Mercurial > ift6266
view deep/stacked_dae/stacked_dae.py @ 176:d6672a7daea5
Update comments in the dataset definition (you can't pass 0 as minibatch size).
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Sat, 27 Feb 2010 14:10:14 -0500 |
parents | 1f5937e9e530 |
children | b9ea8e2d071a |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import numpy import theano import time import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import copy from utils import update_locals class LogisticRegression(object): def __init__(self, input, n_in, n_out): # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared( value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX) ) # initialize the baises b as a vector of n_out 0s self.b = theano.shared( value=numpy.zeros((n_out,), dtype = theano.config.floatX) ) # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) # list of parameters for this layer self.params = [self.W, self.b] def negative_log_likelihood(self, y): return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() class SigmoidalLayer(object): def __init__(self, rng, input, n_in, n_out): self.input = input W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(6./(n_in+n_out)), \ high = numpy.sqrt(6./(n_in+n_out)), \ size = (n_in, n_out)), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b) self.params = [self.W, self.b] class dA(object): def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\ input = None, shared_W = None, shared_b = None): self.n_visible = n_visible self.n_hidden = n_hidden # create a Theano random generator that gives symbolic random values theano_rng = RandomStreams() if shared_W != None and shared_b != None : self.W = shared_W self.b = shared_b else: # initial values for weights and biases # note : W' was written as `W_prime` and b' as `b_prime` # W is initialized with `initial_W` which is uniformely sampled # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU initial_W = numpy.asarray( numpy.random.uniform( \ low = -numpy.sqrt(6./(n_hidden+n_visible)), \ high = numpy.sqrt(6./(n_hidden+n_visible)), \ size = (n_visible, n_hidden)), dtype = theano.config.floatX) initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX) # theano shared variables for weights and biases self.W = theano.shared(value = initial_W, name = "W") self.b = theano.shared(value = initial_b, name = "b") initial_b_prime= numpy.zeros(n_visible) # tied weights, therefore W_prime is W transpose self.W_prime = self.W.T self.b_prime = theano.shared(value = initial_b_prime, name = "b'") # if no input is given, generate a variable representing the input if input == None : # we use a matrix because we expect a minibatch of several examples, # each example being a row self.x = T.dmatrix(name = 'input') else: self.x = input # Equation (1) # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs # note : first argument of theano.rng.binomial is the shape(size) of # random numbers that it should produce # second argument is the number of trials # third argument is the probability of success of any trial # # this will produce an array of 0s and 1s where 1 has a # probability of 1 - ``corruption_level`` and 0 with # ``corruption_level`` self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x # Equation (2) # note : y is stored as an attribute of the class so that it can be # used later when stacking dAs. self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b) # Equation (3) self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) # Equation (4) # note : we sum over the size of a datapoint; if we are using minibatches, # L will be a vector, with one entry per example in minibatch self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) # note : L is now a vector, where each element is the cross-entropy cost # of the reconstruction of the corresponding example of the # minibatch. We need to compute the average of all these to get # the cost of the minibatch self.cost = T.mean(self.L) self.params = [ self.W, self.b, self.b_prime ] class SdA(object): def __init__(self, train_set_x, train_set_y, batch_size, n_ins, hidden_layers_sizes, n_outs, corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0): update_locals(self, locals()) self.layers = [] self.pretrain_functions = [] self.params = [] self.n_layers = len(hidden_layers_sizes) self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX) if len(hidden_layers_sizes) < 1 : raiseException (' You must have at least one hidden layer ') # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels for i in xrange( self.n_layers ): # construct the sigmoidal layer # the size of the input is either the number of hidden units of # the layer below or the input size if we are on the first layer if i == 0 : input_size = n_ins else: input_size = hidden_layers_sizes[i-1] # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first # layer if i == 0 : layer_input = self.x else: layer_input = self.layers[-1].output layer = SigmoidalLayer(rng, layer_input, input_size, hidden_layers_sizes[i] ) # add the layer to the self.layers += [layer] self.params += layer.params # Construct a denoising autoencoder that shared weights with this # layer dA_layer = dA(input_size, hidden_layers_sizes[i], \ corruption_level = corruption_levels[0],\ input = layer_input, \ shared_W = layer.W, shared_b = layer.b) # Construct a function that trains this dA # compute gradients of layer parameters gparams = T.grad(dA_layer.cost, dA_layer.params) # compute the list of updates updates = {} for param, gparam in zip(dA_layer.params, gparams): updates[param] = param - gparam * pretrain_lr # create a function that trains the dA update_fn = theano.function([index], dA_layer.cost, \ updates = updates, givens = { self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.input_divider}) # collect this function into a list self.pretrain_functions += [update_fn] # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression(\ input = self.layers[-1].output,\ n_in = hidden_layers_sizes[-1], n_out = n_outs) self.params += self.logLayer.params # construct a function that implements one step of finetunining # compute the cost, defined as the negative log likelihood cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters gparams = T.grad(cost, self.params) # compute list of updates updates = {} for param,gparam in zip(self.params, gparams): updates[param] = param - gparam*finetune_lr self.finetune = theano.function([index], cost, updates = updates, givens = { self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.input_divider, self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) @classmethod def copy_reusing_lower_layers(cls, obj, num_hidden_layers, new_finetuning_lr=None): assert(num_hidden_layers <= obj.n_layers) if not new_finetuning_lr: new_finetuning_lr = obj.finetune_lr new_sda = cls(train_set_x= obj.train_set_x, \ train_set_y = obj.train_set_y,\ batch_size = obj.batch_size, \ n_ins= obj.n_ins, \ hidden_layers_sizes = obj.hidden_layers_sizes[:num_hidden_layers], \ n_outs = obj.n_outs, \ corruption_levels = obj.corruption_levels[:num_hidden_layers],\ rng = obj.rng,\ pretrain_lr = obj.pretrain_lr, \ finetune_lr = new_finetuning_lr, \ input_divider = obj.input_divider ) # new_sda.layers contains only the hidden layers actually for i, layer in enumerate(new_sda.layers): original_layer = obj.layers[i] for p1,p2 in zip(layer.params, original_layer.params): p1.value = p2.value.copy() return new_sda def get_params_copy(self): return copy.deepcopy(self.params) def set_params_from_copy(self, copy): # We don't want to replace the var, as the functions have pointers in there # We only want to replace values. for i, p in enumerate(self.params): p.value = copy[i].value def get_params_means(self): s = [] for p in self.params: s.append(numpy.mean(p.value)) return s if __name__ == '__main__': import sys args = sys.argv[1:]