Mercurial > ift6266
view code_tutoriel/logistic_cg.py @ 0:fda5f787baa6
commit initial
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Thu, 21 Jan 2010 11:26:43 -0500 |
parents | |
children |
line wrap: on
line source
""" This tutorial introduces logistic regression using Theano and conjugate gradient descent. Logistic regression is a probabilistic, linear classifier. It is parametrized by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. Mathematically, this can be written as: .. math:: P(Y=i|x, W,b) &= softmax_i(W x + b) \\ &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} The output of the model or prediction is then done by taking the argmax of the vector whose i'th element is P(Y=i|x). .. math:: y_{pred} = argmax_i P(Y=i|x,W,b) This tutorial presents a stochastic gradient descent optimization method suitable for large datasets, and a conjugate gradient optimization method that is suitable for smaller datasets. References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 4.3.2 """ __docformat__ = 'restructedtext en' import numpy, cPickle, gzip import time import theano import theano.tensor as T import theano.tensor.nnet class LogisticRegression(object): """Multi-class Logistic Regression Class The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability. """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression :param input: symbolic variable that describes the input of the architecture ( one minibatch) :param n_in: number of input units, the dimension of the space in which the datapoint lies :param n_out: number of output units, the dimension of the space in which the target lies """ # initialize theta = (W,b) with 0s; W gets the shape (n_in, n_out), # while b is a vector of n_out elements, making theta a vector of # n_in*n_out + n_out elements self.theta = theano.shared( value = numpy.zeros(n_in*n_out+n_out) ) # W is represented by the fisr n_in*n_out elements of theta self.W = self.theta[0:n_in*n_out].reshape((n_in,n_out)) # b is the rest (last n_out elements) self.b = self.theta[n_in*n_out:n_in*n_out+n_out] # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) def negative_log_likelihood(self, y): """Return the negative log-likelihood of the prediction of this model under a given target distribution. .. math:: \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ \ell (\theta=\{W,b\}, \mathcal{D}) :param y: corresponds to a vector that gives for each example the :correct label """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch """ # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() def cg_optimization_mnist( n_iter=50 ): """Demonstrate conjugate gradient optimization of a log-linear model This is demonstrated on MNIST. :param n_iter: number of iterations ot run the optimizer """ # Load the dataset f = gzip.open('mnist.pkl.gz','rb') train_set, valid_set, test_set = cPickle.load(f) f.close() # make minibatches of size 20 batch_size = 20 # sized of the minibatch # Dealing with the training set # get the list of training images (x) and their labels (y) (train_set_x, train_set_y) = train_set # initialize the list of training minibatches with empty list train_batches = [] for i in xrange(0, len(train_set_x), batch_size): # add to the list of minibatches the minibatch starting at # position i, ending at position i+batch_size # a minibatch is a pair ; the first element of the pair is a list # of datapoints, the second element is the list of corresponding # labels train_batches = train_batches + \ [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] # Dealing with the validation set (valid_set_x, valid_set_y) = valid_set # initialize the list of validation minibatches valid_batches = [] for i in xrange(0, len(valid_set_x), batch_size): valid_batches = valid_batches + \ [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] # Dealing with the testing set (test_set_x, test_set_y) = test_set # initialize the list of testing minibatches test_batches = [] for i in xrange(0, len(test_set_x), batch_size): test_batches = test_batches + \ [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] ishape = (28,28) # this is the size of MNIST images n_in = 28*28 # number of input units n_out = 10 # number of output units # allocate symbolic variables for the data x = T.fmatrix() # the data is presented as rasterized images y = T.lvector() # the labels are presented as 1D vector of # [long int] labels # construct the logistic regression class classifier = LogisticRegression( \ input=x.reshape((batch_size,28*28)), n_in=28*28, n_out=10) # the cost we minimize during training is the negative log likelihood of # the model in symbolic format cost = classifier.negative_log_likelihood(y).mean() # compile a theano function that computes the mistakes that are made by # the model on a minibatch test_model = theano.function([x,y], classifier.errors(y)) # compile a theano function that returns the gradient of the minibatch # with respect to theta batch_grad = theano.function([x, y], T.grad(cost, classifier.theta)) # compile a thenao function that returns the cost of a minibatch batch_cost = theano.function([x, y], cost) # creates a function that computes the average cost on the training set def train_fn(theta_value): classifier.theta.value = theta_value cost = 0. for x,y in train_batches : cost += batch_cost(x,y) return cost / len(train_batches) # creates a function that computes the average gradient of cost with # respect to theta def train_fn_grad(theta_value): classifier.theta.value = theta_value grad = numpy.zeros(n_in * n_out + n_out) for x,y in train_batches: grad += batch_grad(x,y) return grad/ len(train_batches) validation_scores = [float('inf'), 0] # creates the validation function def callback(theta_value): classifier.theta.value = theta_value #compute the validation loss this_validation_loss = 0. for x,y in valid_batches: this_validation_loss += test_model(x,y) this_validation_loss /= len(valid_batches) print('validation error %f %%' % (this_validation_loss*100.,)) # check if it is better then best validation score got until now if this_validation_loss < validation_scores[0]: # if so, replace the old one, and compute the score on the # testing dataset validation_scores[0] = this_validation_loss test_score = 0. for x,y in test_batches: test_score += test_model(x,y) validation_scores[1] = test_score / len(test_batches) # using scipy conjugate gradient optimizer import scipy.optimize print ("Optimizing using scipy.optimize.fmin_cg...") start_time = time.clock() best_w_b = scipy.optimize.fmin_cg( f=train_fn, x0=numpy.zeros((n_in+1)*n_out, dtype=x.dtype), fprime=train_fn_grad, callback=callback, disp=0, maxiter=n_iter) end_time = time.clock() print(('Optimization complete with best validation score of %f %%, with ' 'test performance %f %%') % (validation_scores[0]*100., validation_scores[1]*100.)) print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) if __name__ == '__main__': cg_optimization_mnist()