Mercurial > ift6266
view data_generation/amt/amt_generate.py @ 469:d02d288257bf
redone bib style
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Sat, 29 May 2010 18:03:37 -0400 |
parents | 8973abe35a9d |
children |
line wrap: on
line source
import numpy, Image from pylearn.io import filetensor as ft DATAPATH = '/data/lisa/data/' DATASET = 'nist' # nist, p07, pnist NUM_BATCHES = 250 BATCH_SIZE = 10 IMGSHP = (32,32) WHITE_SPACE_THICKNESS = 1 DATASET_PATH = { 'nist' : [ DATAPATH + 'nist/by_class/all/all_test_data.ft', DATAPATH + 'nist/by_class/all/all_test_labels.ft' ], 'p07' : [ DATAPATH + 'ift6266h10/data/P07_test_data.ft', DATAPATH + 'ift6266h10/data/P07_test_labels.ft' ], 'pnist': [ DATAPATH + 'ift6266h10/data/PNIST07_test_data.ft', DATAPATH + 'ift6266h10/data/PNIST07_test_labels.ft' ] } def generate_batches(): # Generate a directory containing NUM_BATCHES of DATASET total = NUM_BATCHES * BATCH_SIZE # Create a matrix of random integers within the range # [0,lenght_dataset-1] f = open(DATASET_PATH[DATASET][0]) g = open(DATASET_PATH[DATASET][1]) test_data = ft.read(f) test_labels = ft.read(g) resulting_data = numpy.zeros((total,IMGSHP[0]*IMGSHP[1])) resulting_labels = numpy.zeros((total,)) f.close();g.close() ds_size = len(test_data) rand_seq = numpy.random.random_integers(ds_size-1, size=(NUM_BATCHES,BATCH_SIZE)) for i in range(NUM_BATCHES): for j in range(BATCH_SIZE): resulting_data[i*BATCH_SIZE+j]=test_data[rand_seq[i,j]] resulting_labels[i*BATCH_SIZE+j] = test_labels[rand_seq[i,j]] image = generate_image(resulting_data[i*BATCH_SIZE:(i+1)*BATCH_SIZE]) text = generate_labels(resulting_labels[i*BATCH_SIZE:(i+1)*BATCH_SIZE], rand_seq[i]) filename = DATASET + '_' + str("%04d" % int(i+1)) image.save(filename+'.jpeg') save_text(text,filename) ft_name = 'AMT_'+DATASET+'_'+str(NUM_BATCHES) generate_ft_file(resulting_data,resulting_labels,ft_name) def save_text(text,filename): f = open(filename+'.txt', 'w') f.write(text) f.close() def generate_ft_file(data,labels,ft_name): fdata = open(ft_name+'_data.ft','w') flabels = open(ft_name+'_labels.ft','w') ft.write(fdata,data) ft.write(flabels,labels) fdata.close();flabels.close() def generate_image(seq): all_images = [] white_space = numpy.asarray(numpy.zeros((IMGSHP[0],WHITE_SPACE_THICKNESS))+255.,dtype='uint8') for i in range(len(seq)): all_images += [numpy.asarray(seq[i].reshape((IMGSHP)),dtype='uint8')] all_images_stacked = numpy.hstack(numpy.asarray([numpy.hstack((image,white_space)) for image in all_images])) return Image.fromarray(all_images_stacked) def generate_labels(seq, indexes): return str(seq) + '\n' + str(indexes) if __name__ =='__main__': print 'Starting data generation' generate_batches()