Mercurial > ift6266
view deep/crbm/crbm.py @ 587:b1be957dd1be
Added mlj_submission to group every file needed for that.
author | fsavard |
---|---|
date | Thu, 30 Sep 2010 17:51:02 -0400 |
parents | 8d116d4a7593 |
children |
line wrap: on
line source
import sys import os, os.path import numpy import theano USING_GPU = "gpu" in theano.config.device import theano.tensor as T from theano.tensor.nnet import conv, sigmoid if not USING_GPU: from theano.tensor.shared_randomstreams import RandomStreams else: from theano.sandbox.rng_mrg import MRG_RandomStreams _PRINT_GRAPHS = True def _init_conv_biases(num_filters, varname, rng=numpy.random): b_shp = (num_filters,) b = theano.shared( numpy.asarray( rng.uniform(low=-.5, high=.5, size=b_shp), dtype=theano.config.floatX), name=varname) return b def _init_conv_weights(conv_params, varname, rng=numpy.random): cp = conv_params # initialize shared variable for weights. w_shp = conv_params.as_conv2d_shape_tuple() w_bound = numpy.sqrt(cp.num_input_planes * \ cp.height_filters * cp.width_filters) W = theano.shared( numpy.asarray( rng.uniform( low=-1.0 / w_bound, high=1.0 / w_bound, size=w_shp), dtype=theano.config.floatX), name=varname) return W # Shape of W for conv2d class ConvolutionParams: def __init__(self, num_filters, num_input_planes, height_filters, width_filters): self.num_filters = num_filters self.num_input_planes = num_input_planes self.height_filters = height_filters self.width_filters = width_filters def as_conv2d_shape_tuple(self): cp = self return (cp.num_filters, cp.num_input_planes, cp.height_filters, cp.width_filters) class CRBM: def __init__(self, minibatch_size, image_size, conv_params, learning_rate, sparsity_lambda, sparsity_p): ''' Parameters ---------- image_size height, width ''' self.minibatch_size = minibatch_size self.image_size = image_size self.conv_params = conv_params ''' Dimensions: 0- minibatch 1- plane/color 2- y (rows) 3- x (cols) ''' self.x = T.tensor4('x') self.h = T.tensor4('h') self.lr = theano.shared(numpy.asarray(learning_rate, dtype=theano.config.floatX)) self.sparsity_lambda = \ theano.shared( \ numpy.asarray( \ sparsity_lambda, dtype=theano.config.floatX)) self.sparsity_p = \ theano.shared( \ numpy.asarray(sparsity_p, \ dtype=theano.config.floatX)) self.numpy_rng = numpy.random.RandomState(1234) if not USING_GPU: self.theano_rng = RandomStreams(self.numpy_rng.randint(2**30)) else: self.theano_rng = MRG_RandomStreams(234, use_cuda=True) self._init_params() self._init_functions() def _get_visibles_shape(self): imsz = self.image_size return (self.minibatch_size, self.conv_params.num_input_planes, imsz[0], imsz[1]) def _get_hiddens_shape(self): cp = self.conv_params imsz = self.image_size wf, hf = cp.height_filters, cp.width_filters return (self.minibatch_size, cp.num_filters, imsz[0] - hf + 1, imsz[1] - wf + 1) def _init_params(self): cp = self.conv_params self.W = _init_conv_weights(cp, 'W') self.b_h = _init_conv_biases(cp.num_filters, 'b_h') ''' Lee09 mentions "all visible units share a single bias c" but for upper layers it's pretty clear we need one per plane, by symmetry ''' self.b_x = _init_conv_biases(cp.num_input_planes, 'b_x') self.params = [self.W, self.b_h, self.b_x] # flip filters horizontally and vertically W_flipped = self.W[:, :, ::-1, ::-1] # also have to invert the filters/num_planes self.W_tilde = W_flipped.dimshuffle(1,0,2,3) ''' I_up and I_down come from the symbol used in the Lee 2009 CRBM paper ''' def _I_up(self, visibles_mb): ''' output of conv is features maps of size image_size - filter_size + 1 The dimshuffle serves to broadcast b_h so that it corresponds to output planes ''' fshp = self.conv_params.as_conv2d_shape_tuple() return conv.conv2d(visibles_mb, self.W, filter_shape=fshp) + \ self.b_h.dimshuffle('x',0,'x','x') def _I_down(self, hiddens_mb): ''' notice border_mode='full'... we want to get back the original size so we get feature_map_size + filter_size - 1 The dimshuffle serves to broadcast b_x so that it corresponds to output planes ''' fshp = list(self.conv_params.as_conv2d_shape_tuple()) # num_filters and num_planes swapped fshp[0], fshp[1] = fshp[1], fshp[0] return conv.conv2d(hiddens_mb, self.W_tilde, border_mode='full',filter_shape=tuple(fshp)) + \ self.b_x.dimshuffle('x',0,'x','x') def _mean_free_energy(self, visibles_mb): ''' visibles_mb is mb_size x num_planes x h x w we want to match the summed input planes (second dimension, first is mb index) to respective bias terms for the visibles The dimshuffle isn't really necessary, but I put it there for clarity. ''' vbias_term = \ self.b_x.dimshuffle('x',0) * \ T.sum(visibles_mb,axis=[2,3]) # now sum over term per planes, get one free energy # contribution per element of minibatch vbias_term = - T.sum(vbias_term, axis=1) ''' Here it's a bit more complex, a few points: - The usual free energy, in the fully connected case, is a sum over all hiddens. We do the same thing here, but each unit has limited connectivity and there's weight reuse. Therefore we only need to first do the convolutions (with I_up) which gives us what would normally be the Wx+b_h for each hidden. Once we have this, we take the log(1+exp(sum for this hidden)) elemwise for each hidden, then we sum for all hiddens in one example of the minibatch. - Notice that we reuse the same b_h everywhere instead of using one b per hidden, so the broadcasting for b_h done in I_up is all right. That sum is over all hiddens, so all filters (planes of hiddens), x, and y. In the end we get one free energy contribution per example of the minibatch. ''' softplused = T.log(1.0+T.exp(self._I_up(visibles_mb))) # h_sz = self._get_hiddens_shape() # this simplifies the sum # num_hiddens = h_sz[1] * h_sz[2] * h_sz[3] # reshaped = T.reshape(softplused, # (self.minibatch_size, num_hiddens)) # this is because the 0,1,1,1 sum pattern is not # implemented on gpu, but the 1,0,1,1 pattern is dimshuffled = softplused.dimshuffle(1,0,2,3) xh_and_hbias_term = - T.sum(dimshuffled, axis=[0,2,3]) ''' both bias_term and vbias_term end up with one contributor to free energy per minibatch so we mean over minibatches ''' return T.mean(vbias_term + xh_and_hbias_term) def _init_functions(self): # propup # b_h is broadcasted keeping in mind we want it to # correspond to each new plane (corresponding to filters) I_up = self._I_up(self.x) # expected values for the distributions for each hidden E_h_given_x = sigmoid(I_up) # might be needed if we ever want a version where we # take expectations instead of samples for CD learning self.E_h_given_x_func = theano.function([self.x], E_h_given_x) if _PRINT_GRAPHS: print "----------------------\nE_h_given_x_func" theano.printing.debugprint(self.E_h_given_x_func) h_sample_given_x = \ self.theano_rng.binomial( \ size = self._get_hiddens_shape(), n = 1, p = E_h_given_x, dtype = theano.config.floatX) self.h_sample_given_x_func = \ theano.function([self.x], h_sample_given_x) if _PRINT_GRAPHS: print "----------------------\nh_sample_given_x_func" theano.printing.debugprint(self.h_sample_given_x_func) # propdown I_down = self._I_down(self.h) E_x_given_h = sigmoid(I_down) self.E_x_given_h_func = theano.function([self.h], E_x_given_h) if _PRINT_GRAPHS: print "----------------------\nE_x_given_h_func" theano.printing.debugprint(self.E_x_given_h_func) x_sample_given_h = \ self.theano_rng.binomial( \ size = self._get_visibles_shape(), n = 1, p = E_x_given_h, dtype = theano.config.floatX) self.x_sample_given_h_func = \ theano.function([self.h], x_sample_given_h) if _PRINT_GRAPHS: print "----------------------\nx_sample_given_h_func" theano.printing.debugprint(self.x_sample_given_h_func) ############################################## # cd update done by grad of free energy x_tilde = T.tensor4('x_tilde') cd_update_cost = self._mean_free_energy(self.x) - \ self._mean_free_energy(x_tilde) cd_grad = T.grad(cd_update_cost, self.params) # This is NLL minimization so we use a - cd_updates = {self.W: self.W - self.lr * cd_grad[0], self.b_h: self.b_h - self.lr * cd_grad[1], self.b_x: self.b_x - self.lr * cd_grad[2]} cd_returned = [cd_update_cost, cd_grad[0], cd_grad[1], cd_grad[2], self.lr * cd_grad[0], self.lr * cd_grad[1], self.lr * cd_grad[2]] self.cd_return_desc = \ ['cd_update_cost', 'cd_grad_W', 'cd_grad_b_h', 'cd_grad_b_x', 'lr_times_cd_grad_W', 'lr_times_cd_grad_b_h', 'lr_times_cd_grad_b_x'] self.cd_update_function = \ theano.function([self.x, x_tilde], cd_returned, updates=cd_updates) if _PRINT_GRAPHS: print "----------------------\ncd_update_function" theano.printing.debugprint(self.cd_update_function) ############## # sparsity update, based on grad for b_h only ''' This mean returns an array of shape (num_hiddens_planes, feature_map_height, feature_map_width) (so it's a mean over each unit's activation) ''' mean_expected_activation = T.mean(E_h_given_x, axis=0) # sparsity_p is broadcasted everywhere sparsity_update_cost = \ T.sqr(self.sparsity_p - mean_expected_activation) sparsity_update_cost = \ T.sum(T.sum(T.sum( \ sparsity_update_cost, axis=2), axis=1), axis=0) sparsity_grad = T.grad(sparsity_update_cost, [self.W, self.b_h]) sparsity_returned = \ [sparsity_update_cost, sparsity_grad[0], sparsity_grad[1], self.sparsity_lambda * self.lr * sparsity_grad[0], self.sparsity_lambda * self.lr * sparsity_grad[1]] self.sparsity_return_desc = \ ['sparsity_update_cost', 'sparsity_grad_W', 'sparsity_grad_b_h', 'lambda_lr_times_sparsity_grad_W', 'lambda_lr_times_sparsity_grad_b_h'] # gradient _descent_ so we use a - sparsity_update = \ {self.b_h: self.b_h - \ self.sparsity_lambda * self.lr * sparsity_grad[1], self.W: self.W - \ self.sparsity_lambda * self.lr * sparsity_grad[0]} self.sparsity_update_function = \ theano.function([self.x], sparsity_returned, updates=sparsity_update) if _PRINT_GRAPHS: print "----------------------\nsparsity_update_function" theano.printing.debugprint(self.sparsity_update_function) def CD_step(self, x): h1 = self.h_sample_given_x_func(x) x2 = self.x_sample_given_h_func(h1) return self.cd_update_function(x, x2) def sparsity_step(self, x): return self.sparsity_update_function(x) # these two also operate on minibatches def random_gibbs_samples(self, num_updown_steps): start_x = self.numpy_rng.rand(*self._get_visibles_shape()) return self.gibbs_samples_from(start_x, num_updown_steps) def gibbs_samples_from(self, start_x, num_updown_steps): x_sample = start_x for i in xrange(num_updown_steps): h_sample = self.h_sample_given_x_func(x_sample) x_sample = self.x_sample_given_h_func(h_sample) return x_sample