Mercurial > ift6266
view code_tutoriel/convolutional_mlp.py @ 0:fda5f787baa6
commit initial
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Thu, 21 Jan 2010 11:26:43 -0500 |
parents | |
children |
line wrap: on
line source
""" This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a convolutional neural network, good for classifying images. This tutorial shows how to build the architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST results. The best results are obtained after X iterations of the main program loop, which takes *** minutes on my workstation (an Intel Core i7, circa July 2009), and *** minutes on my GPU (an NVIDIA GTX 285 graphics processor). This implementation simplifies the model in the following ways: - LeNetConvPool doesn't implement location-specific gain and bias parameters - LeNetConvPool doesn't implement pooling by average, it implements pooling by max. - Digit classification is implemented with a logistic regression rather than an RBF network - LeNet5 was not fully-connected convolutions at second layer References: - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf """ import numpy from theano.compile.sandbox import shared, pfunc from theano import tensor from pylearn.shared.layers import LogisticRegression, SigmoidalLayer import theano.sandbox.softsign import pylearn.datasets.MNIST try: # this tells theano to use the GPU if possible from theano.sandbox.cuda import use use() except Exception, e: print('Warning: Attempt to use GPU resulted in error "%s"' % str(e)) class LeNetConvPool(object): """WRITEME Math of what the layer does, and what symbolic variables are created by the class (w, b, output). """ #TODO: implement biases & scales properly. There are supposed to be more parameters. # - one bias & scale per filter # - one bias & scale per downsample feature location (a 2d bias) # - more? def __init__(self, rng, input, n_examples, n_imgs, img_shape, n_filters, filter_shape=(5,5), poolsize=(2,2)): """ Allocate a LeNetConvPool layer with shared variable internal parameters. :param rng: a random number generator used to initialize weights :param input: symbolic images. Shape: (n_examples, n_imgs, img_shape[0], img_shape[1]) :param n_examples: input's shape[0] at runtime :param n_imgs: input's shape[1] at runtime :param img_shape: input's shape[2:4] at runtime :param n_filters: the number of filters to apply to the image. :param filter_shape: the size of the filters to apply :type filter_shape: pair (rows, cols) :param poolsize: the downsampling (pooling) factor :type poolsize: pair (rows, cols) """ #TODO: make a simpler convolution constructor!! # - make dx and dy optional # - why do we have to pass shapes? (Can we make them optional at least?) conv_op = ConvOp((n_imgs,)+img_shape, filter_shape, n_filters, n_examples, dx=1, dy=1, output_mode='valid') # - why is poolsize an op parameter here? # - can we just have a maxpool function that creates this Op internally? ds_op = DownsampleFactorMax(poolsize, ignore_border=True) # the filter tensor that we will apply is a 4D tensor w_shp = (n_filters, n_imgs) + filter_shape # the bias we add is a 1D tensor b_shp = (n_filters,) self.w = shared( numpy.asarray( rng.uniform( low=-1.0 / numpy.sqrt(filter_shape[0] * filter_shape[1] * n_imgs), high=1.0 / numpy.sqrt(filter_shape[0] * filter_shape[1] * n_imgs), size=w_shp), dtype=input.dtype)) self.b = shared( numpy.asarray( rng.uniform(low=-.0, high=0., size=(n_filters,)), dtype=input.dtype)) self.input = input conv_out = conv_op(input, self.w) self.output = tensor.tanh(ds_op(conv_out) + b.dimshuffle('x', 0, 'x', 'x')) self.params = [self.w, self.b] class SigmoidalLayer(object): def __init__(self, input, n_in, n_out): """ :param input: a symbolic tensor of shape (n_examples, n_in) :param w: a symbolic weight matrix of shape (n_in, n_out) :param b: symbolic bias terms of shape (n_out,) :param squash: an squashing function """ self.input = input self.w = shared( numpy.asarray( rng.uniform(low=-2/numpy.sqrt(n_in), high=2/numpy.sqrt(n_in), size=(n_in, n_out)), dtype=input.dtype)) self.b = shared(numpy.asarray(numpy.zeros(n_out), dtype=input.dtype)) self.output = tensor.tanh(tensor.dot(input, self.w) + self.b) self.params = [self.w, self.b] class LogisticRegression(object): """WRITEME""" def __init__(self, input, n_in, n_out): self.w = shared(numpy.zeros((n_in, n_out), dtype=input.dtype)) self.b = shared(numpy.zeros((n_out,), dtype=input.dtype)) self.l1=abs(self.w).sum() self.l2_sqr = (self.w**2).sum() self.output=nnet.softmax(theano.dot(input, self.w)+self.b) self.argmax=theano.tensor.argmax(self.output, axis=1) self.params = [self.w, self.b] def nll(self, target): """Return the negative log-likelihood of the prediction of this model under a given target distribution. Passing symbolic integers here means 1-hot. WRITEME """ return nnet.categorical_crossentropy(self.output, target) def errors(self, target): """Return a vector of 0s and 1s, with 1s on every line that was mis-classified. """ if target.ndim != self.argmax.ndim: raise TypeError('target should have the same shape as self.argmax', ('target', target.type, 'argmax', self.argmax.type)) if target.dtype.startswith('int'): return theano.tensor.neq(self.argmax, target) else: raise NotImplementedError() def evaluate_lenet5(batch_size=30, n_iter=1000): rng = numpy.random.RandomState(23455) mnist = pylearn.datasets.MNIST.train_valid_test() ishape=(28,28) #this is the size of MNIST images # allocate symbolic variables for the data x = tensor.fmatrix() # the data is presented as rasterized images y = tensor.lvector() # the labels are presented as 1D vector of [long int] labels # construct the first convolutional pooling layer layer0 = LeNetConvPool.new(rng, input=x.reshape((batch_size,1,28,28)), n_examples=batch_size, n_imgs=1, img_shape=ishape, n_filters=6, filter_shape=(5,5), poolsize=(2,2)) # construct the second convolutional pooling layer layer1 = LeNetConvPool.new(rng, input=layer0.output, n_examples=batch_size, n_imgs=6, img_shape=(12,12), n_filters=16, filter_shape=(5,5), poolsize=(2,2)) # construct a fully-connected sigmoidal layer layer2 = SigmoidalLayer.new(rng, input=layer1.output.flatten(2), n_in=16*16, n_out=128) # 128 ? # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression.new(input=layer2.output, n_in=128, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.nll(y).mean() # create a function to compute the mistakes that are made by the model test_model = pfunc([x,y], layer3.errors(y)) # create a list of all model parameters to be fit by gradient descent params = layer3.params+ layer2.params+ layer1.params + layer0.params learning_rate = numpy.asarray(0.01, dtype='float32') # train_model is a function that updates the model parameters by SGD train_model = pfunc([x, y], cost, updates=[(p, p - learning_rate*gp) for p,gp in zip(params, tensor.grad(cost, params))]) # IS IT MORE SIMPLE TO USE A MINIMIZER OR THE DIRECT CODE? best_valid_score = float('inf') for i in xrange(n_iter): for j in xrange(len(mnist.train.x)/batch_size): cost_ij = train_model( mnist.train.x[j*batch_size:(j+1)*batch_size], mnist.train.y[j*batch_size:(j+1)*batch_size]) #if 0 == j % 100: #print('epoch %i:%i, training error %f' % (i, j*batch_size, cost_ij)) valid_score = numpy.mean([test_model( mnist.valid.x[j*batch_size:(j+1)*batch_size], mnist.valid.y[j*batch_size:(j+1)*batch_size]) for j in xrange(len(mnist.valid.x)/batch_size)]) print('epoch %i, validation error %f' % (i, valid_score)) if valid_score < best_valid_score: best_valid_score = valid_score test_score = numpy.mean([test_model( mnist.test.x[j*batch_size:(j+1)*batch_size], mnist.test.y[j*batch_size:(j+1)*batch_size]) for j in xrange(len(mnist.test.x)/batch_size)]) print('epoch %i, test error of best model %f' % (i, test_score)) if __name__ == '__main__': evaluate_lenet5()