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Self-taught learning
Exploit out-of-distribution examples to improve results

Pretrain, finetune on out-of-distribution Test on these

Multi-task learning
Multiple tasks sharing parts of training, sharing parts of a model

Pretrain, finetune on all classes Test conditioning on digits only

Image sources

NIST (40%) Fonts (10%) CAPTCHAS
    (25%)

OCR (25%)
800k handwritten

glyphs
~3000 freely

available fonts Fonts + transformations
to approximate handwriting

2 million scanned
printed glyphs

Datasets used for training, testing
● All datasets are made of 32x32 grayscale images

● NIST (original dataset): NIST Special Database 19, 814,255 digits and 

upper/lowercase characters

● NISTP: images from all 4 sources above (with proportions given), with 

transformations up to “local elastic distortions”, complexity 

parameter of 0.7

● Goal is to produce examples close to the ones found in NIST

● P07: images from all 4 sources (with proportions given), with all 

transformations and a complexity of 0.7.

Autoencoders
Show the network a corrupted input (x, corrupted from x) and train 
the parameters trying to reconstruct the original, uncorrupted 
version in z. The goal is to extract meaningful representations in y.
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Absolute classification performance on NIST
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Relative improvement from multi-task setting

Relative improvement with self-taught and multi-task learning

● SDA-* here are pretrained and finetuned on all classes  of 
NIST and tested knowing the class may only be a digit etc.

● MLP-* here are trained for classification on all classes, then 
tested knowing the class may only be a digit etc.

● The performance are compared to training on only digits, 
instead of all classes.

[1] Granger et al., 2007 (used ART)     [2] Pérez-Cortes et al., 2000 (nearest neighbor)      [3] Oliverira et al., 2002b (MLP)      [4] Milgram et al., 2005 (SVM)

● For SDA[012], we compare pretraining and finetuning on P07 or 
NISTP, then testing on NIST, with training & test both done on NIST

● For MLP[012], we compare training for classification on P07 or NISTP, 
then testing on NIST, with training & test both on NIST

MLP0/SDA0 use NIST, MLP1/SDA1 use P07, MLP2/SDA2 use NISTP
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Complexity parameter
Each transformation is controlled by a complexity from 0 to 1.

When transforming, each filter samples its own complexity up to pipeline 
maximum (for example sample over 0-0.7 for P07).

Human performance evaluation
● Amazon Mechanical Turk

● Pay a small fee each time a very simple task is performed

● 2500 glyphs were classified by 80 persons

● Each glyph classified 3 times for error evaluation

● Humans make mistakes, too: 18%!

● This is because many glyphs look the same: 1 or l; C or c. Z or z. etc.

Online Java applet demo
Draw a character, see instant classification. Runs client-side.

http://deep.host22.com

Hypotheses and conclusions

● Deep learners benefit more from out-of-distribution 
examples than shallow learners
● Advantage preserved even as number of labeled 

examples available increases
● Hypothesized explanation: lower layers learn low-level 

features which can be reused across tasks and for 
various distributions modeled in upper layers

● Good results of deep architectures on small datasets 
such as MNIST can scale to much larger ones

● Beats state of the art on NIST digits and reach human 
performance on clean 62 classes.


