Mercurial > ift6266
view baseline/mlp/mlp_get_error_from_model.py @ 489:ee9836baade3
merge
author | dumitru@dumitru.mtv.corp.google.com |
---|---|
date | Mon, 31 May 2010 19:07:59 -0700 |
parents | 9b6e0af062af |
children |
line wrap: on
line source
__docformat__ = 'restructedtext en' import pdb import numpy as np import pylab import time import pylearn from pylearn.io import filetensor as ft data_path = '/data/lisa/data/nist/by_class/' test_data = 'all/all_train_data.ft' test_labels = 'all/all_train_labels.ft' def read_test_data(mlp_model): #read the data h = open(data_path+test_data) i= open(data_path+test_labels) raw_test_data = ft.read(h) raw_test_labels = ft.read(i) i.close() h.close() #read the model chosen a=np.load(mlp_model) W1=a['W1'] W2=a['W2'] b1=a['b1'] b2=a['b2'] return (W1,b1,W2,b2,raw_test_data,raw_test_labels) def get_total_test_error(everything): W1=everything[0] b1=everything[1] W2=everything[2] b2=everything[3] test_data=everything[4] test_labels=everything[5] total_error_count=0 total_exemple_count=0 nb_error_count=0 nb_exemple_count=0 char_error_count=0 char_exemple_count=0 min_error_count=0 min_exemple_count=0 maj_error_count=0 maj_exemple_count=0 for i in range(test_labels.size): total_exemple_count = total_exemple_count +1 #get activation for layer 1 a0=np.dot(np.transpose(W1),np.transpose(test_data[i]/255.0)) + b1 #add non linear function to layer 1 activation a0_out=np.tanh(a0) #get activation for output layer a1= np.dot(np.transpose(W2),a0_out) + b2 #add non linear function for output activation (softmax) a1_exp = np.exp(a1) sum_a1=np.sum(a1_exp) a1_out=a1_exp/sum_a1 predicted_class=np.argmax(a1_out) wanted_class=test_labels[i] if(predicted_class!=wanted_class): total_error_count = total_error_count +1 #get grouped based error #with a priori # if(wanted_class>9 and wanted_class<35): # min_exemple_count=min_exemple_count+1 # predicted_class=np.argmax(a1_out[10:35])+10 # if(predicted_class!=wanted_class): # min_error_count=min_error_count+1 # if(wanted_class<10): # nb_exemple_count=nb_exemple_count+1 # predicted_class=np.argmax(a1_out[0:10]) # if(predicted_class!=wanted_class): # nb_error_count=nb_error_count+1 # if(wanted_class>34): # maj_exemple_count=maj_exemple_count+1 # predicted_class=np.argmax(a1_out[35:])+35 # if(predicted_class!=wanted_class): # maj_error_count=maj_error_count+1 # # if(wanted_class>9): # char_exemple_count=char_exemple_count+1 # predicted_class=np.argmax(a1_out[10:])+10 # if(predicted_class!=wanted_class): # char_error_count=char_error_count+1 #get grouped based error #with no a priori if(wanted_class>9 and wanted_class<35): min_exemple_count=min_exemple_count+1 predicted_class=np.argmax(a1_out) if(predicted_class!=wanted_class): min_error_count=min_error_count+1 if(wanted_class<10): nb_exemple_count=nb_exemple_count+1 predicted_class=np.argmax(a1_out) if(predicted_class!=wanted_class): nb_error_count=nb_error_count+1 if(wanted_class>34): maj_exemple_count=maj_exemple_count+1 predicted_class=np.argmax(a1_out) if(predicted_class!=wanted_class): maj_error_count=maj_error_count+1 if(wanted_class>9): char_exemple_count=char_exemple_count+1 predicted_class=np.argmax(a1_out) if(predicted_class!=wanted_class): char_error_count=char_error_count+1 #convert to float return ( total_exemple_count,nb_exemple_count,char_exemple_count,min_exemple_count,maj_exemple_count,\ total_error_count,nb_error_count,char_error_count,min_error_count,maj_error_count,\ total_error_count*100.0/total_exemple_count*1.0,\ nb_error_count*100.0/nb_exemple_count*1.0,\ char_error_count*100.0/char_exemple_count*1.0,\ min_error_count*100.0/min_exemple_count*1.0,\ maj_error_count*100.0/maj_exemple_count*1.0)