Mercurial > ift6266
view baseline/log_reg/log_reg.py @ 647:47af8a002530 tip
changed Theano to ift6266 and remove numpy as we do not use code from numpy in this repository
author | Razvan Pascanu <r.pascanu@gmail.com> |
---|---|
date | Wed, 17 Oct 2012 09:26:14 -0400 |
parents | 5541056d3fb0 |
children |
line wrap: on
line source
""" This tutorial introduces logistic regression using Theano and stochastic gradient descent. Logistic regression is a probabilistic, linear classifier. It is parametrized by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. Mathematically, this can be written as: .. math:: P(Y=i|x, W,b) &= softmax_i(W x + b) \\ &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} The output of the model or prediction is then done by taking the argmax of the vector whose i'th element is P(Y=i|x). .. math:: y_{pred} = argmax_i P(Y=i|x,W,b) This tutorial presents a stochastic gradient descent optimization method suitable for large datasets, and a conjugate gradient optimization method that is suitable for smaller datasets. References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 4.3.2 """ __docformat__ = 'restructedtext en' import numpy, time import theano import theano.tensor as T from ift6266 import datasets class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__( self, input, n_in, n_out ): """ Initialize the parameters of the logistic regression :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared( value = numpy.zeros(( n_in, n_out ), dtype = theano.config.floatX ), name =' W') # initialize the baises b as a vector of n_out 0s self.b = theano.shared( value = numpy.zeros(( n_out, ), dtype = theano.config.floatX ), name = 'b') # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax( T.dot( input, self.W ) + self.b ) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax( self.p_y_given_x, axis =1 ) # parameters of the model self.params = [ self.W, self.b ] def negative_log_likelihood( self, y ): """Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. .. math:: \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ \ell (\theta=\{W,b\}, \mathcal{D}) :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label Note: we use the mean instead of the sum so that the learning rate is less dependent on the batch size """ # y.shape[0] is (symbolically) the number of rows in y, i.e., number of examples (call it n) in the minibatch # T.arange(y.shape[0]) is a symbolic vector which will contain [0,1,2,... n-1] # T.log(self.p_y_given_x) is a matrix of Log-Probabilities (call it LP) with one row per example and one column per class # LP[T.arange(y.shape[0]),y] is a vector v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., LP[n-1,y[n-1]]] # and T.mean(LP[T.arange(y.shape[0]),y]) is the mean (across minibatch examples) of the elements in v, # i.e., the mean log-likelihood across the minibatch. return -T.mean( T.log( self.p_y_given_x )[ T.arange( y.shape[0] ), y ] ) def MSE(self, y): return -T.mean(abs((self.p_t_given_x)[T.arange(y.shape[0]), y]-y)**2) def errors( self, y ): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError( 'y should have the same shape as self.y_pred', ( 'y', target.type, 'y_pred', self.y_pred.type ) ) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean( T.neq( self.y_pred, y ) ) else: raise NotImplementedError() #-------------------------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------------------------- def log_reg( learning_rate = 0.13, nb_max_examples =1000000, batch_size = 50, \ dataset=datasets.nist_digits(), image_size = 32 * 32, nb_class = 10, \ patience = 5000, patience_increase = 2, improvement_threshold = 0.995): #28 * 28 = 784 """ Demonstrate stochastic gradient descent optimization of a log-linear model This is demonstrated on MNIST. :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type nb_max_examples: int :param nb_max_examples: maximal number of epochs to run the optimizer :type batch_size: int :param batch_size: size of the minibatch :type dataset: dataset :param dataset: a dataset instance from ift6266.datasets :type image_size: int :param image_size: size of the input image in pixels (width * height) :type nb_class: int :param nb_class: number of classes :type patience: int :param patience: look as this many examples regardless :type patience_increase: int :param patience_increase: wait this much longer when a new best is found :type improvement_threshold: float :param improvement_threshold: a relative improvement of this much is considered significant """ #-------------------------------------------------------------------------------------------------------------------- # Build actual model #-------------------------------------------------------------------------------------------------------------------- print '... building the model' # allocate symbolic variables for the data index = T.lscalar( ) # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels # construct the logistic regression class classifier = LogisticRegression( input = x, n_in = image_size, n_out = nb_class ) # the cost we minimize during training is the negative log likelihood of # the model in symbolic format cost = classifier.negative_log_likelihood( y ) # compiling a Theano function that computes the mistakes that are made by # the model on a minibatch test_model = theano.function( inputs = [ x, y ], outputs = classifier.errors( y )) validate_model = theano.function( inputs = [ x, y ], outputs = classifier.errors( y )) # compute the gradient of cost with respect to theta = ( W, b ) g_W = T.grad( cost = cost, wrt = classifier.W ) g_b = T.grad( cost = cost, wrt = classifier.b ) # specify how to update the parameters of the model as a dictionary updates = { classifier.W: classifier.W - learning_rate * g_W,\ classifier.b: classifier.b - learning_rate * g_b} # compiling a Theano function `train_model` that returns the cost, but in # the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function( inputs = [ x, y ], outputs = cost, updates = updates) #-------------------------------------------------------------------------------------------------------------------- # Train model #-------------------------------------------------------------------------------------------------------------------- print '... training the model' # early-stopping parameters patience = 5000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = patience * 0.5 # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False n_iters = nb_max_examples / batch_size epoch = 0 iter = 0 while ( iter < n_iters ) and ( not done_looping ): epoch = epoch + 1 for x, y in dataset.train(batch_size): minibatch_avg_cost = train_model( x, y ) # iteration number iter += 1 if iter % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [ validate_model( xv, yv ) for xv, yv in dataset.valid(batch_size) ] this_validation_loss = numpy.mean( validation_losses ) print('epoch %i, iter %i, validation error %f %%' % \ ( epoch, iter, this_validation_loss*100. ) ) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max( patience, iter * patience_increase ) best_validation_loss = this_validation_loss # test it on the test set test_losses = [test_model(xt, yt) for xt, yt in dataset.test(batch_size)] test_score = numpy.mean(test_losses) print((' epoch %i, iter %i, test error of best ' 'model %f %%') % \ (epoch, iter, test_score*100.)) if patience <= iter : done_looping = True break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % ( best_validation_loss * 100., test_score * 100.)) print ('The code ran for %f minutes' % ((end_time-start_time) / 60.)) return best_validation_loss, test_score, iter*batch_size, (end_time-start_time) / 60. if __name__ == '__main__': log_reg() def jobman_log_reg(state, channel): print state (validation_error, test_error, nb_exemples, time) = log_reg( learning_rate = state.learning_rate, \ nb_max_examples = state.nb_max_examples, \ dataset=eval(state.dataset), \ batch_size = state.batch_size,\ image_size = state.image_size, \ nb_class = state.nb_class, \ patience = state.patience, \ patience_increase = state.patience_increase, \ improvement_threshold = state.improvement_threshold ) print state state.validation_error = validation_error state.test_error = test_error state.nb_exemples = nb_exemples state.time = time return channel.COMPLETE