Mercurial > ift6266
view deep/deep_mlp/mlp.py @ 644:e63d23c7c9fb
reviews aistats finales
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Thu, 24 Mar 2011 17:05:05 -0400 |
parents | 75dbbe409578 |
children |
line wrap: on
line source
__docformat__ = 'restructedtext en' import numpy, time, cPickle, gzip, sys, os import theano import theano.tensor as T from logistic_sgd import LogisticRegression, load_data class HiddenLayer(object): def __init__(self, rng, input, n_in, n_out, activation = T.tanh): print "Creating HiddenLayer with params" print locals() self.input = input W_values = numpy.asarray( rng.uniform( low = - numpy.sqrt(6./(n_in+n_out)), high = numpy.sqrt(6./(n_in+n_out)), size = (n_in, n_out)), dtype = theano.config.floatX) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 self.W = theano.shared(value = W_values, name ='W') b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values, name ='b') self.output = activation(T.dot(input, self.W) + self.b) self.params = [self.W, self.b] class MLP(object): def __init__(self, rng, input, n_in, n_hidden_layers, n_hidden, n_out): print "Creating MLP with params" print locals() self.input = input self.hiddenLayers = [] last_input = input last_n_out = n_in for i in range(n_hidden_layers): self.hiddenLayers.append(\ HiddenLayer(rng = rng, input = last_input, n_in = last_n_out, n_out = n_hidden, activation = T.tanh)) last_input = self.hiddenLayers[-1].output last_n_out = n_hidden self.logRegressionLayer = LogisticRegression( input = self.hiddenLayers[-1].output, n_in = n_hidden, n_out = n_out) self.L1 = abs(self.logRegressionLayer.W).sum() for h in self.hiddenLayers: self.L1 += abs(h.W).sum() self.L2_sqr = (self.logRegressionLayer.W**2).sum() for h in self.hiddenLayers: self.L2_sqr += (h.W**2).sum() self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood self.errors = self.logRegressionLayer.errors self.params = [] for hl in self.hiddenLayers: self.params += hl.params self.params += self.logRegressionLayer.params def test_mlp( learning_rate=0.01, L1_reg = 0.00, L2_reg = 0.0001, n_epochs=1000, dataset = '../data/mnist.pkl.gz', batch_size = 20): datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x , test_set_y = datasets[2] n_train_batches = train_set_x.value.shape[0] / batch_size n_valid_batches = valid_set_x.value.shape[0] / batch_size n_test_batches = test_set_x.value.shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels rng = numpy.random.RandomState(1234) # construct the MLP class classifier = MLP( rng = rng, input=x, n_in=28*28, n_hidden = 500, n_out=10) # the cost we minimize during training is the negative log likelihood of # the model plus the regularization terms (L1 and L2); cost is expressed # here symbolically cost = classifier.negative_log_likelihood(y) \ + L1_reg * classifier.L1 \ + L2_reg * classifier.L2_sqr # compiling a Theano function that computes the mistakes that are made # by the model on a minibatch test_model = theano.function(inputs = [index], outputs = classifier.errors(y), givens={ x:test_set_x[index*batch_size:(index+1)*batch_size], y:test_set_y[index*batch_size:(index+1)*batch_size]}) validate_model = theano.function(inputs = [index], outputs = classifier.errors(y), givens={ x:valid_set_x[index*batch_size:(index+1)*batch_size], y:valid_set_y[index*batch_size:(index+1)*batch_size]}) # compute the gradient of cost with respect to theta (sotred in params) # the resulting gradients will be stored in a list gparams gparams = [] for param in classifier.params: gparam = T.grad(cost, param) gparams.append(gparam) # specify how to update the parameters of the model as a dictionary updates = {} # given two list the zip A = [ a1,a2,a3,a4] and B = [b1,b2,b3,b4] of # same length, zip generates a list C of same size, where each element # is a pair formed from the two lists : # C = [ (a1,b1), (a2,b2), (a3,b3) , (a4,b4) ] for param, gparam in zip(classifier.params, gparams): updates[param] = param - learning_rate*gparam # compiling a Theano function `train_model` that returns the cost, but # in the same time updates the parameter of the model based on the rules # defined in `updates` train_model =theano.function( inputs = [index], outputs = cost, updates = updates, givens={ x:train_set_x[index*batch_size:(index+1)*batch_size], y:train_set_y[index*batch_size:(index+1)*batch_size]}) ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches,patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_index) # iteration number iter = epoch * n_train_batches + minibatch_index if (iter+1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1,n_train_batches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = numpy.mean(test_losses)