Mercurial > ift6266
view transformations/pipeline.py @ 12:d511445f19da
appliquer filtres gimp sur des arrays numpy plutot que sur des fichiers et structure classe
author | boulanni <nicolas_boulanger@hotmail.com> |
---|---|
date | Wed, 27 Jan 2010 21:05:58 -0500 |
parents | faacc76d21c2 |
children | f6b6c74bb82f |
line wrap: on
line source
from __future__ import with_statement import sys, os import numpy import filetensor as ft import random BATCH_SIZE = 100 #import <modules> and stuff them in mods below mods = [] # DANGER: HIGH VOLTAGE -- DO NOT EDIT BELOW THIS LINE # ----------------------------------------------------------- train_data = open('/data/lisa/data/nist/by_class/all/all_train_data.ft', 'rb') dim = tuple(ft._read_header(train_data)[3]) res_data = numpy.empty(dim) all_settings = ['complexity'] for mod in mods: all_settings += mod.get_settings_names() params = numpy.empty(((dim[0]/BATCH_SIZE)+1, len(all_settings))) for i in xrange(0, dim[0], BATCH_SIZE): train_data.seek(0) imgs = ft.read(train_data, slice(i, i+BATCH_SIZE)) complexity = random.random() p = i/BATCH_SIZE j = 1 for mod in mods: par = mod.regenerate_parameters(complexity) params[p, j:j+len(par)] = par j += len(par) for k in range(imgs.shape[0]): c = imgs[k] for mod in mods: c = mod.transform_image(c) res_data[i+k] = c with open(sys.argv[1], 'wb') as f: ft.write(f, res_data) numpy.save(sys.argv[2], params)