final
image is computed from the following element-wise operation: image+filtered image×mask

mask+1 . This
module is skipped with probability 75%.
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Permute Pixels

This module permutes neighbouring pixels. It first selects a fraction complexity
3

of pixels randomly in the image. Each of these pixels is then sequentially ex-
changed with a random pixel among its four nearest neighbors (on its left, right,
top or bottom). This module is skipped with probability 80%.

Gauss. Noise

The Gaussian noise module simply adds, to each pixel of the image independently,
a noise ∼ Normal(0, ( complexity10 )2). This module is skipped with probability
70%.

Bg Image

Following Larochelle et al. [11], the background image module adds a random
background image behind the letter, from a randomly chosen natural image, with
contrast adjustments depending on complexity, to preserve more or less of the
original character image.

Salt & Pepper

The salt and pepper noise module adds noise ∼ U [0, 1] to random subsets of
pixels. The number of selected pixels is 0.2× complexity. This module is skipped
with probability 75%.

Scratches

The scratches module places line-like white patches on the image. The lines are
heavily transformed images of the digit “1” (one), chosen at random among 500
such 1 images, randomly cropped and rotated by an angle ∼ Normal(0, (100 ×
complexity)2 (in degrees), using bi-cubic interpolation. Two passes of a grey-
scale morphological erosion filter are applied, reducing the width of the line by an
amount controlled by complexity. This module is skipped with probability 85%.
The probabilities of applying 1, 2, or 3 patches are (50%,30%,20%).

Grey Level & Contrast

The grey level and contrast module changes the contrast by changing grey levels,
and may invert the image polarity (white to black and black to white). The contrast
is C ∼ U [1 − 0.85 × complexity, 1] so the image is normalized into [ 1−C2 , 1 −
1−C

2 ]. The polarity is inverted with probability 50%.

3 Experimental Setup

Much previous work on deep learning had been performed on the MNIST digits task [12, 13, 14, 15],
with 60 000 examples, and variants involving 10 000 examples [16, 17]. The focus here is on much
larger training sets, from 10 times to to 1000 times larger, and 62 classes.

The first step in constructing the larger datasets (called NISTP and P07) is to sample from a data
source: NIST (NIST database 19), Fonts, Captchas, and OCR data (scanned machine printed
characters). Once a character is sampled from one of these sources (chosen randomly), the second
step is to apply a pipeline of transformations and/or noise processes described in section 2.

To provide a baseline of error rate comparison we also estimate human performance on both the 62-
class task and the 10-class digits task. We compare the best Multi-Layer Perceptrons (MLP) against
the best Stacked Denoising Auto-encoders (SDA), when both models’ hyper-parameters are selected
to minimize the validation set error. We also provide a comparison against a precise estimate of hu-
man performance obtained via Amazon’s Mechanical Turk (AMT) service (http://mturk.com). AMT
users are paid small amounts of money to perform tasks for which human intelligence is required.
Mechanical Turk has been used extensively in natural language processing and vision. AMT users
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were presented with 10 character images (from a test set) and asked to choose 10 corresponding
ASCII characters. They were forced to choose a single character class (either among the 62 or 10
character classes) for each image. 80 subjects classified 2500 images per (dataset,task) pair, with
the guarantee that 3 different subjects classified each image, allowing us to estimate inter-human
variability (e.g a standard error of 0.1% on the average 18.2% error done by humans on the 62-class
task NIST test set).

3.1 Data Sources
NIST. Our main source of characters is the NIST Special Database 19 [18], widely used for training
and testing character recognition systems [19, 20, 21, 22]. The dataset is composed of 814255
digits and characters (upper and lower cases), with hand checked classifications, extracted from
handwritten sample forms of 3600 writers. The characters are labelled by one of the 62 classes
corresponding to “0”-“9”,“A”-“Z” and “a”-“z”. The dataset contains 8 parts (partitions) of varying
complexity. The fourth partition (called hsf4, 82587 examples), experimentally recognized to be
the most difficult one, is the one recommended by NIST as a testing set and is used in our work
as well as some previous work [19, 20, 21, 22] for that purpose. We randomly split the remainder
(731668 examples) into a training set and a validation set for model selection. The performances
reported by previous work on that dataset mostly use only the digits. Here we use all the classes
both in the training and testing phase. This is especially useful to estimate the effect of a multi-task
setting. The distribution of the classes in the NIST training and test sets differs substantially, with
relatively many more digits in the test set, and a more uniform distribution of letters in the test set
(whereas in the training set they are distributed more like in natural text).
Fonts. In order to have a good variety of sources we downloaded an important number of free fonts
from: http://cg.scs.carleton.ca/˜luc/freefonts.html. Including the operating
system’s (Windows 7) fonts, there is a total of 9817 different fonts that we can choose uniformly
from. The chosen ttf file is either used as input of the Captcha generator (see next item) or, by
producing a corresponding image, directly as input to our models.
Captchas. The Captcha data source is an adaptation of the pycaptcha library (a python based
captcha generator library) for generating characters of the same format as the NIST dataset. This
software is based on a random character class generator and various kinds of transformations similar
to those described in the previous sections. In order to increase the variability of the data generated,
many different fonts are used for generating the characters. Transformations (slant, distortions, ro-
tation, translation) are applied to each randomly generated character with a complexity depending
on the value of the complexity parameter provided by the user of the data source.
OCR data. A large set (2 million) of scanned, OCRed and manually verified machine-printed char-
acters where included as an additional source. This set is part of a larger corpus being collected by
the Image Understanding Pattern Recognition Research group led by Thomas Breuel at University
of Kaiserslautern (http://www.iupr.com), and which will be publicly released.

3.2 Data Sets
All data sets contain 32×32 grey-level images (values in [0, 1]) associated with a label from one of
the 62 character classes.
NIST. This is the raw NIST special database 19 [18]. It has {651668 / 80000 / 82587} {training /
validation / test} examples.
P07. This dataset is obtained by taking raw characters from all four of the above sources and sending
them through the transformation pipeline described in section 2. For each new example to generate,
a data source is selected with probability 10% from the fonts, 25% from the captchas, 25% from the
OCR data and 40% from NIST. We apply all the transformations in the order given above, and for
each of them we sample uniformly a complexity in the range [0, 0.7]. It has {81920000 / 80000 /
20000} {training / validation / test} examples.
NISTP. This one is equivalent to P07 (complexity parameter of 0.7 with the same proportions of data
sources) except that we only apply transformations from slant to pinch. Therefore, the character is
transformed but no additional noise is added to the image, giving images closer to the NIST dataset.
It has {81920000 / 80000 / 20000} {training / validation / test} examples.

3.3 Models and their Hyperparameters
The experiments are performed using MLPs (with a single hidden layer) and SDAs. Hyper-
parameters are selected based on the NISTP validation set error.
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Multi-Layer Perceptrons (MLP). Whereas previous work had compared deep architectures to both
shallow MLPs and SVMs, we only compared to MLPs here because of the very large datasets used
(making the use of SVMs computationally challenging because of their quadratic scaling behavior).
The MLP has a single hidden layer with tanh activation functions, and softmax (normalized expo-
nentials) on the output layer for estimating P (class|image). The number of hidden units is taken in
{300, 500, 800, 1000, 1500}. Training examples are presented in minibatches of size 20. A constant
learning rate was chosen among {0.001, 0.01, 0.025, 0.075, 0.1, 0.5}.
Stacked Denoising Auto-Encoders (SDA). Various auto-encoder variants and Restricted Boltz-
mann Machines (RBMs) can be used to initialize the weights of each layer of a deep MLP (with
many hidden layers) [12, 13, 14], apparently setting parameters in the basin of attraction of su-
pervised gradient descent yielding better generalization [23]. It is hypothesized that the advantage
brought by this procedure stems from a better prior, on the one hand taking advantage of the link
between the input distribution P (x) and the conditional distribution of interest P (y|x) (like in semi-
supervised learning), and on the other hand taking advantage of the expressive power and bias im-
plicit in the deep architecture (whereby complex concepts are expressed as compositions of simpler
ones through a deep hierarchy).
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Conclusions and Future Work

• Pre-training adds robustness to a deep architecture.

• Pre-training is a type of regularization: in the sense of restricting the start-
ing points of the optimization to a data-dependent manifold.

• It is not simply a way of getting a good initial marginal distribution: it
captures more intricate dependencies.

• Pre-training seems more effective for lower layers than for higher layers.

• Visualizations confirmed that the solutions corresponding to the two initial-
ization strategies are qualitatively different.

• Is the a pre-training advantage for very large (“infinite”) datasets? i.e. Does
pre-training help with optimization in a deep architecture?

• Future work: “InfiniteMNIST”, non-MNIST data, DBNs.
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Functional space approximation
2D approximation of the outputs of the 2-layer networks during supervised
training. Outputs were projected using t-SNE[5].

1. The pre-trained and not pre-trained models start and stay in different re-
gions of function space.

2. All trajectories of a given type (with pre-training or without) initially move
together, but at some point (after about 7 epochs), different trajectories di-
verge and never get back close to each other. This suggests that each tra-
jectory moves into a different local minimum.
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Error landscape analysis
Training errors obtained on Shapeset when stepping in parameter space
around a converged model in 7 random gradient directions (stepsize of 0.1).
Top/Bottom: no / with pre-training. Left–Right: 1–3 hidden layers.

We seem to be near a local minimum in all directions investigated, as opposed
to a saddle point or a plateau. Figures also suggest that the error landscape is
a bit flatter in the case of pre-training, and flatter for deeper architectures.
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Pre-Training Different Layers
Hybrid initialization: some layers are
taken from a pre-trained model and
others are initialized randomly in the
usual way.
Results are consistent with the hy-
pothesis [1] that training the lower
layers is harder because gradient in-
formation becomes less informative
as it is backpropagated through more
layers.
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Effect of Layer Size
We measure the effect of layer size on the changes brought by pre-training.
Experiments on MNIST. Error bars have a height of two standard devia-
tions (over initialization seed). Pre-training hurts for smaller layer sizes
and shallower networks, but it helps for all depths for larger networks.

In this scenario, pre-training acts like an additional regularizer: for smaller
networks, it constrains the capacity even more and hurts performance.
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A Better Random Initialization?
Alternative hypothesis: pre-training provides a better marginal distribution
of weights compared to random initialization (thus, it is data-indepenent).
We measured the effect of various initialization strategies (MNIST):

initialization. Uniform Histogram Unsup.pre-tr.
1 layer 1.81 ± 0.07 1.94 ± 0.09 1.41 ± 0.07
2 layers 1.77 ± 0.10 1.69 ± 0.11 1.37 ± 0.09

1. independent uniform densities (one per parameter)

2. independent densities from the marginals after pre-training

3. unsupervised pre-training (which samples the parameters in a highly de-
pendent way so that they collaborate to make up good denoising auto-
encoders.)

Clearly, we can’t simply replace the unsupervised initialization with sam-
pling from the marginal distribution induced by it.
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Pre-training as Regularization
For 2 and 3-layer networks, pre-training seems to act like a regularizer:

• It hurts the training error, yet it helps with generalization.

• Pre-training with denoising auto-encoders can be seen as decreasing the
variance and introducing a bias (towards parameter configurations suit-
able for performing denoising).

• Unlike ordinary regularizers, pre-training changes the distribution of pa-
rameter values before training and does not constrain them during train-
ing (“prior”).

• Unlike ordinary regularizers, pre-training with denoising auto-encoders
does so in a data-dependent manner.

!

"

#

$

Better Optimization or Generalization?
Evolution without pre-training (blue) and with pre-training (red) on
MNIST of the log of the test NLL plotted against the log of the train NLL
as training proceeds. Each of the 2 × 400 curves represents a different
initialization.

Since training error tends to decrease during training, the trajectories run
from right to left. Trajectories moving up (as we go leftward) indicate a
form of overfitting. Note that:

• Pretrained networks start in a better region.

• For 2 and 3-layer networks, pretrained networks converge to a lower test-
ing error, but a higher training error (implying a regularization effect).
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Effect of depth and pre-training
Effect of depth on performance for 400 models trained (left) without pre-
training and (right) with pre-training, for 1 to 5 hidden layers, using 400
different initialization seeds:

Increasing depth seems to increase the probability of finding poor local
minima (not so for pretrained models).

Histograms presenting the test errors obtained on MNIST using models
trained with or without pre-training. Left: 1 hidden layer. Right: 4 hidden
layers.
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Experimental setup
Two datasets:

• Shapeset: 10× 10 triangles and squares (50k/10k/10k train/valid/test)

• MNIST: 28× 28 digit images (50k/10k/10k train/valid/test)

Training procedure for pretrained networks:

• 50 epochs of unsupervised pre-training all layers at the same time

• followed by 50 epochs of supervised training

In both cases, initial weights are sampled independently from a
uniform[−1/

√
k, 1/

√
k] (k = fan-in).

Hyperparameters: number of hidden layers, units per layer, unsupervised
and supervised learning rates, L2 weight decay rate. For the optimal hy-
perparameters (as determined by the validation error), we launched exper-
iments using an additional 400 initializations.
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(Stacked) Denoising Auto-Encoders
A denoising auto-encoder [6]:

fθ

xxx̃

qD

y

z

LH(x, z)
gθ′

with x̂ = sigmoid(c + WTh(C(x))), where C(x) is a stochastic corrup-
tion of x. A simple modification of the auto-encoder that

• improves upon the classical auto-encoder and

• can be used to pretrain a deep network

In our case, KL(x||x̂) is used to learn (b, c,W ) and as done by [6], we
set Ci(x) = xi or 0, with a random subset (of a fixed size) selected for
zeroing.
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Unanswered questions

• Why is it more difficult to train deep architectures?

• What does the cost function landscape of deep architectures look like?

• Is the advantage of unsupervised pre-training related to optimization,
or perhaps some form of regularization?

• What is the effect of random initialization on the learning trajectories?

• Is pretraining certain layers more important than others?

Answering such questions could lead us into further improving the
strategies employed for training deep architectures.
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Deep Architectures

• Efficient training of deep neural networks (more than 2 hidden layers)
did not seem possible before the Deep Belief Nets (DBN) by [3].

• DBNs use greedy layer-wise unsupervised pre-training via Restricted
Boltzmann Machines to initialize a deep neural network.

• This principle can be extended to auto-associators and related mod-
els [2, 4]

• Applied successfully in classification tasks, regression, dimensional-
ity reduction, modeling textures, information retrieval, robotics, nat-
ural language processing and collaborative filtering
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Introduction and Motivation

• Automatic learning of deep hierarchies of features is an emerging area
of research in the Machine Learning community.

• Most current approaches are neural-network-based and use unsuper-
vised learning (pre-training) to initialize parameters.

• This approach gives state-of-the-art for a variety of character recog-
nition, vision and some NLP problems.

• Nonetheless, training deep architectures is a difficult problem and un-
supervised pre-training is relatively poorly understood.

• Goal: large-scale empirical evaluations of deep architectures in order
to get further insights into the effect of depth and pre-training.

• One-line summary: pre-training acts like a clever data-dependent reg-
ularizer, in the broad sense of the word.

Dumitru Erhan (UMontreal)
Pierre-Antoine Manzagol (UMontreal)
Yoshua Bengio (UMontreal)
Pascal Vincent (UMontreal)
Samy Bengio (Google)

The Difficulty of Training Deep Architectures and
the Effect of Unsupervised Pre-Training

Figure 1: Illustration of the computations and training criterion for the denoising auto-encoder used
to pre-train each layer of the deep architecture. Input x of the layer (i.e. raw input or output of
previous layer) s corrupted into x̃ and encoded into code y by the encoder fθ(·). The decoder gθ′(·)
maps y to reconstruction z, which is compared to the uncorrupted input x through the loss function
LH(x, z), whose expected value is approximately minimized during training by tuning θ and θ′.

Here we chose to use the Denoising Auto-encoder [17] as the building block for these deep hierar-
chies of features, as it is simple to train and explain (see Figure 1, as well as tutorial and code there:
http://deeplearning.net/tutorial), provides efficient inference, and yielded results
comparable or better than RBMs in series of experiments [17]. During training, a Denoising Auto-
encoder is presented with a stochastically corrupted version of the input and trained to reconstruct
the uncorrupted input, forcing the hidden units to represent the leading regularities in the data. Here
we use the random binary masking corruption (which sets to 0 a random subset of the inputs). Once
it is trained, in a purely unsupervised way, its hidden units’ activations can be used as inputs for
training a second one, etc. After this unsupervised pre-training stage, the parameters are used to
initialize a deep MLP, which is fine-tuned by the same standard procedure used to train them (see
previous section). The SDA hyper-parameters are the same as for the MLP, with the addition of
the amount of corruption noise (we used the masking noise process, whereby a fixed proportion of
the input values, randomly selected, are zeroed), and a separate learning rate for the unsupervised
pre-training stage (selected from the same above set). The fraction of inputs corrupted was selected
among {10%, 20%, 50%}. Another hyper-parameter is the number of hidden layers but it was fixed
to 3 based on previous work with SDAs on MNIST [17].

4 Experimental Results
The models are either trained on NIST (MLP0 and SDA0), NISTP (MLP1 and SDA1), or P07
(MLP2 and SDA2), and tested on either NIST, NISTP or P07, either on the 62-class task or on the
10-digits task. Training (including about half for unsupervised pre-training, for DAs) on the larger
datasets takes around one day on a GPU-285. Figure 2 summarizes the results obtained, compar-
ing humans, the three MLPs (MLP0, MLP1, MLP2) and the three SDAs (SDA0, SDA1, SDA2),
along with the previous results on the digits NIST special database 19 test set from the literature,
respectively based on ARTMAP neural networks [19], fast nearest-neighbor search [20], MLPs
[21], and SVMs [22]. More detailed and complete numerical results (figures and tables, including
standard errors on the error rates) can be found in Appendix I of the supplementary material. The
deep learner not only outperformed the shallow ones and previously published performance (in a
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Figure 2: SDAx are the deep models. Error bars indicate a 95% confidence interval. 0 indicates that
the model was trained on NIST, 1 on NISTP, and 2 on P07. Left: overall results of all models, on
NIST and NISTP test sets. Right: error rates on NIST test digits only, along with the previous results
from literature [19, 20, 21, 22] respectively based on ART, nearest neighbors, MLPs, and SVMs.

Figure 3: Relative improvement in error rate due to self-taught learning. Left: Improvement (or
loss, when negative) induced by out-of-distribution examples (perturbed data). Right: Improvement
(or loss, when negative) induced by multi-task learning (training on all classes and testing only on
either digits, upper case, or lower-case). The deep learner (SDA) benefits more from both self-taught
learning scenarios, compared to the shallow MLP.

statistically and qualitatively significant way) but when trained with perturbed data reaches human
performance on both the 62-class task and the 10-class (digits) task. 17% error (SDA1) or 18% error
(humans) may seem large but a large majority of the errors from humans and from SDA1 are from
out-of-context confusions (e.g. a vertical bar can be a “1”, an “l” or an “L”, and a “c” and a “C” are
often indistinguishible).

In addition, as shown in the left of Figure 3, the relative improvement in error rate brought by
self-taught learning is greater for the SDA, and these differences with the MLP are statistically and
qualitatively significant. The left side of the figure shows the improvement to the clean NIST test
set error brought by the use of out-of-distribution examples (i.e. the perturbed examples examples
from NISTP or P07). Relative percent change is measured by taking 100%× (original model’s
error / perturbed-data model’s error - 1). The right side of Figure 3 shows the relative improvement
brought by the use of a multi-task setting, in which the same model is trained for more classes than
the target classes of interest (i.e. training with all 62 classes when the target classes are respectively
the digits, lower-case, or upper-case characters). Again, whereas the gain from the multi-task setting
is marginal or negative for the MLP, it is substantial for the SDA. Note that to simplify these multi-
task experiments, only the original NIST dataset is used. For example, the MLP-digits bar shows
the relative percent improvement in MLP error rate on the NIST digits test set is 100%× (single-
task model’s error / multi-task model’s error - 1). The single-task model is trained with only 10
outputs (one per digit), seeing only digit examples, whereas the multi-task model is trained with 62
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outputs, with all 62 character classes as examples. Hence the hidden units are shared across all tasks.
For the multi-task model, the digit error rate is measured by comparing the correct digit class with
the output class associated with the maximum conditional probability among only the digit classes
outputs. The setting is similar for the other two target classes (lower case characters and upper case
characters).

5 Conclusions and Discussion
We have found that the self-taught learning framework is more beneficial to a deep learner than to
a traditional shallow and purely supervised learner. More precisely, the answers are positive for all
the questions asked in the introduction.

• Do the good results previously obtained with deep architectures on the MNIST digits gen-
eralize to a much larger and richer (but similar) dataset, the NIST special database 19, with
62 classes and around 800k examples? Yes, the SDA systematically outperformed the MLP and
all the previously published results on this dataset (the ones that we are aware of), in fact reaching
human-level performance at around 17% error on the 62-class task and 1.4% on the digits.

• To what extent do self-taught learning scenarios help deep learners, and do they help them
more than shallow supervised ones? We found that distorted training examples not only made the
resulting classifier better on similarly perturbed images but also on the original clean examples, and
more importantly and more novel, that deep architectures benefit more from such out-of-distribution
examples. MLPs were helped by perturbed training examples when tested on perturbed input images
(65% relative improvement on NISTP) but only marginally helped (5% relative improvement on all
classes) or even hurt (10% relative loss on digits) with respect to clean examples . On the other hand,
the deep SDAs were significantly boosted by these out-of-distribution examples. Similarly, whereas
the improvement due to the multi-task setting was marginal or negative for the MLP (from +5.6% to
-3.6% relative change), it was quite significant for the SDA (from +13% to +27% relative change),
which may be explained by the arguments below.

In the original self-taught learning framework [4], the out-of-sample examples were used as a source
of unsupervised data, and experiments showed its positive effects in a limited labeled data scenario.
However, many of the results by Raina et al. [4] (who used a shallow, sparse coding approach)
suggest that the relative gain of self-taught learning vs ordinary supervised learning diminishes
as the number of labeled examples increases. We note instead that, for deep architectures, our
experiments show that such a positive effect is accomplished even in a scenario with a large number
of labeled examples, i.e., here, the relative gain of self-taught learning is probably preserved in the
asymptotic regime.

Why would deep learners benefit more from the self-taught learning framework? The key idea
is that the lower layers of the predictor compute a hierarchy of features that can be shared across
tasks or across variants of the input distribution. Intermediate features that can be used in different
contexts can be estimated in a way that allows to share statistical strength. Features extracted through
many levels are more likely to be more abstract (as the experiments in Goodfellow et al. [3] suggest),
increasing the likelihood that they would be useful for a larger array of tasks and input conditions.
Therefore, we hypothesize that both depth and unsupervised pre-training play a part in explaining
the advantages observed here, and future experiments could attempt at teasing apart these factors.
And why would deep learners benefit from the self-taught learning scenarios even when the number
of labeled examples is very large? We hypothesize that this is related to the hypotheses studied
in Erhan et al. [23]. Whereas in Erhan et al. [23] it was found that online learning on a huge
dataset did not make the advantage of the deep learning bias vanish, a similar phenomenon may
be happening here. We hypothesize that unsupervised pre-training of a deep hierarchy with self-
taught learning initializes the model in the basin of attraction of supervised gradient descent that
corresponds to better generalization. Furthermore, such good basins of attraction are not discovered
by pure supervised learning (with or without self-taught settings), and more labeled examples does
not allow the model to go from the poorer basins of attraction discovered by the purely supervised
shallow models to the kind of better basins associated with deep learning and self-taught learning.

A Flash demo of the recognizer (where both the MLP and the SDA can be compared) can be executed
on-line at http://deep.host22.com.
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