view transformations/PoivreSel.py @ 83:f75f5acad4eb

Changed behavior of add_background in order to have a contrast generation parameter and doing the max without using a treshold mask
author Xavier Glorot <glorotxa@iro.umontreal.ca>
date Wed, 10 Feb 2010 17:37:00 -0500
parents 42e3e2f67626
children ab57cd2b252c
line wrap: on
line source

#!/usr/bin/python
# coding: utf-8

'''
Ajout de bruit poivre et sel dans les donnees. Le bruit est distribue de facon 
aleatoire tire d'une uniforme tout comme la clarte des bites changees.

La proportion de bites aleatoires est definit par complexity/5.
Lorsque cette valeur est a 1 ==> Plus reconnaissable et 0 ==> Rien ne se passe

Ce fichier prend pour acquis que les images sont donnees une a la fois
sous forme de numpy.array de 1024 (32 x 32) valeurs entre 0 et 1.

Sylvain Pannetier Lebeuf dans le cadre de IFT6266, hiver 2010

'''

import numpy
import random

class PoivreSel():
    
    def __init__(self):
        self.proportion_bruit=0.1 #Le pourcentage des pixels qui seront bruites
        self.nb_chng=10 #Le nombre de pixels changes. Seulement pour fin de calcul
        
    def get_settings_names(self):
        return []
    
    def get_settings_name_determined_by_complexity(self):
        return ['proportion_bruit']

    def regenerate_parameters(self, complexity):
        self.proportion_bruit = float(complexity)/5
        self.nb_chng=int(1024*self.proportion_bruit)
        self.changements=random.sample(xrange(1024),self.nb_chng)   #Les pixels qui seront changes
        return self._get_current_parameters()

    def _get_current_parameters(self):
        return []
    
    def get_parameters_determined_by_complexity(self, complexity):
        return [self.proportion_bruit]
    
    def transform_image(self, image):
        image=image.reshape(1024,1)
        for j in xrange(0,self.nb_chng):
            image[self.changements[j]]=numpy.random.random()    #On determine les nouvelles valeurs des pixels changes
        return image.reshape(32,32)


#---TESTS---

def _load_image():
    f = open('/home/sylvain/Dropbox/Msc/IFT6266/donnees/lower_test_data.ft')  #Le jeu de donnees est en local. 
    d = ft.read(f)
    w=numpy.asarray(d[0])
    return (w/255.0).astype('float')

def _test(complexite):
    img=_load_image()
    transfo = PoivreSel()
    pylab.imshow(img.reshape((32,32)))
    pylab.show()
    print transfo.get_settings_names()
    print transfo.regenerate_parameters(complexite)
    
    img_trans=transfo.transform_image(img)
    
    pylab.imshow(img_trans.reshape((32,32)))
    pylab.show()
    

if __name__ == '__main__':
    from pylearn.io import filetensor as ft
    import pylab
    _test(0.5)