Mercurial > ift6266
view utils/seriestables/series.py @ 217:de3aef84714a
merge, second try
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Wed, 10 Mar 2010 17:08:50 -0500 |
parents | a96fa4de06d2 |
children | 4c137f16b013 |
line wrap: on
line source
from tables import * import numpy ''' The way these "IsDescription constructor" work is simple: write the code as if it were in a file, then exec()ute it, leaving us with a local-scoped LocalDescription which may be used to call createTable. It's a small hack, but it's necessary as the names of the columns are retrieved based on the variable name, which we can't programmatically set otherwise. ''' def get_beginning_description_n_ints(int_names, int_width=64): """ Begins construction of a class inheriting from IsDescription to construct an HDF5 table with index columns named with int_names. See Series().__init__ to see how those are used. """ int_constructor = "Int64Col" if int_width == 32: int_constructor = "Int32Col" toexec = "class LocalDescription(IsDescription):\n" pos = 0 for n in int_names: toexec += "\t" + n + " = " + int_constructor + "(pos=" + str(pos) + ")\n" return toexec def get_description_with_n_ints_n_floats(int_names, float_names, int_width=64, float_width=32): """ Constructs a class to be used when constructing a table with PyTables. This is useful to construct a series with an index with multiple levels. E.g. if you want to index your "validation error" with "epoch" first, then "minibatch_index" second, you'd use two "int_names". Parameters ---------- int_names : tuple of str Names of the int (e.g. index) columns float_names : tuple of str Names of the float (e.g. error) columns int_width : {'32', '64'} Type of ints. float_width : {'32', '64'} Type of floats. Returns ------- A class object, to pass to createTable() """ toexec = get_beginning_description_n_ints(int_names, int_width=int_width) float_constructor = "Float32Col" if float_width == 64: float_constructor = "Float64Col" pos = len(int_names) for n in float_names: toexec += "\t" + n + " = " + float_constructor + "(pos=" + str(pos) + ")\n" exec(toexec) return LocalDescription class Series(): def __init__(self, table_name, hdf5_file, index_names=('epoch',), title="", hdf5_group='/'): """Basic arguments each Series must get. Parameters ---------- table_name : str Name of the table to create under group "hd5_group" (other parameter). No spaces, ie. follow variable naming restrictions. hdf5_file : open HDF5 file File opened with openFile() in PyTables (ie. return value of openFile). index_names : tuple of str Columns to use as index for elements in the series, other example would be ('epoch', 'minibatch'). This would then allow you to call append(index, element) with index made of two ints, one for epoch index, one for minibatch index in epoch. title : str Title to attach to this table as metadata. Can contain spaces and be longer then the table_name. hdf5_group : str Path of the group (kind of a file) in the HDF5 file under which to create the table. """ self.table_name = table_name self.hdf5_file = hdf5_file self.index_names = index_names self.title = title def append(self, index, element): raise NotImplementedError # To put in a series dictionary instead of a real series, to do nothing # when we don't want a given series to be saved. class DummySeries(): def append(self, index, element): pass class ErrorSeries(Series): def __init__(self, error_name, table_name, hdf5_file, index_names=('epoch',), title="", hdf5_group='/'): Series.__init__(self, table_name, hdf5_file, index_names, title) self.error_name = error_name table_description = self._get_table_description() self._table = hdf5_file.createTable(hdf5_group, self.table_name, table_description, title=title) def _get_table_description(self): return get_description_with_n_ints_n_floats(self.index_names, (self.error_name,)) def append(self, index, error): """ Parameters ---------- index : tuple of int Following index_names passed to __init__, e.g. (12, 15) if index_names were ('epoch', 'minibatch_size') error : float Next error in the series. """ if len(index) != len(self.index_names): raise ValueError("index provided does not have the right length (expected " \ + str(len(self.index_names)) + " got " + str(len(index))) newrow = self._table.row # Columns for index in table are based on index_names for col_name, value in zip(self.index_names, index): newrow[col_name] = value newrow[self.error_name] = error newrow.append() self.hdf5_file.flush() # Does not inherit from Series because it does not itself need to # access the hdf5_file and does not need a series_name (provided # by the base_series.) class AccumulatorSeriesWrapper(): """ """ def __init__(self, base_series, reduce_every, reduce_function=numpy.mean): """ Parameters ---------- base_series : Series This object must have an append(index, value) function. reduce_every : int Apply the reduction function (e.g. mean()) every time we get this number of elements. E.g. if this is 100, then every 100 numbers passed to append(), we'll take the mean and call append(this_mean) on the BaseSeries. reduce_function : function Must take as input an array of "elements", as passed to (this accumulator's) append(). Basic case would be to take an array of floats and sum them into one float, for example. """ self.base_series = base_series self.reduce_function = reduce_function self.reduce_every = reduce_every self._buffer = [] def append(self, index, element): """ Parameters ---------- index : tuple of int The index used is the one of the last element reduced. E.g. if you accumulate over the first 1000 minibatches, the index passed to the base_series.append() function will be 1000. element : float Element that will be accumulated. """ self._buffer.append(element) if len(self._buffer) == self.reduce_every: reduced = self.reduce_function(self._buffer) self.base_series.append(index, reduced) self._buffer = [] # This should never happen, except if lists # were appended, which should be a red flag. assert len(self._buffer) < self.reduce_every # Outside of class to fix an issue with exec in Python 2.6. # My sorries to the God of pretty code. def _BasicStatisticsSeries_construct_table_toexec(index_names): toexec = get_beginning_description_n_ints(index_names) bpos = len(index_names) toexec += "\tmean = Float32Col(pos=" + str(bpos) + ")\n" toexec += "\tmin = Float32Col(pos=" + str(bpos+1) + ")\n" toexec += "\tmax = Float32Col(pos=" + str(bpos+2) + ")\n" toexec += "\tstd = Float32Col(pos=" + str(bpos+3) + ")\n" # This creates "LocalDescription", which we may then use exec(toexec) return LocalDescription basic_stats_functions = {'mean': lambda(x): numpy.mean(x), 'min': lambda(x): numpy.min(x), 'max': lambda(x): numpy.max(x), 'std': lambda(x): numpy.std(x)} class BasicStatisticsSeries(Series): """ Parameters ---------- series_name : str Not optional here. Will be prepended with "Basic statistics for " stats_functions : dict, optional Dictionary with a function for each key "mean", "min", "max", "std". The function must take whatever is passed to append(...) and return a single number (float). """ def __init__(self, table_name, hdf5_file, stats_functions=basic_stats_functions, index_names=('epoch',), title="", hdf5_group='/'): Series.__init__(self, table_name, hdf5_file, index_names, title) self.hdf5_group = hdf5_group self.stats_functions = stats_functions self._construct_table() def _construct_table(self): table_description = _BasicStatisticsSeries_construct_table_toexec(self.index_names) self._table = self.hdf5_file.createTable(self.hdf5_group, self.table_name, table_description) def append(self, index, array): """ Parameters ---------- index : tuple of int Following index_names passed to __init__, e.g. (12, 15) if index_names were ('epoch', 'minibatch_size') array Is of whatever type the stats_functions passed to __init__ can take. Default is anything numpy.mean(), min(), max(), std() can take. """ if len(index) != len(self.index_names): raise ValueError("index provided does not have the right length (expected " \ + str(len(self.index_names)) + " got " + str(len(index))) newrow = self._table.row for col_name, value in zip(self.index_names, index): newrow[col_name] = value newrow["mean"] = self.stats_functions['mean'](array) newrow["min"] = self.stats_functions['min'](array) newrow["max"] = self.stats_functions['max'](array) newrow["std"] = self.stats_functions['std'](array) newrow.append() self.hdf5_file.flush() class SeriesArrayWrapper(): """ Simply redistributes any number of elements to sub-series to respective append()s. To use if you have many elements to append in similar series, e.g. if you have an array containing [train_error, valid_error, test_error], and 3 corresponding series, this allows you to simply pass this array of 3 values to append() instead of passing each element to each individual series in turn. """ def __init__(self, base_series_list): self.base_series_list = base_series_list def append(self, index, elements): if len(elements) != len(self.base_series_list): raise ValueError("not enough or too much elements provided (expected " \ + str(len(self.base_series_list)) + " got " + str(len(elements))) for series, el in zip(self.base_series_list, elements): series.append(index, el) class SharedParamsStatisticsWrapper(SeriesArrayWrapper): '''Save mean, min/max, std of shared parameters place in an array. This is specifically for cases where we have _shared_ parameters, as we take the .value of each array''' def __init__(self, arrays_names, new_group_name, hdf5_file, base_group='/', index_names=('epoch',), title=""): """ Parameters ---------- array_names : array of str Name of each array, in order of the array passed to append(). E.g. ('layer1_b', 'layer1_W', 'layer2_b', 'layer2_W') new_group_name : str Name of a new HDF5 group which will be created under base_group to store the new series. base_group : str Path of the group under which to create the new group which will store the series. title : str Here the title is attached to the new group, not a table. """ base_series_list = [] new_group = hdf5_file.createGroup(base_group, new_group_name, title=title) stats_functions = {'mean': lambda(x): numpy.mean(x.value), 'min': lambda(x): numpy.min(x.value), 'max': lambda(x): numpy.max(x.value), 'std': lambda(x): numpy.std(x.value)} for name in arrays_names: base_series_list.append( BasicStatisticsSeries( table_name=name, hdf5_file=hdf5_file, index_names=index_names, stats_functions=stats_functions, hdf5_group=new_group._v_pathname)) SeriesArrayWrapper.__init__(self, base_series_list)