Mercurial > ift6266
view scripts/stacked_dae.py @ 124:b852dddf43a6
reduced affine transform coefficient
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Thu, 18 Feb 2010 12:33:17 -0500 |
parents | 4f37755d301b |
children |
line wrap: on
line source
#!/usr/bin/python # coding: utf-8 import numpy import theano import time import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import os.path import gzip import cPickle MNIST_LOCATION = '/u/savardf/datasets/mnist.pkl.gz' # from pylearn codebase def update_locals(obj, dct): if 'self' in dct: del dct['self'] obj.__dict__.update(dct) class LogisticRegression(object): def __init__(self, input, n_in, n_out): # initialize with 0 the weights W as a matrix of shape (n_in, n_out) self.W = theano.shared( value=numpy.zeros((n_in,n_out), dtype = theano.config.floatX) ) # initialize the baises b as a vector of n_out 0s self.b = theano.shared( value=numpy.zeros((n_out,), dtype = theano.config.floatX) ) # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred=T.argmax(self.p_y_given_x, axis=1) # list of parameters for this layer self.params = [self.W, self.b] def negative_log_likelihood(self, y): return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) def errors(self, y): # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', target.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() class SigmoidalLayer(object): def __init__(self, rng, input, n_in, n_out): self.input = input W_values = numpy.asarray( rng.uniform( \ low = -numpy.sqrt(6./(n_in+n_out)), \ high = numpy.sqrt(6./(n_in+n_out)), \ size = (n_in, n_out)), dtype = theano.config.floatX) self.W = theano.shared(value = W_values) b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) self.b = theano.shared(value= b_values) self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b) self.params = [self.W, self.b] class dA(object): def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\ input = None, shared_W = None, shared_b = None): self.n_visible = n_visible self.n_hidden = n_hidden # create a Theano random generator that gives symbolic random values theano_rng = RandomStreams() if shared_W != None and shared_b != None : self.W = shared_W self.b = shared_b else: # initial values for weights and biases # note : W' was written as `W_prime` and b' as `b_prime` # W is initialized with `initial_W` which is uniformely sampled # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible) # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU initial_W = numpy.asarray( numpy.random.uniform( \ low = -numpy.sqrt(6./(n_hidden+n_visible)), \ high = numpy.sqrt(6./(n_hidden+n_visible)), \ size = (n_visible, n_hidden)), dtype = theano.config.floatX) initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX) # theano shared variables for weights and biases self.W = theano.shared(value = initial_W, name = "W") self.b = theano.shared(value = initial_b, name = "b") initial_b_prime= numpy.zeros(n_visible) # tied weights, therefore W_prime is W transpose self.W_prime = self.W.T self.b_prime = theano.shared(value = initial_b_prime, name = "b'") # if no input is given, generate a variable representing the input if input == None : # we use a matrix because we expect a minibatch of several examples, # each example being a row self.x = T.dmatrix(name = 'input') else: self.x = input # Equation (1) # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs # note : first argument of theano.rng.binomial is the shape(size) of # random numbers that it should produce # second argument is the number of trials # third argument is the probability of success of any trial # # this will produce an array of 0s and 1s where 1 has a # probability of 1 - ``corruption_level`` and 0 with # ``corruption_level`` self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x # Equation (2) # note : y is stored as an attribute of the class so that it can be # used later when stacking dAs. self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b) # Equation (3) self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime) # Equation (4) # note : we sum over the size of a datapoint; if we are using minibatches, # L will be a vector, with one entry per example in minibatch self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 ) # note : L is now a vector, where each element is the cross-entropy cost # of the reconstruction of the corresponding example of the # minibatch. We need to compute the average of all these to get # the cost of the minibatch self.cost = T.mean(self.L) self.params = [ self.W, self.b, self.b_prime ] class SdA(object): def __init__(self, train_set_x, train_set_y, batch_size, n_ins, hidden_layers_sizes, n_outs, corruption_levels, rng, pretrain_lr, finetune_lr): self.layers = [] self.pretrain_functions = [] self.params = [] self.n_layers = len(hidden_layers_sizes) if len(hidden_layers_sizes) < 1 : raiseException (' You must have at least one hidden layer ') # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels for i in xrange( self.n_layers ): # construct the sigmoidal layer # the size of the input is either the number of hidden units of # the layer below or the input size if we are on the first layer if i == 0 : input_size = n_ins else: input_size = hidden_layers_sizes[i-1] # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first # layer if i == 0 : layer_input = self.x else: layer_input = self.layers[-1].output layer = SigmoidalLayer(rng, layer_input, input_size, hidden_layers_sizes[i] ) # add the layer to the self.layers += [layer] self.params += layer.params # Construct a denoising autoencoder that shared weights with this # layer dA_layer = dA(input_size, hidden_layers_sizes[i], \ corruption_level = corruption_levels[0],\ input = layer_input, \ shared_W = layer.W, shared_b = layer.b) # Construct a function that trains this dA # compute gradients of layer parameters gparams = T.grad(dA_layer.cost, dA_layer.params) # compute the list of updates updates = {} for param, gparam in zip(dA_layer.params, gparams): updates[param] = param - gparam * pretrain_lr # create a function that trains the dA update_fn = theano.function([index], dA_layer.cost, \ updates = updates, givens = { self.x : train_set_x[index*batch_size:(index+1)*batch_size]}) # collect this function into a list self.pretrain_functions += [update_fn] # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression(\ input = self.layers[-1].output,\ n_in = hidden_layers_sizes[-1], n_out = n_outs) self.params += self.logLayer.params # construct a function that implements one step of finetunining # compute the cost, defined as the negative log likelihood cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters gparams = T.grad(cost, self.params) # compute list of updates updates = {} for param,gparam in zip(self.params, gparams): updates[param] = param - gparam*finetune_lr self.finetune = theano.function([index], cost, updates = updates, givens = { self.x : train_set_x[index*batch_size:(index+1)*batch_size], self.y : train_set_y[index*batch_size:(index+1)*batch_size]} ) # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) class Hyperparameters: def __init__(self, dict): self.__dict__.update(dict) def sgd_optimization_mnist(learning_rate=0.1, pretraining_epochs = 2, \ pretrain_lr = 0.1, training_epochs = 5, \ dataset='mnist.pkl.gz'): # Load the dataset f = gzip.open(dataset,'rb') # this gives us train, valid, test (each with .x, .y) dataset = cPickle.load(f) f.close() n_ins = 28*28 n_outs = 10 hyperparameters = Hyperparameters({'finetuning_lr':learning_rate, 'pretraining_lr':pretrain_lr, 'pretraining_epochs_per_layer':pretraining_epochs, 'max_finetuning_epochs':training_epochs, 'hidden_layers_sizes':[1000,1000,1000], 'corruption_levels':[0.2,0.2,0.2], 'minibatch_size':20}) sgd_optimization(dataset, hyperparameters, n_ins, n_outs) class NIST: def __init__(self, minibatch_size, basepath=='/data/lisa/data/nist/by_class/all'): self.minibatch_size = minibatch_size self.basepath = basepath self.train = [None, None] self.test = [None, None] self.load_train_test() self.valid = [None, None] self.split_train_valid() def set_filenames(self): self.train_files = ['all_train_data.ft', 'all_train_labels.ft'] self.test_files = ['all_test_data.ft', 'all_test_labels.ft'] def load_train_test(self): self.load_data_labels(self.train_files, self.train) self.load_data_labels(self.test_files, self.test) def load_data_labels(self, filenames, pair): for i, fn in enumerate(filenames): f = open(fn) pair[i] = ft.read(os.path.join(self.base_path, fn)) f.close() def split_train_valid(self): test_len = len(self.test[0]) new_train_x = self.train[0][:-test_len] new_train_y = self.train[1][:-test_len] self.valid[0] = self.train[0][-test_len:] self.valid[1] = self.train[1][-test_len:] self.train[0] = new_train_x self.train[1] = new_train_y def sgd_optimization_nist(dataset_dir='/data/lisa/data/nist'): pass def sgd_optimization(dataset, hyperparameters, n_ins, n_outs): hp = hyperparameters train_set, valid_set, test_set = dataset def shared_dataset(data_xy): data_x, data_y = data_xy shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) return shared_x, T.cast(shared_y, 'int32') test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.value.shape[0] / hp.minibatch_size n_valid_batches = valid_set_x.value.shape[0] / hp.minibatch_size n_test_batches = test_set_x.value.shape[0] / hp.minibatch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # construct the stacked denoising autoencoder class classifier = SdA( train_set_x=train_set_x, train_set_y = train_set_y,\ batch_size = hp.minibatch_size, n_ins= n_ins, \ hidden_layers_sizes = hp.hidden_layers_sizes, n_outs=10, \ corruption_levels = hp.corruption_levels,\ rng = numpy.random.RandomState(1234),\ pretrain_lr = hp.pretraining_lr, finetune_lr = hp.finetuning_lr ) start_time = time.clock() ## Pre-train layer-wise for i in xrange(classifier.n_layers): # go through pretraining epochs for epoch in xrange(hp.pretraining_epochs_per_layer): # go through the training set for batch_index in xrange(n_train_batches): c = classifier.pretrain_functions[i](batch_index) print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c end_time = time.clock() print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) # Fine-tune the entire model minibatch_size = hp.minibatch_size # create a function to compute the mistakes that are made by the model # on the validation set, or testing set test_model = theano.function([index], classifier.errors, givens = { classifier.x: test_set_x[index*minibatch_size:(index+1)*minibatch_size], classifier.y: test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) validate_model = theano.function([index], classifier.errors, givens = { classifier.x: valid_set_x[index*minibatch_size:(index+1)*minibatch_size], classifier.y: valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience/2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() done_looping = False epoch = 0 while (epoch < hp.max_finetuning_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): cost_ij = classifier.finetune(minibatch_index) iter = epoch * n_train_batches + minibatch_index if (iter+1) % validation_frequency == 0: validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index+1, n_train_batches, \ this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index+1, n_train_batches, test_score*100.)) if patience <= iter : done_looping = True break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score*100.)) print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) if __name__ == '__main__': import sys args = sys.argv[1:] if len(args) > 0 and args[0] == "jobman_add": jobman_add() else: sgd_optimization_mnist(dataset=MNIST_LOCATION)