Mercurial > ift6266
view deep/stacked_dae/v_sylvain/nist_apriori_error.py @ 476:db28764b8252
Merge
author | fsavard |
---|---|
date | Sun, 30 May 2010 12:06:45 -0400 |
parents | b2a7d93caa0f |
children |
line wrap: on
line source
__docformat__ = 'restructedtext en' import pdb import numpy from numpy import array import time import datetime import pylearn import copy import sys import os import os.path from pylearn.io import filetensor as ft from jobman import DD from ift6266 import datasets import cPickle from copy import copy import math from config import * data_path = '/data/lisa/data/nist/by_class/' test_data = 'all/all_train_data.ft' test_labels = 'all/all_train_labels.ft' state = DD(DEFAULT_HP_NIST) #sda_model -> path for the parameters file #dataset -> the dataset we use for the test #part -> 0=train, 1=valid, 2=test #type -> non-linearity type 0=sigmoid, 1=tanh def test_data(sda_model,dataset,part=2,type=0): f = open(sda_model) parameters_pre=cPickle.load(f) f.close() W1 = array(copy(parameters_pre[0])) #print 'W1: ' + str(W1.shape) b1 = array(copy(parameters_pre[1])) #print 'b1: ' + str(b1.shape) W2 = array(copy(parameters_pre[2])) #print 'W2: ' + str(W2.shape) b2 = array(copy(parameters_pre[3])) #print 'b2: ' + str(b2.shape) W3 = array(copy(parameters_pre[4])) #print 'W3: ' + str(W3.shape) b3 = array(copy(parameters_pre[5])) #print 'b3: ' + str(b3.shape) if state['num_hidden_layers'] == 4: W4 = array(copy(parameters_pre[6])) b4 = array(copy(parameters_pre[7])) Wo = array(copy(parameters_pre[8])) bo = array(copy(parameters_pre[9])) elif state['num_hidden_layers'] == 3: Wo = array(copy(parameters_pre[6])) #print 'Wo: ' + str(Wo.shape) bo = array(copy(parameters_pre[7])) #print 'bo: ' + str(bo.shape) W4=None b4=None else: print('Number of layers not implemented yet, please do it') total_error_count=0 total_exemple_count=0 if part == 0: iter = dataset.train(1) if part == 1: iter = dataset.valid(1) if part == 2: iter = dataset.test(1) for x,y in iter: total_exemple_count = total_exemple_count +1 if type == 1: #get output for layer 1 out1=(numpy.tanh(numpy.dot(x,W1) + b1)+1.0)/2.0 #get output for layer 2 out2=(numpy.tanh(numpy.dot(out1,W2) + b2)+1.0)/2.0 #get output for layer 3 out3=(numpy.tanh(numpy.dot(out2,W3) + b3)+1.0)/2.0 #if there is a fourth layer if state['num_hidden_layers'] == 4: outf = (numpy.tanh(numpy.dot(out3,W4) + b4)+1.0)/2.0 else: outf = array(out3) else: #get output for layer 1 out1=1.0/(1.0+numpy.exp(-(numpy.dot(x,W1)+b1))) #get output for layer 2 out2 = 1.0/(1.0+numpy.exp(-(numpy.dot(out1,W2)+b2))) #get output for layer 3 out3 = 1.0/(1.0+numpy.exp(-(numpy.dot(out2,W3)+b3))) #if there is a fourth layer if state['num_hidden_layers'] == 4: outf = 1.0/(1.0+numpy.exp(-(numpy.dot(out3,W4)+b4))) else: outf = out3 out_act = numpy.dot(outf,Wo)+bo #add non linear function for output activation (softmax) #We can also use sigmoid and results will be the same out = numpy.zeros(len(out_act[0]),float) a1_exp = numpy.exp(out_act) sum_a1=numpy.sum(a1_exp) out=a1_exp/sum_a1 ## for i in xrange(len(out_act[0])): ## out[i]=sigmoid(array(out_act[0,i])) #get grouped based error #with a priori if(y>9 and y<36): predicted_class=numpy.argmax(out[0,10:36])+10 if(predicted_class!=y): total_error_count+=1 if(y<10): predicted_class=numpy.argmax(out[0,0:10]) if(predicted_class!=y): total_error_count+=1 if(y>35): predicted_class=numpy.argmax(out[0,36:])+36 if(predicted_class!=y): total_error_count+=1 print '\t total exemples count: '+str(total_exemple_count) print '\t total error count: '+str(total_error_count) print '\t percentage of error: '+str(total_error_count*100.0/total_exemple_count*1.0)+' %' def sigmoid(value): ## if len(value) > 1: ## retour = numpy.zeros(len(value),float) ## for i in xrange(len(value)): ## retour[i] = (1.0/(1.0+math.exp(-float(value[i])))) ## return retour ## else: ## print len(value) return (1.0/(1.0+math.exp(-value))) if __name__ == '__main__': args = sys.argv[1:] if len(args) > 0 and args[0] == 'sigmoid': type = 0 elif len(args) > 0 and args[0] == 'tanh': type = 1 part = 2 #0=train, 1=valid, 2=test PATH = '' #Can be changed too if model is not in the current drectory if os.path.exists(PATH+'params_finetune_NIST.txt'): start_time = time.clock() print ('\n finetune = NIST ') print "NIST DIGITS" test_data(PATH+'params_finetune_NIST.txt',datasets.nist_digits(),part=part,type=type) print "NIST LOWER CASE" test_data(PATH+'params_finetune_NIST.txt',datasets.nist_lower(),part=part,type=type) print "NIST UPPER CASE" test_data(PATH+'params_finetune_NIST.txt',datasets.nist_upper(),part=part,type=type) end_time = time.clock() print ('It took %f minutes' %((end_time-start_time)/60.)) if os.path.exists(PATH+'params_finetune_P07.txt'): start_time = time.clock() print ('\n finetune = P07 ') print "NIST DIGITS" test_data(PATH+'params_finetune_P07.txt',datasets.nist_digits(),part=part,type=type) print "NIST LOWER CASE" test_data(PATH+'params_finetune_P07.txt',datasets.nist_lower(),part=part,type=type) print "NIST UPPER CASE" test_data(PATH+'params_finetune_P07.txt',datasets.nist_upper(),part=part,type=type) end_time = time.clock() print ('It took %f minutes' %((end_time-start_time)/60.)) if os.path.exists(PATH+'params_finetune_NIST_then_P07.txt'): start_time = time.clock() print ('\n finetune = NIST then P07') print "NIST DIGITS" test_data(PATH+'params_finetune_NIST_then_P07.txt',datasets.nist_digits(),part=part,type=type) print "NIST LOWER CASE" test_data(PATH+'params_finetune_NIST_then_P07.txt',datasets.nist_lower(),part=part,type=type) print "NIST UPPER CASE" test_data(PATH+'params_finetune_NIST_then_P07.txt',datasets.nist_upper(),part=part,type=type) end_time = time.clock() print ('It took %f minutes' %((end_time-start_time)/60.)) if os.path.exists(PATH+'params_finetune_P07_then_NIST.txt'): start_time = time.clock() print ('\n finetune = P07 then NIST') print "NIST DIGITS" test_data(PATH+'params_finetune_P07_then_NIST.txt',datasets.nist_digits(),part=part,type=type) print "NIST LOWER CASE" test_data(PATH+'params_finetune_P07_then_NIST.txt',datasets.nist_lower(),part=part,type=type) print "NIST UPPER CASE" test_data(PATH+'params_finetune_P07_then_NIST.txt',datasets.nist_upper(),part=part,type=type) end_time = time.clock() print ('It took %f minutes' %((end_time-start_time)/60.)) if os.path.exists(PATH+'params_finetune_PNIST07.txt'): start_time = time.clock() print ('\n finetune = PNIST07') print "NIST DIGITS" test_data(PATH+'params_finetune_PNIST07.txt',datasets.nist_digits(),part=part,type=type) print "NIST LOWER CASE" test_data(PATH+'params_finetune_PNIST07.txt',datasets.nist_lower(),part=part,type=type) print "NIST UPPER CASE" test_data(PATH+'params_finetune_PNIST07.txt',datasets.nist_upper(),part=part,type=type) end_time = time.clock() print ('It took %f minutes' %((end_time-start_time)/60.)) if os.path.exists(PATH+'params_finetune_PNIST07_then_NIST.txt'): start_time = time.clock() print ('\n finetune = PNIST07 then NIST') print "NIST DIGITS" test_data(PATH+'params_finetune_PNIST07_then_NIST.txt',datasets.nist_digits(),part=part,type=type) print "NIST LOWER CASE" test_data(PATH+'params_finetune_PNIST07_then_NIST.txt',datasets.nist_lower(),part=part,type=type) print "NIST UPPER CASE" test_data(PATH+'params_finetune_PNIST07_then_NIST.txt',datasets.nist_upper(),part=part,type=type) end_time = time.clock() print ('It took %f minutes' %((end_time-start_time)/60.))