Mercurial > ift6266
view deep/convolutional_dae/sgd_opt.py @ 281:a8b92a4a708d
rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
author | SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca> |
---|---|
date | Wed, 24 Mar 2010 14:44:41 -0400 |
parents | 727ed56fad12 |
children | 80ee63c3e749 |
line wrap: on
line source
import time import sys def sgd_opt(train, valid, test, training_epochs=10000, patience=10000, patience_increase=2., improvement_threshold=0.995, validation_frequency=None): if validation_frequency is None: validation_frequency = patience/2 start_time = time.clock() best_params = None best_validation_loss = float('inf') test_score = 0. start_time = time.clock() for epoch in xrange(1, training_epochs+1): train() if epoch % validation_frequency == 0: this_validation_loss = valid() print('epoch %i, validation error %f %%' % \ (epoch, this_validation_loss*100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold : patience = max(patience, epoch * patience_increase) # save best validation score and epoch number best_validation_loss = this_validation_loss best_epoch = epoch # test it on the test set test_score = test() print((' epoch %i, test error of best model %f %%') % (epoch, test_score*100.)) if patience <= epoch: break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score*100.)) print ('The code ran for %f minutes' % ((end_time-start_time)/60.))