Mercurial > ift6266
view deep/deep_mlp/logistic_sgd.py @ 647:47af8a002530 tip
changed Theano to ift6266 and remove numpy as we do not use code from numpy in this repository
author | Razvan Pascanu <r.pascanu@gmail.com> |
---|---|
date | Wed, 17 Oct 2012 09:26:14 -0400 |
parents | 75dbbe409578 |
children |
line wrap: on
line source
import numpy, time, cPickle, gzip, sys, os import theano import theano.tensor as T class LogisticRegression(object): def __init__(self, input, n_in, n_out): self.W = theano.shared(value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX), name='W') self.b = theano.shared(value=numpy.zeros((n_out,), dtype = theano.config.floatX), name='b') self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) self.y_pred=T.argmax(self.p_y_given_x, axis=1) self.params = [self.W, self.b] def negative_log_likelihood(self, y): return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) if y.dtype.startswith('int'): return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def load_data(dataset): ''' Loads the dataset :type dataset: string :param dataset: the path to the dataset (here MNIST) ''' ############# # LOAD DATA # ############# print '... loading data' # Load the dataset f = gzip.open(dataset,'rb') train_set, valid_set, test_set = cPickle.load(f) f.close() def shared_dataset(data_xy): """ Function that loads the dataset into shared variables The reason we store our dataset in shared variables is to allow Theano to copy it into the GPU memory (when code is run on GPU). Since copying data into the GPU is slow, copying a minibatch everytime is needed (the default behaviour if the data is not in a shared variable) would lead to a large decrease in performance. """ data_x, data_y = data_xy shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) # When storing data on the GPU it has to be stored as floats # therefore we will store the labels as ``floatX`` as well # (``shared_y`` does exactly that). But during our computations # we need them as ints (we use labels as index, and if they are # floats it doesn't make sense) therefore instead of returning # ``shared_y`` we will have to cast it to int. This little hack # lets ous get around this issue return shared_x, T.cast(shared_y, 'int32') test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) rval = [(train_set_x, train_set_y), (valid_set_x,valid_set_y), (test_set_x, test_set_y)] return rval def sgd_optimization_mnist(learning_rate=0.13, n_epochs=1000, dataset='../data/mnist.pkl.gz', batch_size = 600): datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x , test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.value.shape[0] / batch_size n_valid_batches = valid_set_x.value.shape[0] / batch_size n_test_batches = test_set_x.value.shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels # construct the logistic regression class # Each MNIST image has size 28*28 classifier = LogisticRegression( input=x, n_in=28*28, n_out=10) # the cost we minimize during training is the negative log likelihood of # the model in symbolic format cost = classifier.negative_log_likelihood(y) # compiling a Theano function that computes the mistakes that are made by # the model on a minibatch test_model = theano.function(inputs = [index], outputs = classifier.errors(y), givens={ x:test_set_x[index*batch_size:(index+1)*batch_size], y:test_set_y[index*batch_size:(index+1)*batch_size]}) validate_model = theano.function( inputs = [index], outputs = classifier.errors(y), givens={ x:valid_set_x[index*batch_size:(index+1)*batch_size], y:valid_set_y[index*batch_size:(index+1)*batch_size]}) # compute the gradient of cost with respect to theta = (W,b) g_W = T.grad(cost = cost, wrt = classifier.W) g_b = T.grad(cost = cost, wrt = classifier.b) # specify how to update the parameters of the model as a dictionary updates ={classifier.W: classifier.W - learning_rate*g_W,\ classifier.b: classifier.b - learning_rate*g_b} # compiling a Theano function `train_model` that returns the cost, but in # the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function(inputs = [index], outputs = cost, updates = updates, givens={ x:train_set_x[index*batch_size:(index+1)*batch_size], y:train_set_y[index*batch_size:(index+1)*batch_size]}) ############### # TRAIN MODEL # ############### print '... training the model' # early-stopping parameters patience = 5000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_index) # iteration number iter = epoch * n_train_batches + minibatch_index if (iter+1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1,n_train_batches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % \ (epoch, minibatch_index+1, n_train_batches,test_score*100.)) if patience <= iter : done_looping = True break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score*100.)) print 'The code run for %d epochs, with %f epochs/sec'%(epoch,1.*epoch/(end_time-start_time)) print >> sys.stderr, ('The code for file '+os.path.split(__file__)[1]+' ran for %.1fs' % ((end_time-start_time))) if __name__ == '__main__': sgd_optimization_mnist()