view transformations/local_elastic_distortions.py @ 22:cb47cbc95a21

I fixed a bug in the computation of L1 and L2 regularizations
author Razvan Pascanu <r.pascanu@gmail.com>
date Fri, 29 Jan 2010 11:01:39 -0500
parents 8d1c37190122
children 010e826b41e8
line wrap: on
line source

#!/usr/bin/python
# coding: utf-8

'''
Implementation of elastic distortions as described in
Simard, Steinkraus, Platt, "Best Practices for Convolutional
    Neural Networks Applied to Visual Document Analysis", 2003

Author: François Savard
Date: Fall 2009, revised Winter 2010

Usage: create the Distorter with proper alpha, sigma etc.
    Then each time you want to change the distortion field applied,
    call regenerate_field(). 

    (The point behind this is that regeneration takes some time,
    so we better reuse the fields a few times)
'''

import sys
import math
import numpy
import numpy.random
import scipy.signal # convolve2d

def raw_zeros(size):
    return [[0 for i in range(size[1])] for j in range(size[0])]

class LocalElasticDistorter():
    def __init__(self, image_size, kernel_size, sigma, alpha):
        self.image_size = image_size
        self.kernel_size = kernel_size
        self.sigma = sigma
        self.alpha = alpha
        self.c_alpha = int(math.ceil(alpha))

        self.kernel = self.gen_gaussian_kernel()
        self.fields = None
        self.regenerate_fields()

    # adapted from http://blenderartists.org/forum/showthread.php?t=163361
    def gen_gaussian_kernel(self):
        h,w = self.kernel_size
        a,b = h/2.0, w/2.0
        y,x = numpy.ogrid[0:w, 0:h]
        s = self.sigma
        gauss = numpy.exp(-numpy.square((x-a)/s))*numpy.exp(-numpy.square((y-b)/s))
        # Normalize so we don't reduce image intensity
        return gauss/gauss.sum()

    def gen_distortion_field(self):
        field = numpy.random.uniform(-1.0, 1.0, self.image_size)
        return scipy.signal.convolve2d(field, self.kernel, mode='same')

    def regenerate_fields(self):
        '''
        Here's how the code works:
        - We first generate "distortion fields" for x and y with these steps:
            - Uniform noise over [-1, 1] in a matrix of size (h,w)
            - Blur with a Gaussian kernel of spread sigma
            - Multiply by alpha
        - Then (conceptually) to compose the distorted image, we loop over each pixel
            of the new image and use the corresponding x and y distortions
            (from the matrices generated above) to identify pixels
            of the old image from which we fetch color data. As the
            coordinates are not integer, we interpolate between the
            4 nearby pixels (top left, top right etc.).
        - That's just conceptually. Here I'm using matrix operations
            to speed up the computation. I first identify the 4 nearby
            pixels in the old image for each pixel in the distorted image.
            I can then use them as "fancy indices" to extract the proper
            pixels for each new pixel.
        - Then I multiply those extracted nearby points by precomputed
            ratios for the bilinear interpolation.
        '''

        self.fields = [None, None]
        self.fields[0] = self.alpha*self.gen_distortion_field()
        self.fields[1] = self.alpha*self.gen_distortion_field()

        #import pylab
        #pylab.imshow(self.fields[0])
        #pylab.show()

        # regenerate distortion index matrices
        # "_rows" are row indices
        # "_cols" are column indices
        # (separated due to the way fancy indexing works in numpy)
        h,w = self.image_size

        self.matrix_tl_corners_rows = raw_zeros((h,w))
        self.matrix_tl_corners_cols = raw_zeros((h,w))

        self.matrix_tr_corners_rows = raw_zeros((h,w))
        self.matrix_tr_corners_cols = raw_zeros((h,w))

        self.matrix_bl_corners_rows = raw_zeros((h,w))
        self.matrix_bl_corners_cols = raw_zeros((h,w))

        self.matrix_br_corners_rows = raw_zeros((h,w))
        self.matrix_br_corners_cols = raw_zeros((h,w))

        # those will hold the precomputed ratios for
        # bilinear interpolation
        self.matrix_tl_multiply = numpy.zeros((h,w))
        self.matrix_tr_multiply = numpy.zeros((h,w))
        self.matrix_bl_multiply = numpy.zeros((h,w))
        self.matrix_br_multiply = numpy.zeros((h,w))

        for y in range(h):
            for x in range(w):
                distort_x = self.fields[0][y,x]
                distort_y = self.fields[1][y,x]
                f_dy = int(math.floor(distort_y))
                f_dx = int(math.floor(distort_x))
                y0 = y+f_dy
                x0 = x+f_dx
                index_tl = [y0, x0]
                index_tr = [y0, x0+1]
                index_bl = [y0+1, x0]
                index_br = [y0+1, x0+1]
                x_ratio = abs(distort_x-f_dx) # ratio of left vs right (for bilinear)
                y_ratio = abs(distort_y-f_dy) # ratio of top vs bottom

                # We use a default background color of 0 for displacements
                # outside of boundaries of the image.

                # if top left outside bounds
                if index_tl[0] < 0 or index_tl[0] >= h or index_tl[1] < 0 or index_tl[1] >= w: 
                    self.matrix_tl_corners_rows[y][x] = 0
                    self.matrix_tl_corners_cols[y][x] = 0
                    self.matrix_tl_multiply[y,x] = 0
                else:
                    self.matrix_tl_corners_rows[y][x] = index_tl[0]
                    self.matrix_tl_corners_cols[y][x] = index_tl[1]
                    self.matrix_tl_multiply[y,x] = x_ratio*y_ratio


                # if top right outside bounds
                if index_tr[0] < 0 or index_tr[0] >= h or index_tr[1] < 0 or index_tr[1] >= w:
                    self.matrix_tr_corners_rows[y][x] = 0
                    self.matrix_tr_corners_cols[y][x] = 0
                    self.matrix_tr_multiply[y,x] = 0
                else:
                    self.matrix_tr_corners_rows[y][x] = index_tr[0]
                    self.matrix_tr_corners_cols[y][x] = index_tr[1]
                    self.matrix_tr_multiply[y,x] = (1.0-x_ratio)*y_ratio

                # if bottom left outside bounds
                if index_bl[0] < 0 or index_bl[0] >= h or index_bl[1] < 0 or index_bl[1] >= w:
                    self.matrix_bl_corners_rows[y][x] = 0
                    self.matrix_bl_corners_cols[y][x] = 0
                    self.matrix_bl_multiply[y,x] = 0
                else:
                    self.matrix_bl_corners_rows[y][x] = index_bl[0]
                    self.matrix_bl_corners_cols[y][x] = index_bl[1]
                    self.matrix_bl_multiply[y,x] = x_ratio*(1.0-y_ratio)

                # if bottom right outside bounds
                if index_br[0] < 0 or index_br[0] >= h or index_br[1] < 0 or index_br[1] >= w:
                    self.matrix_br_corners_rows[y][x] = 0
                    self.matrix_br_corners_cols[y][x] = 0
                    self.matrix_br_multiply[y,x] = 0
                else:
                    self.matrix_br_corners_rows[y][x] = index_br[0]
                    self.matrix_br_corners_cols[y][x] = index_br[1]
                    self.matrix_br_multiply[y,x] = (1.0-x_ratio)*(1.0-y_ratio)

    def distort_image(self, image):
        # index pixels to get the 4 corners for bilinear combination
        tl_pixels = image[self.matrix_tl_corners_rows, self.matrix_tl_corners_cols]
        tr_pixels = image[self.matrix_tr_corners_rows, self.matrix_tr_corners_cols]
        bl_pixels = image[self.matrix_bl_corners_rows, self.matrix_bl_corners_cols]
        br_pixels = image[self.matrix_br_corners_rows, self.matrix_br_corners_cols]

        # bilinear ratios, elemwise multiply
        tl_pixels = numpy.multiply(tl_pixels, self.matrix_tl_multiply)
        tr_pixels = numpy.multiply(tr_pixels, self.matrix_tr_multiply)
        bl_pixels = numpy.multiply(bl_pixels, self.matrix_bl_multiply)
        br_pixels = numpy.multiply(br_pixels, self.matrix_br_multiply)

        # sum to finish bilinear combination
        return numpy.sum([tl_pixels,tr_pixels,bl_pixels,br_pixels], axis=0)

# TESTS ----------------------------------------------------------------------

def _load_image(filepath):
    _RGB_TO_GRAYSCALE = [0.3, 0.59, 0.11, 0.0]
    img = Image.open(filepath)
    img = numpy.asarray(img)
    if len(img.shape) > 2:
        img = (img * _RGB_TO_GRAYSCALE).sum(axis=2)
    return (img / 255.0).astype('float')

def _specific_test():
    img = _load_image("tests/d.png")
    dist = LocalElasticDistorter((32,32), (15,15), 9.0, 5.0)
    dist.distort_image(img)

def _distorter_tests():
    #import pylab
    #pylab.imshow(img)
    #pylab.show()

    for letter in ("d", "a", "n", "o"):
        img = _load_image("tests/" + letter + ".png")
        for alpha in (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0):
            for sigma in (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0):
                id = LocalElasticDistorter((32,32), (15,15), sigma, alpha)
                img2 = id.distort_image(img)
                img2 = Image.fromarray((img2 * 255).astype('uint8'), "L")
                img2.save("tests/"+letter+"_alpha"+str(alpha)+"_sigma"+str(sigma)+".png")

def _benchmark():
    img = _load_image("tests/d.png")
    dist = LocalElasticDistorter((32,32), (10,10), 5.0, 5.0)
    import time
    t1 = time.time()
    for i in range(10000):
        if i % 1000 == 0:
            print "-"
        dist.distort_image(img)
    t2 = time.time()
    print "t2-t1", t2-t1
    print "avg", 10000/(t2-t1)

if __name__ == '__main__':
    import Image
    _distorter_tests()
    #_benchmark()
    #_specific_test()