Mercurial > ift6266
view datasets/ftfile.py @ 647:47af8a002530 tip
changed Theano to ift6266 and remove numpy as we do not use code from numpy in this repository
author | Razvan Pascanu <r.pascanu@gmail.com> |
---|---|
date | Wed, 17 Oct 2012 09:26:14 -0400 |
parents | 337253b82409 |
children |
line wrap: on
line source
from itertools import izip import os import numpy from pylearn.io.filetensor import _read_header, _prod from dataset import DataSet from dsetiter import DataIterator class FTFile(object): def __init__(self, fname, scale=1, dtype=None): r""" Tests: >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_labels.ft') """ if os.path.exists(fname): self.file = open(fname, 'rb') self.magic_t, self.elsize, _, self.dim, _ = _read_header(self.file, False) self.gz=False else: import gzip self.file = gzip.open(fname+'.gz','rb') self.magic_t, self.elsize, _, self.dim, _ = _read_header(self.file, False, True) self.gz=True self.size = self.dim[0] self.scale = scale self.dtype = dtype def skip(self, num): r""" Skips `num` items in the file. If `num` is negative, skips size-num. Tests: >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_labels.ft') >>> f.size 58646 >>> f.elsize 4 >>> f.file.tell() 20 >>> f.skip(1000) >>> f.file.tell() 4020 >>> f.size 57646 >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_labels.ft') >>> f.size 58646 >>> f.file.tell() 20 >>> f.skip(-1000) >>> f.file.tell() 230604 >>> f.size 1000 """ if num < 0: num += self.size if num < 0: raise ValueError('Skipping past the start of the file') if num >= self.size: self.size = 0 else: self.size -= num f_start = self.file.tell() self.file.seek(f_start + (self.elsize * _prod(self.dim[1:]) * num)) def read(self, num): r""" Reads `num` elements from the file and return the result as a numpy matrix. Last read is truncated. Tests: >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_labels.ft') >>> f.read(1) array([6], dtype=int32) >>> f.read(10) array([7, 4, 7, 5, 6, 4, 8, 0, 9, 6], dtype=int32) >>> f.skip(58630) >>> f.read(10) array([9, 2, 4, 2, 8], dtype=int32) >>> f.read(10) array([], dtype=int32) >>> f = FTFile('/data/lisa/data/nist/by_class/digits/digits_test_data.ft') >>> f.read(1) array([[0, 0, 0, ..., 0, 0, 0]], dtype=uint8) """ if num > self.size: num = self.size self.dim[0] = num self.size -= num if self.gz: d = self.file.read(_prod(self.dim)*self.elsize) res = numpy.fromstring(d, dtype=self.magic_t, count=_prod(self.dim)).reshape(self.dim) else: res = numpy.fromfile(self.file, dtype=self.magic_t, count=_prod(self.dim)).reshape(self.dim) if self.dtype is not None: res = res.astype(self.dtype) if self.scale != 1: res /= self.scale return res class FTSource(object): def __init__(self, file, skip=0, size=None, maxsize=None, dtype=None, scale=1): r""" Create a data source from a possible subset of a .ft file. Parameters: `file` -- (string) the filename `skip` -- (int, optional) amount of examples to skip from the start of the file. If negative, skips filesize - skip. `size` -- (int, optional) truncates number of examples read (after skipping). If negative truncates to filesize - size (also after skipping). `maxsize` -- (int, optional) the maximum size of the file `dtype` -- (dtype, optional) convert the data to this dtype after reading. `scale` -- (number, optional) scale (that is divide) the data by this number (after dtype conversion, if any). Tests: >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft') >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', size=1000) >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', skip=10) >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', skip=100, size=120) """ self.file = file self.skip = skip self.size = size self.dtype = dtype self.scale = scale self.maxsize = maxsize def open(self): r""" Returns an FTFile that corresponds to this dataset. Tests: >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft') >>> f = s.open() >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', size=1) >>> len(s.open().read(2)) 1 >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', skip=57646) >>> s.open().size 1000 >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', skip=57646, size=1) >>> s.open().size 1 >>> s = FTSource('/data/lisa/data/nist/by_class/digits/digits_test_data.ft', size=-10) >>> s.open().size 58636 """ f = FTFile(self.file, scale=self.scale, dtype=self.dtype) if self.skip != 0: f.skip(self.skip) if self.size is not None and self.size < f.size: if self.size < 0: f.size += self.size if f.size < 0: f.size = 0 else: f.size = self.size if self.maxsize is not None and f.size > self.maxsize: f.size = self.maxsize return f class FTData(object): r""" This is a list of FTSources. """ def __init__(self, datafiles, labelfiles, skip=0, size=None, maxsize=None, inscale=1, indtype=None, outscale=1, outdtype=None): if maxsize is not None: maxsize /= len(datafiles) self.inputs = [FTSource(f, skip, size, maxsize, scale=inscale, dtype=indtype) for f in datafiles] self.outputs = [FTSource(f, skip, size, maxsize, scale=outscale, dtype=outdtype) for f in labelfiles] def open_inputs(self): return [f.open() for f in self.inputs] def open_outputs(self): return [f.open() for f in self.outputs] class FTDataSet(DataSet): def __init__(self, train_data, train_lbl, test_data, test_lbl, valid_data=None, valid_lbl=None, indtype=None, outdtype=None, inscale=1, outscale=1, maxsize=None): r""" Defines a DataSet from a bunch of files. Parameters: `train_data` -- list of train data files `train_label` -- list of train label files (same length as `train_data`) `test_data`, `test_labels` -- same thing as train, but for test. The number of files can differ from train. `valid_data`, `valid_labels` -- same thing again for validation. (optional) `indtype`, `outdtype`, -- see FTSource.__init__() `inscale`, `outscale` (optional) `maxsize` -- maximum size of the set returned If `valid_data` and `valid_labels` are not supplied then a sample approximately equal in size to the test set is taken from the train set. """ if valid_data is None: total_valid_size = sum(FTFile(td).size for td in test_data) if maxsize is not None: total_valid_size = min(total_valid_size, maxsize) valid_size = total_valid_size/len(train_data) self._train = FTData(train_data, train_lbl, size=-valid_size, inscale=inscale, outscale=outscale, indtype=indtype, outdtype=outdtype, maxsize=maxsize) self._valid = FTData(train_data, train_lbl, skip=-valid_size, inscale=inscale, outscale=outscale, indtype=indtype, outdtype=outdtype, maxsize=maxsize) else: self._train = FTData(train_data, train_lbl, maxsize=maxsize, inscale=inscale, outscale=outscale, indtype=indtype, outdtype=outdtype) self._valid = FTData(valid_data, valid_lbl, maxsize=maxsize, inscale=inscale, outscale=outscale, indtype=indtype, outdtype=outdtype) self._test = FTData(test_data, test_lbl, maxsize=maxsize, inscale=inscale, outscale=outscale, indtype=indtype, outdtype=outdtype) def _return_it(self, batchsize, bufsize, ftdata): return izip(DataIterator(ftdata.open_inputs(), batchsize, bufsize), DataIterator(ftdata.open_outputs(), batchsize, bufsize))