

Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger-Lewandowski, Thomas Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Côté, Dumitru Erhan, Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu, Salah Rifai, François Savard, Guillaume Sicard

Self-taught learning

Exploit out-of-distribution examples to improve results

Test on these

Multi-task learning

Multiple tasks sharing parts of training, sharing parts of a model

Pretrain, finetune on out-of-distribution

Pretrain, finetune on all classes

Test conditioning on digits only

NIST (40%) 800k handwritter glyphs

CAPTCHAS (25%)

Fonts + transformations to approximate handwriting

 Π

2 million scanned printed glyphs

Datasets used for training, testing

• All datasets are made of **32x32 grayscale images**

٦

Fonts (10%)

~3000 freely

available fonts

- NIST (original dataset): NIST Special Database 19, 814,255 digits and upper/lowercase characters
- NISTP: images from all 4 sources above (with proportions given), with transformations up to "local elastic distortions", complexity parameter of 0.7

Goal is to produce examples close to the ones found in NIST

• **P07**: images from all 4 sources (with proportions given), with **all**

transformations and a complexity of 0.7.

Autoencoders

Show the network a corrupted input (\tilde{x} , corrupted from x) and train the parameters trying to reconstruct the original, uncorrupted version in z. The goal is to extract meaningful representations in y.

Deep Self-Taught Learning for Handwritten Character Recognition

- examples than shallow learners
- examples available increases

Experiments performed for the IFT6266 course Winter 2010 given by Yoshua Bengio

ransforms:		Resulting Image:
ranslation		
otation		
cale		
kew		Prediction of Deep Network
alt & Pepper noise	— ————	Z 74%
aussian noise	▽	z 38%
olarity/Contrast		2 2%
rossing Occlusions	▽	Prediction of Shallow Networl
ac kground Detail	▽	Z 48%
		2 24%
	Resample Reset transformations	z 22%