Mercurial > ift6266
view deep/convolutional_dae/run_exp.py @ 313:e301a2f32665
Avoir exactement le meme jeu de donnees pour pre-train et finetune
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Thu, 01 Apr 2010 14:25:55 -0400 |
parents | 6eab220a7d70 |
children | 69109e41983e |
line wrap: on
line source
from ift6266.deep.convolutional_dae.scdae import * class dumb(object): def save(self): pass def go(state, channel): from ift6266 import datasets from ift6266.deep.convolutional_dae.sgd_opt import sgd_opt import pylearn, theano, ift6266 import pylearn.version import sys # params: bsize, pretrain_lr, train_lr, nfilts1, nfilts2, nftils3, nfilts4 # pretrain_rounds, noise, mlp_sz pylearn.version.record_versions(state, [theano, ift6266, pylearn]) # TODO: maybe record pynnet version? channel.save() dset = datasets.nist_all() nfilts = [] if state.nfilts1 != 0: nfilts.append(state.nfilts1) if state.nfilts2 != 0: nfilts.append(state.nfilts2) if state.nfilts3 != 0: nfilts.append(state.nfilts3) if state.nfilts4 != 0: nfilts.append(state.nfilts4) fsizes = [(5,5)]*len(nfilts) subs = [(2,2)]*len(nfilts) noise = [state.noise]*len(nfilts) pretrain_funcs, trainf, evalf, net = build_funcs( img_size=(32, 32), batch_size=state.bsize, filter_sizes=fsizes, num_filters=nfilts, subs=subs, noise=noise, mlp_sizes=[state.mlp_sz], out_size=62, dtype=numpy.float32, pretrain_lr=state.pretrain_lr, train_lr=state.train_lr) t_it = repeat_itf(dset.train, state.bsize) pretrain_fs, train, valid, test = massage_funcs( t_it, t_it, dset, state.bsize, pretrain_funcs, trainf,evalf) series = create_series() print "pretraining ..." sys.stdout.flush() do_pretrain(pretrain_fs, state.pretrain_rounds, series['recons_error']) print "training ..." sys.stdout.flush() best_valid, test_score = sgd_opt(train, valid, test, training_epochs=1000000, patience=2500, patience_increase=2., improvement_threshold=0.995, validation_frequency=500, series=series, net=net) state.best_valid = best_valid state.test_score = test_score channel.save() return channel.COMPLETE if __name__ == '__main__': st = dumb() st.bsize = 100 st.pretrain_lr = 0.01 st.train_lr = 0.1 st.nfilts1 = 4 st.nfilts2 = 4 st.nfilts3 = 0 st.pretrain_rounds = 500 st.noise=0.2 st.mlp_sz = 500 go(st, dumb())