Mercurial > ift6266
view data_generation/mnist_resized/rescale_mnist.py @ 644:e63d23c7c9fb
reviews aistats finales
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Thu, 24 Mar 2011 17:05:05 -0400 |
parents | 128bc92897f2 |
children |
line wrap: on
line source
import numpy,cPickle,gzip,Image,pdb,sys def zeropad(vect,img_size=(28,28),out_size=(32,32)): delta = (numpy.abs(img_size[0]-out_size[0])/2,numpy.abs(img_size[1]-out_size[1])/2) newvect = numpy.zeros(out_size) newvect[delta[0]:-delta[0],delta[1]:-delta[1]] = vect.reshape(img_size) return newvect.flatten() def rescale(vect,img_size=(28,28),out_size=(32,32), filter=Image.NEAREST): im = Image.fromarray(numpy.asarray(vect.reshape(img_size)*255.,dtype='uint8')) return (numpy.asarray(im.resize(out_size,filter),dtype='float32')/255.).flatten() #pdb.set_trace() def rescale_mnist(newsize=(32,32),output_file='mnist_rescaled_32_32.pkl',mnist=cPickle.load(gzip.open('mnist.pkl.gz'))): newmnist = [] for set in mnist: newset=numpy.zeros((len(set[0]),newsize[0]*newsize[1])) for i in xrange(len(set[0])): print i, sys.stdout.flush() newset[i] = rescale(set[0][i]) newmnist.append((newset,set[1])) cPickle.dump(newmnist,open(output_file,'w'),protocol=-1) print 'Done rescaling' def zeropad_mnist(newsize=(32,32),output_file='mnist_zeropadded_32_32.pkl',mnist=cPickle.load(gzip.open('mnist.pkl.gz'))): newmnist = [] for set in mnist: newset=numpy.zeros((len(set[0]),newsize[0]*newsize[1])) for i in xrange(len(set[0])): print i, sys.stdout.flush() newset[i] = zeropad(set[0][i]) newmnist.append((newset,set[1])) cPickle.dump(newmnist,open(output_file,'w'),protocol=-1) print 'Done padding' if __name__ =='__main__': print 'Creating resized datasets' mnist_ds = cPickle.load(gzip.open('mnist.pkl.gz')) #zeropad_mnist(mnist=mnist_ds) rescale_mnist(mnist=mnist_ds) print 'Finished.'